12.6 a)
$$\hat{\beta}_1 = \frac{9(40.968) - (12.6)(27.68)}{9(18.24) - (12.6)^2} = 3.693$$

$$\hat{\beta}_0 = \frac{27.68 - 3.693(12.6)}{9} = -2.095$$

b)
$$\hat{y} = -2.095 + 3.693(1.5) = 3.44$$

c)
$$\hat{\mu}_{Y \cdot 1.75} = -2.095 + 3.693(1.75) = 4.37$$

d) residual=
$$y_i - \hat{y_i} = 3.39 - 3.44 = -0.05$$

12.10 a)
$$\hat{\beta_0} = .3651, \hat{\beta_1} = .9668$$

- b) .8485
- c) $\hat{\sigma} = .1932$
- d) SST = 1.4533, 71.7% of this variation can be explained by the model. Note: $\frac{\text{SSR}}{\text{SST}} = \frac{1.0427}{1.4533} = .717$ which matches R-squared on output.

12.12 a)
$$SSE = 93.3448 - (-2.095)(27.68) - (3.683)(40.968) = 0.0290$$

b)
$$\hat{\sigma}^2 = \frac{\text{SSE}}{n-2} = .004142, \quad \hat{\sigma} = s = \sqrt{.004142} = .06436$$

- c) SST=93.3448 $-\frac{(27.68)^2}{9} = 8.213$, so $r^2 = 1 \frac{\text{SSE}}{\text{SST}} = 1 \frac{.0290}{8.213} = .996$. Thus 99.6% of observed y variation can be attributed to the approximate linear relationship between x and y.
- 12.16 a) Plot omitted. Based on a scatterplot of the data, a linear relationship does seem reasonable for this data.
 - b) n=6, $\sum x_i=272$, $\sum y_i=3360$, $\sum x_i^2=18,538$, $\sum y_i^2=2,425,394$, $\sum x_iy_i=210,120$, so $\hat{\beta}_1=9.312$, $\hat{\beta}_0=137.9$. The estimated equation is y=137.9+9.312x.
 - c) SSE=5585.4, SST=543,794, and $r^2 = 1 .010 = .990$.
 - d) The new $\hat{\beta}_1 = 7.5515$ and $\hat{\beta}_0 = 190.35$.

	14		40	10	45	
y_b	268	305	510	538	557	1181
y_d	296	326	492	515	530	1181 1036
		_	_	_	-	/

This suggests that the observation (112,1200) is very influential.

12.25 a) $H_0:\beta_1=0 \\ H_a:\beta_1\neq 0 \\ \mathrm{RR}:|t|>t_{\alpha/2,n-2}=3.106 \\ t=5.29$

so reject H_0 , the slope differs significantly from 0, and the model appears to be useful.

- b) At the level $\alpha = 0.01$ reject H_0 if the P-value is less than 0.01. In this case reported P-value was 0.000, therefore reject H_0 . Conclusion same as part a.
- c) $H_0: \beta_1=1.5$ $H_a: \beta_1<1.5$ $\mathrm{RR}: t<-t_{\alpha,n-2}=-2.718$ t=-2.92so reject H_0 . The data contradicts the prior belief.
- 12.26 a) $\hat{\beta}_1 \pm t_{\alpha/2,n-2} \cdot s_{\hat{\beta_1}} \\ 0.5549 \pm (2.306)(0.3101) \\ (-0.16,1.27)$

The interval contains the value 0, indicating 0 is a possible value for β_1 , and showing little usefulness of the model.

- b) The P-value associated with the model is 0.11, which exceeds standard levels of α . This indicates least squares is not a good way to predict age from transparent dentive content.
- 12.50 $H_0: \rho = 0$ vesus $H_a: \rho \neq 0$, $t = \frac{r\sqrt{n-2}}{sqrt1-r^2}$. RR: $|r| \geq t_{.005,22} = 2.819$ r = .5778, t = 3.32. So H_0 should be rejected. There appears to be a non-zero correlation in the population.
- 12.52 a) $H_0: \rho=0$ vesus $H_a: \rho\neq 0$, $t=\frac{r\sqrt{n-2}}{sqrt1-r^2}$. RR: $|r|\geq t_{.025,12}=2.179$ t=1.74, failed to reject H_0 . the data does not suggest that the population correlation coefficient differs from 0.
 - b) $(.449)^2 = 0.20$ so 20 persent of the observed variation ingas porosity can be accounted for by variation in hydrogen content.
- 12.56 a) Because P-value=.00032< α = .001, H_0 should be rejected at this significance level.

- b) Not necessarily. For this n, the test statistic t has approximately a standard normal distribution when $H_0: \rho = 0$ is true, and a P-value of .00032 corresponds to z = 3.60. Solving $3.60 = r\sqrt{498}/\sqrt{1-r^2}$ for r yields r = .159. This r suggest only a weak linear relationship between x and y, one that would typically have little practical import.
- 13.16 a) $\sum x_i = 9.72, \sum y_i' = 313.10, \sum x_i^2 = 8.0976, \sum y_i'^2 = 8182.8, \sum x_i y_i' = 255.11$ where $y_i' = \ln(y_i)$. So $\hat{\beta} = be\hat{t}a_1 = 6.667$ and $\hat{\alpha} = e^{\hat{\beta}_0} = e^{20.6917} = 968927163$.
 - b) We first predict y' using the linear model and then exponentiate. $\hat{y} = 1.438E11$.
 - c) We first compute a prediction interval for the transformed data and then exponentiate.

With $t_{0.025,10} = 2.228, s = .5946$, and $\left[1 + \frac{1}{12} + \frac{12(.95 - \bar{x})^2}{12\sum x^2 - (\sum x)^2}\right]^{1/2} = 1.082$, the prediction interval for y' is $27.0251 \pm (2.228)(.5946)(1.082) = 27.0251 \pm 1.4334 = (25.5917, 28.4585)$. The P.I. for y is then $e^{25.5917}, e^{28.4585}$.

- 13.18 a) $Y = \beta_0 + \beta_1 \ln(x) + \varepsilon$ where x =concentration and y =critical minimum pH. With $x' = \ln(x)$ we can find $\hat{\beta_1} = .483$ and $\hat{\beta_0} = 7.29$.
 - b) the P.I is $7.29 \pm (4.303)(.6496)(1.360) = (6.91, 7.67)$.
- 13.22 a) the model is $\frac{1}{y} = \alpha + \beta x + \varepsilon$.
 - b) the model is $\ln\left(\frac{1}{y}-1\right) = \alpha + \beta x + \varepsilon$ or $Y = \frac{1}{1+e^{\alpha+\beta x+\varepsilon}}$.
 - c) the model is $lnln Y = \alpha + \beta x + \varepsilon$ or $Y = e^{e^{\alpha + \beta x + \varepsilon}}$.
 - d) This function cannot be linearized.