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BAS C. VAN FRAASSEN

GENTLEMEN’S WAGERS: RELEVANT LOGIC AND
PROBABILITY

(Received 3 December, 1981)

. Probability theory and logic are intimately related. If the former is developed
- gs for example by Carnap, logical relations enter into probability axioms
(such as: p(A)=1if 4 is logically true). Use of an alternative logic will then

result in an alternative probability theory. On the other hand, current activity
in ‘probabilistic semantics’ follows Popper’s lead: lay down autonomous

postulates for probability, define implication probabilistically, and deduce

the laws of logic. Choice of alternative probability postulates must then lead

- to alternative logics.

Here 1 shall explore some ideas that relate probabilities to relevant logic,

~hoping to shed some light on both. The impetus came from David Lewis’s

recent criticism of the semantics for relevant logic offered by, for example,
Richard Routley.

Lewis asserts that no sentence can be both true and false. Since ~ 4 is
true (false) just in case A is false (true) and a conjunction is true just in case
both its conjuncts are, it follows from this point that (4 & ~A) cannot be
true. Hence, Lewis points out, no one can object to the inference of B from
(4 & ~A) that it fails to preserve truth.

[ am not inclined to take issue with this point. But Lewis follows up this
criticism with further arguments which appear to leave little room for relevant
logic except as a logic for equivocaters. The combination of probability with
relevant logic may help to provide some defense against this critique, for in
the variety of probabilistic implication I construct, (4 & ~A) will not only
receive probability zero, but will be incapable of receiving higher probability,
unlike any statement that could ever be true.

I shall introduce the probabilities by means of a sort of conditional bet
(‘the gentlemen’s wager’). The semantics will proceed by associating with
each statement a wager, and defining implications in terms of expectations
of gain and loss. The exposition will be informal to begin, and the logic
defended in this way will be the first degree entailment fragment of R-
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mingle (RMO for short) which was one of the two logics singled out for
criticism by Lewis.

I

Bets with a bookie are purchases: I buy a two-dollar bet on Spectacular Bid
to win in the first race, at odds 2:1, and receive four dollars if he wins. [ have
lost the purchase price if he loses. Perhaps I get my money back if the race is
called off; that depends on the conditions of sale.

A gentleman’s wager is somewhat different: no money changes hands until
and unless the race is run and won or lost. Similarly for other events we can

bet on:
(1) If the Gentlemen win when next they play at Lords’, you shall
give me a magnum of champagne; if they lose 1 shall give you a
vial of perfume.

Note that two possible events are specified; they are mutually incompatible;
one settles the wager in my favour, the other in yours. Remark also that the
wager may never be settled; the Gentlemen may never play at Lords’ again.
In the above example, let us call the speaker the player who takes the
Positive, and the other the Negative. The proposition on which they bet is

2) The Gentlemen will win the next time they play at Lords’,

If that proposition is 4, let us call the two settling events @ and a. There
are three probabilities that play some role in the decision whether to accept

the wager:
(3) The probability that the wager is settled in favour of the Positive
equals p(a); in favour of the Negative, p(a ); that it will be settled
at all has probability p(a) + p(z ).

Two of these suffice to determine the third of course.

Let us now compare two bets, on statements 4 and B. I shall say that 4
implies B if, the stakes being the same, the Positive expectation of B is no less,
and its Negative expectation no more, than that of A. This amounts to:

4) A implies B exactly if, for any probability function p,
p@)<p(b)
and p(b)<p(a).
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" This means that, the stakes being the same, [ do not prefer a bet on 4 to a bet
on B, if 1 am offered the Positive side, and conversely for the Negative. An

example is this:

Q) That the Gentlemen will win by five runs the next time they play
at Lords’ implies that the Gentlemen will win the next time they
play at Lords’.

The Positive player is surer to get his champagne if they bet on the second
~ proposition, the Negative surer of his perfume if they bet on the first.

It is quite easy to see how logical connectives operate in these bets. The
- bet on ~A is just like the bet on A except that the players change sides. That
i s, if @ occurs, this new bet is settled for the Positive, and if @ occurs, for the

- Negative. If we bet on (4 & B), the Positive player wins if and only if both
the bet on A and the bet on B are settled for the Positive. The Negative
player, on the other hand, wins as soon as either of those two is settled for
the Negative.

The joint occurrence of a and b may be described as two events occurring,
~or as the occurrence of a complex event ab of which both are parts. Because
I wish to assign probabilities, I need to deal with event-types (to say that an
accident did not take place means presumably that the event-type accident
was not instantiated) because to assign a probability is to assign a number to
some thing, and that something needs to be real. | make this explicit here,
because 1 want to say that the bet on (A & ~4) is settled for the Positive
exactly if @ and @ occur jointly, and that this joint occurrence has probability
zero. To make that coherent, I assign this zero to the event-type (which has
t . noactually occurring instances), az .

To generalize then, if a,, ..., a, are event (-type)s, so is the complex
ay ... @y, which occurs if and only ifay, ..., a, occur. The order and collation
of the parts do not matter: (ca)b, c(ab)c, and abc are the same event-type.
When ¢ is part of (complex event) e, I shall also say that e forces a. Thus
Eorcing is a relation among event-types; ag forces itself and a, and also forces
a, but need not force anything else. The other important relation is incom-
patibility: for ¢ and @ we must choose incompatible events; these cannot

i both occur.

R T

(6) If A is a statement (4) is the wager on this statement (for stakes
unspecified) which may be settled for the Positive or for the
Negative by the rules below.
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@) If A is atomic there are associated mutually incompatible events a
and a; (A4) is settled for the Positive by any event which forces a
and for the Negative by any event that forcesa.

(8) {(~A) is settled for the Positive by any event that settles (A4) for
the Negative, and (~A) is settled for the Negative by any event
that settles (A4) for the Positive.

9) An event settles (4 & B) for the Positive exactly if it settles both
(A) and (B) for the Positive; for the Negative if it settles either
(A) or (B) for the Negative.

(10) An event settles (4 v B) for the Positive exactly if it settles either
{A4) or (B) for the Positive; and for the Negative if it settles both
{4) or (B) for the Negative.

These conditions were written at length to emphasize the intuitive content,
If we use the notations (4 |and |4) for the sets of event(-type)s that settle
{A) for the Positive and Negative respectively, we see at once that these are
combined by set intersection and set union to represent conjunction and
disjunction. It is an easy lemma to prove that all the sets (4| and |A4) are

closed sets in the sense:

(11) A set X of events is closed exactly if it contains all the events that
force any of its members.

In view of their use, I shall call the closed sets propositions. (The simplicity
of the closure operation here guarantees that unions of closed sets are also
closed.) A statement is associated with a bet, and thereby with a pair of pro-
positions.

How shall we assign probabilities for winning and losing such a bet? The
Positive wins the bet on A exactly if a occurs, which is exactly if some
event occurs that forces a. Probability must be probability of occurrence.

L The probability that some event which forces a occurs, equals
the probability of a itself, p(a).
I1. If @ and b are incompatible, and e forces both, then e cannot

occur, and hence p(e) = 0.

This is a beginning, and may or may not be enough for the treatment of
atomic statements. We are relying on previous knowledge about how to
assign probabilities to events, and (I) tells us how to extend them to certain

GENTLEMEN'S WAGERS 51

propositions. Classical probability theory and even certain generalizations
. (notably Birkhoff’s valuations on lattices) insist that extension to conjunc-
tions and disjunctions be via an additivity principle.

1. PXUY)+p(XNY)=p(X)+p(Y)
for any propositions X and Y,

Given our very simple ‘settlement conditions’ (7)—(10), this suffices to
extend probabilities to {4 land |A4) for each statement 4 in propositional
Jogic.

The reader is now invited to a wager on a contradiction. No doubt he
prefers the Negative. If he is an unmitigated classical logician, he may not
think there is much more to be said. But I shall offer him a choice of wagers,
on different contradictions. Let the statement 4 be successively

A Tomorrow’s sunrise will be before 8 am.;
» A, The first human to land on a planet outside our galaxy will find
life there;
As. The end of the world will occur on a Wednesday.

By the principle of the gentlemen’s wager, no money or goods will change
hands until or unless one of the events occurs which settles the wager. To
settle the bet on (4 & ~A4), we must wait till either aa, or a, or @ occurs. The
first of these will not happen at all, of course, but the others may not either.
In the first example, (4, & ~A, ) will be settled at tomorrow’s sunrise, in the
second, at the astronaut’s landing, and in the third, at the end of the world. It
is not merely a matter of waiting a long time; we are also much less sure that
there will be such astronautical exploits, or that the world will ever end. So
taking the Negative on (4, & ~A,) is much to be preferred to taking the
Negative on (4, & ~A4,).

Dually, I would prefer to be offered a chance to take the Positive side on
{4, vV ~A,) rather than on (A, v ~A,). 1t is easy to see why, since payoff
for the Positive side on an excluded middle is clearly the same as for the
. Negative side on the corresponding explicit contradiction. If there is only a
small probability that (4) will be settled either way, all expectations on bets
whose settlement depends on the settlement of {A4) will also diminish.

But of course the Positive expectation on (B vV ~B) must be at least as
high as the Positive expectation on (4 & ~A), and conversely for the Negative.
?ience although contradictions do not generally imply each other, they do
imply all excluded middles: ,
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(4 & ~A) Implies (B v ~B)

which is the characteristic feature of R-mingle. The proof that RMO doeg
indeed capture all and only the valid implications we have described needs
and deserves a more formal treatment.

Before making the samantics more precise, let us take a look at the two
logical systems to which the discussion pertains. The first was called, by its
creators Anderson and Belnap, the logic of tautological entailment. Using the
terminology according to which a formula without implication connectors is
of zero-degree, and an entailment between such, of first degree, that logic is
also the first degree fragment of their most famous logical system E, and
so [ shall also call it EO.

This is a very simple logic (see Anderson and Belnap, Section 15.2). The
first rule says that entailment is transitive. Next come the usual ‘lattice’
principles for conjunction and disjunction:

A & Bentails 4; A & B entails B.

If A entails B and also entails C then 4 entails B & C.
A entails A v B; Bentails 4 v B.

If A entails C and B entails C then 4 v B entails C.

Next comes the Distribution Principle: 4 & (B v C) entails (A&BYv(4 &CQO).
And finally we have the principles for negation:

A and ~~A entajl each other.
If A entails B then ~B entails ~4.

At this point it may well be asked how much of classical logic is missing. In
one sense, not much. Specifically, this logic has exactly the same procedure
for turning any formula into a logically equivalent one that is in normal form,
whether disjunctive or conjunctive. This is done both in EO and in classical
logic by application of the principles of equivalence: Commutation (of &, v);
Associativity (of &, v); Distribution (in both directions and both dual forms);
Double Negation; and De Morgan’s Laws.

Yet in this logic, no fallacies of relevance can be committed. (B & ~B)

T -
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oes not entail everything; it does not entail 4, nor even (Av~A4) for
arbitrary A. It is at first sight startling, to the classical eye, to find that 4 &
{~A v B) does not entail B. But on the one hand, C. I. Lewis already gave
one argument that shows that if we accepted this as an entailment, in
addition to the above principles, then (B & ~B) would entail 4 after all.

... And on the other, while modus ponens should hold for any respectable im-
- plication connector, who would call material implication respectable?

The second logical system is the first degree fragment RMO of the logic

- R-mingle. This consists of the logic EO plus a single extra rule:

(B & ~B) entails (4 v ~A4)

While that is a clear fallacy of relevance, the logic is still of the relevance
~species, for it is still not the case that (B & ~B) entails every sentence, nor

that every sentence entails (4 v ~A). It is not even the case that all contradic-
tions entail each other, nor that tautologies all entail each other. So, many of

- the distinctions of relevance that transcend classical logical equivalence, are

respected in this logic.

11

What happens to probability on a relevant logic? The logics I single out for
study are the first degree entailment fragments of E (logic of tautological
entailment, or EO) and of R-mingle (RMO). It will turn out that the fine

- structure of the former can not be reflected entirely in the probability

functions. The case is different for RMO: and indeed, RMO appears as a sort
of probabilistic reduction of EQ.

The natural family of structures for the semantics of EQ is that of De
Morgan lattices. In the completeness proof we find, as usual, that considerably
smaller classes already reflect the entire structure of the logic — though
perhaps not its possibilities for extension to E and R — and I shall restrict
my modest efforts here to one such class (essentially, the one studied in my
[1969], the exposition modified using my [1973} and Dunn’s [1976]).

A (finite, free) event structure is a triple F'=(FA, FE, —) in which FA is
a finite class of sets, FE is the power set of FA, and — is an operation on FA
with the simple property that ¢ and 7 are disjoint sets.

We call FE the class of events. The idea is that F4 is itself a class of events
91,4, ... and that {a,, ..., a; } represents the complex event which is the joint



54 BAS C. VAN FRAASSEN

occurrence or combination of @; and ... a;. Recall also that I mean ‘event’
here in the sense of ‘event type’. We think of @ and @ as incompatible events
(this being represented by their disjointness) but the event type {a, 7 }is
different from the event type {b, b} even though each represents an impos.
sible joint occurrence.

It is convenient to concentrate on the structure of FE; the role of event g
is taken over by that of {a} which represents the joint occurrence of a with
itself. The operation — will of course be used in the treatment of negation,
but that subject I will postpone for a while.

Event e (member of FE) is said to force event e’ exactly if ¢’ C e. And we
write ee’ for e U €', the operation of conjunctive combination of events. We
shall now construct the propositions on our event structure.

(1) A set of events E is closed exactly if each event that forces some
member of E also belongs to E; the closure [E] of E is the least

closed set that contains it; a proposition is a closed set of events.

Two conventions will facilitate writing: I shall use X, ¥, Z, X', ... to stand for
propositions and E, E', E|, ... for arbitrary sets of events and abbreviate
[{e),...,e,}] to [ey,..,e,]. It is an easy lemma that intersections and
unions of closed sets are closed again (due to the especially simple nature of
our closure operation) so the propositions automatically form a disttibutive
lattice. More simply, we note:

(2) le] N [€] = [ee'],
e} U le'] =[e €],
fe] N ley. ..., e,] = [ere, ..., e,e€].
(3) The base X, of X is the smallest set of events whose closure equals

X; the rank rX equals the cardinality of its base.

To justify this definition let us call a set of events redundant if it has two
members of which one forces the other. All our sets are finite, so we can
reduce any set to a non-redundant one which still has the same closure by
successively tossing out events which force some other (remaining) member
of the set. The result of this is unique (and the uniqueness argument does not
depend on finitude): for suppose that £ and E’ are non-redundant sets with
the same closure. If e, is in £ and not in £’ it must then force some event e, in
E'. The latter cannot be in E on pain of redundancy. But it is in [E] so it
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ust force some event e in £. However, forcing is transitive, so e, forces
. 3 and hence E is redundant after all. Therefore we conclude that E=F’.

We are now ready to introduce probabilities. Looking at the ‘atomic’
events in F4 wesee that they are represented by sets, so we begin by choosing
“an ordinary probability function defined on those.

“

A pre-probability on F is a probability function whose domain con-
tains FA4.

We want probability to be probability of occurrence, and so the probability
given to combination event {a, b} must be the probability of the joint occur-
“rence of a and b. But the choice of p already rules on that: it is p(a N b).
; Hence we can extend p to FE in only one way:

e R

sy

®) The extension of p to FE is defined by p(e) = p(N e).

y While Ne is not usually in FA, it will of course be in the domain of p, since
% we are only looking here at finite event structures.

The probability that event e occurs must be the same as the probability
that some event which forces e occurs — for e occurs if and only if that
happens. Hence the first step in assigning probabilities to propositions is also
quite out of our hands.

‘ (6)
! ~ Next we insist that this extension must be a probability function, and that

requires at the very least that it satisfies a postulate of additivity. The most
orthodox of these is:

@) p(XUY)+p(XNY)=p(X)+p(Y).

Now probability functions have more properties than just additivity. Looking
at Birkhoff’s classic treatment of valuations on lattices, we see the additional
postulate that p must preserve the order (if X <Y then p(X) < p(Y)) and
, that the value of p is between zero and one inclusive. Order preservation
especially is a feature that must be separately postulated when we move out
of the comfortable classical environment of Boolean algebras. But whatever

The extension of p to propositions must be such that p([e]) =p(e).

may have to be done in more general cases, we have already said as much as
we can for, as I shall show, the probabilities of the propositions are at this
point uniquely determined. To allay our fears that the extension does not
deserve to be called a probability function after all, 1 shall prove a bit more.
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Theorem. The extension of p to propositions is uniquely deter.

mined by (5)—(7); 0 SpX) <lL;andif X<y then
PX)<p(Y).

To prove this we define 2 mapping of the propositions into the field of sets
generated by FA (which must still be part of the domain of p):

fley=ne
(X)) =V {f(e): ein X}

We prove first the lemma that P(X) =p(f(X)). This is clearly so for A and for
X of rank 1, by (6). Suppose it is the case for all propositions of rank <n and

let Y have base {e, ... ey, e}; write Y = [E] U [e]. Then by (2) and (7), we
have ’

PY)=p(E]) + ple]) - p(leye, ..., e, e]).

Sinc? each of the propositions on the right hand side are closure of sets of
cardinality <n, they have rank <n and we conclude

p(Y) =PUCED) +p(fle]) - p(A(IE]) N F([e]y)
=PUUED VL ([e]))
=P(UET U [e]))
=p(f(Y).

This shows the first, and as corollary the second, part of the theorem. To

prove the third it suffices now to realize if X <Y then J(X)<AY), which
follows directly from the definition of f, ,

v

We t.urn now to the treatment of negation and implication. It may be recalled
that in Section I, we associated with atomic sentence 4 the couple of proposi-

1. ¢ is orthogonal to e’ (briefly, ele’) exactly if there is a member
a of FA such that ¢ forces {a} and ¢’ forces {7} or conversely,
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{Of course FA is the ‘strongest’ event which forces all events: it is also ortho-
gonal to all events except A. In addition, orthogonality is symmetric. But
there are many events that are self-orthogonal, so this is not exactly like the
geometric relation.

2. E* (read as ‘E-perp’) is the set of all events that are orthogonal
to all members of £

We can now state the theorem that allows us to think of each sentence as
- expressing a single proposition.

Theorem. If X is a proposition, so is X';(~4 I=(4 It = |4):
the closed sets with N, U,* form a De Morgan lattice.

Adding the first and second part of this theorem to my earlier papers im-
mediately yields the third part. Moreover, since any proposition can be < 4|
and since <~A| is also a proposition, proof of the second part proves the first
as well.

That [{@}] = {e:e forces @} is the set of all facts that are orthogonal to
all those that force {a}, is clear. Similarly with ¢ and @ interchanged. Hence if
A is atomic, <At = | 4> and IA>l =<A |. Let us take this feature for our
hypothesis for sentences A up to given complexity. [ B=~ A4 _ it clearly also has
the feature. To finish the introduction, we need only prove De Morgan’s Laws:

3, xXnyt=xtuyr!
a. Xur)=xtnyt

If e is orthogonal to all members of X (respectively, of Y) it is clearly ortho-
gonal to all members of X NY. Secondly, suppose e is orthogonal to all
members of X N Y. Now suppose ¢ is in X and e is not orthogonal to it. Now
let " be in Y. Then ¢'¢” is in XN Y, so e is orthogonal to that. But if ¢
forces {b} and e’e” forces {4 }that must then be because ¢'' forces {5 }. We
conclude that if e fails to be orthogonal to some event in X, then it is

f’ orthogonal to all events in Y. I leave the proof for the dual case to the reader.
' How does this sort of negation interact with probability? Well, joint
. occurrences of orthogonal events must receive probability zero, given our
; method of assignment, and hence so do all self-orthogonal events.

- 5. Ife Ll e thenp(ee') =0.

6. If X C Y*then p(X U Y)=p(X)+p(Y).
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Kolmogo6rov’s negation axiom is recalled by 6, which follows directly from S.
It is customary to call X and Y orthogonal too if X C Y' (a symmetric
relationship).

Our gentlemen’s wagers induced a variety of implication, which we can
now formulate with precision.

7. X implies Y in p exactly if p(X) C p(Y) and p(Y*) C p(X1).
8. X probabilistically implies Y (briefly X }; Y)exactly if X implies ¥
in all probability functions p.

In a De Morgan lattice, — Y C — X if X.C Y, and we found above that p
preserves the order. Hence we conclude that if X C Y then X }; Y. Since the
logical principles of EQ are valid in all De Morgan lattices, in the ordinary
sense, it now follows that they are all valid also in the present probabilistic
sense. But we have an addition.

Theorem. If A =B in RMO then <A4] f; <B|.
This follows from the above, plus
9. xnxt L Yu yi

That is proved by 6 which implies that p(X,; N Xll) =0, and the fact that De
Morgan’s laws hold.

Having now found therefore that RMO is sound for probabilistic implica-
tion, we turn to completeness. In EO, every formula can be transformed into
an equivalent disjunctive normal form and also into a conjunctive one. Since
EO is part of RMO we can begin with that procedure. So we need to check
for validity only cases that take the following form:

10. A B where
A=A,V ..VA,,
B=B, & ..&B,,
A=A & ..&A9,
B; =B; V.. VB}.
Each sentence 47 and BI.' is either an atomic sentence or the negation
thereof.

We need to prove that if 4 B does not hold in RMO, neither does <A |};<B .
1 shall here write p(4) for p(<A |), and so forth, for brevity.
The derivability of B from 4 in RMO is easy to check when they are in

et}

e T

W mna—————
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the above normal form. It is-required exactly that each couple <A;, B;> be
good in the following sense:

either
A= Bj’ for some s, ¢

or
S_ . qu
A;=~AY and Bf= ~B"} for some s, u, t, w.

Let us suppose, to be definite, that the couple (4,, B,) is not good in this
sense. We shall first of all show that 4, f;B, does not hold,

To begin, we attempt to choose a single atomic event @ and set <4 | =
[{a}] for all s. If that succeeds, we choose two events b and b, disjoint from
each other and also fromfa, and set <B| |equal to [{b}] if B! is an atomic
sentence and equal to [{b }] otherwise. Then we choose probability function
p so that p(a)=1 and p(b)=p(b)=0. This implies that p(4,)=1 and
p(B,) =0 s0 A, does not probabilistically imply B, . Should the attempt fail,
it must be because A7 is the same as ~A4Y for some s and u. In that case,
because the couple is not good, no BY is the same as ~B for any t and w.
We then recall that in RMO, 4, B, only if ~B, F~4, and set out to
refute the latter. Placed in normal form we have

~B, |-~A, if and only if
*Bl & & *BY %At v v *A9,

where *C is ~C if C is unnegated, and is D if Cis ~D. Now we try the same
strategy as above, and this time it cannot fail. But <~C |=<C ll, and so we
see that A, does not probabilistically imply B, in this case either.

We have now found that since 4, |- B, does not hold, there is a probability
function (on some well-chosen event-structure) such that either p(4,) =1
and p(B,) =0, or else p(~B,)=1 and P(~A,;)=0. In the former case, we
have also p(4) > p(B). In the latter case we note that A B holds only if
~B |=~A does where that can be put in dual normal form

*ByV..V*B, %A, & ..& *A,,.

and we shall have p(*B,) > p(*4, ) and hence p(~B) > p(~A4) and so again
A does not probabilistically imply B.
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v

Logic catalogues valid arguments; in doing so it characterizes one aspect of
the structure of a language. That is usually a fairly superficial aspect, which
may be shared by many languages of quite different structure. In our case
that is quite clear from the completeness proof: the restriction of our
probability functions to those having values zero and one only (truthvalue
functions) would not upset that proof at all. To exhibit RMO as a sort of
reduced EQ it would suffice, this suggests, to concentrate on maps that assign
each proposition in a De Morgan lattice the value zero or one in a way that
preserves the implicational order and does not assign one to any proposition
and its negate, and defining t-implication analogously to the probabilistic
implication. David Lewis’s criticisms could be answered in connection with
this manoeuvre too.

But the corollaries for logic aside, we have found out something about
the relation between probability and logic. There is an important difference
between the conditional bets that are used in gentlemen’s wagers and the
ordinary bets. Each gives rise to a probability calculus, but the two are
different because the latter calculus leads to a classical logic and the former
to a relevant logic. Because 1 studied the matter by looking at how relevant
probability functions can be constructed, there are still questions to be
answered about axiomatics. For example, both Intuitionistic logic and RMO
are characterized by distributive lattices which have a sort of non-standard
complementation operation. In both cases, the probabilities defined on the
lattice then have the properties

p(A&~A4)=0; p(Av~A4A)< 1.

So far the similarities; what are the differences? They have to do with double
negation and De Morgan's laws of course. In the case of Intuitionistic logic
there is an autonomous probability theory (in the guise of probabilistic
semantics for that logic along the lines which Popper proposed for classical
logic) from which the Intuitionistic logical principles can be derived (see my
[1981]). Is there an autonomous axiomatic probability theory that can play
this role for RMO? Can it be extended to the implication connector of RM?
Are thereinteresting stochasticmodels amongour probabilifiedeventstructures?
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Among probabilified De Morgan lattices generally? These are all questions
that seem to me to deserve further study.

Princeton University
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