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1 Introduction

Migration is among the most effective ways for workers to improve their economic conditions.
However, even within countries, migration rates are low. High migration costs and a lack
of information on destination characteristics can reduce migration, but disentangling their
roles is difficult, as researchers rarely observe what workers know. Studies often place strong
assumptions on migrants’ information and focus on estimating migration costs, sometimes
interpreting them as accounting for information frictions. However, information frictions
affect migration differently from costs. While costs affect how beneficial a move is, lack
of information does not but may lead to mistakes in people’s choices. Increasing access to
information has thus the potential to improve workers’ location decisions and, in doing so,
enhance the benefits of policies that reduce migration costs.

We introduce a moment inequality procedure to separately identify the role of information
frictions and migration costs in workers’ location choices. Crucially, our procedure is valid
even if workers’ information differs in ways unobserved to the researcher. We apply it to data
on formally employed workers in Brazil to answer four questions. What do workers know
about wages in different locations? How does allowing for unobserved workers’ information
affect estimates of how they trade off expected wage gains against migration costs when
choosing their location? How would workers’ location choices change if their information
changed? How does workers’ information mediate the impact of changes in migration costs?

We obtain four main results. First, workers generally only have coarse information on
location-specific wages. However, those living in areas with better internet access or larger
populations are better informed. Second, our estimates of the migration elasticity to expected
wages are three times larger than those obtained using common estimation procedures, which
place stronger assumptions on workers’ information, whereas our migration cost estimates are
21% lower on average. Third, migration rates would increase significantly if workers had full
information on location-specific wages. Fourth, researchers assuming workers’ information is
better than it truly is overestimate the welfare gains from reductions in migration costs.

Our baseline analysis is based on a static model that incorporates expectations on wages,
migration costs, amenities, and prices, as well as idiosyncratic preferences, as drivers of work-
ers’ location choices.! We impose no restriction on wage expectations beyond assuming these
are rational; as a result, expectations on wages may vary across workers with different infor-
mation sets, which we treat as potentially heterogeneous across every worker and unobserved
to the researcher. Conversely, for each destination, we assume expectations on migration

costs, amenities, and prices are common across workers sharing a prior location of residence,

In Appendix G, we extend our analysis to models with sunk migration costs and forward-looking workers.



but allow them to vary flexibly across these worker groups, and impose no restriction on their
rationality. Thus, while wage expectations give rise to individual unobserved heterogeneity,
expected migration costs, amenities, and prices are captured by destination-specific effects
that may vary across workers depending on their prior location.? A second source of unob-
served heterogeneity in workers’ choices is the presence of idiosyncratic preferences. As in
workhorse models of migration (e.g., Caliendo et al., 2021; Morten and Oliveira, 2024) and
models of sectoral or occupational choice (e.g., Dix-Carneiro, 2014; Traiberman, 2019), we
assume these are independent across choices and follow an extreme value distribution.

Our modeling of expected migration costs, amenities, and prices as captured by origin-
by-destination fixed effects implies that the number of preference parameters increases in
the square of the number of locations considered in the analysis. When studying migration
decisions, workers’ feasible set is often large and, thus, the number of fixed effects to estimate
will also be large. Estimating high-dimensional parameter vectors using moment inequalities
is computationally challenging when using standard procedures. We introduce a moment
inequality procedure to calculate confidence intervals on each parameter in models featuring
potentially large choice sets, choice-specific fixed effects, and information sets that may vary
between any two agents in ways unobserved to the researcher.

Key for our procedure is a new type of moment inequality that we call bounding inequality.
To derive it, we compare workers’ expected utility in any two locations in their choice set,
obtaining as a result a conditional moment equality that depends on a concave function of
the worker’s expected utility difference in those two locations.® The conditioning set in this
moment equality is a covariate vector assumed to belong to the worker’s information set.
From this equality, we derive moment inequalities by bounding the concave function from
above by its tangent at any point. Importantly, the resulting inequalities are linear in the
worker’s expected utility difference between the two locations. We then substitute workers’
unobserved wage expectations with the ex post realized wages. While this introduces workers’
expectational errors in the moment, the rational expectations assumption implies these are
mean zero conditional on any variable in the worker’s information set. This property of
expectational errors, combined with the linearity of the bounding inequality, leaves this one
unaffected. The resulting moment inequality thus depends on the difference in the fixed

effects between the two locations being compared, as well as on the utility difference that

20ur model may be estimated separately for worker groups defined by gender, race, or education level,
allowing thus expected amenities, migration costs, and prices to vary flexibly across those worker groups.

3To derive our inequalities, we require the relative probability of choosing the two locations to be convex
in the worker’s expected utility difference between them. This requirement holds in multinomial logit models,
but also in nested logit models if the locations being compared belong to the same nest. Thus, our moment
inequality procedure may be applied to a generalized version of our baseline model in which idiosyncratic
preferences are allowed to be correlated across nests of destinations.



arises from any wage variation between both locations.*

We use our bounding inequality in a novel two-step estimation procedure. The first step
provides bounds on the wage preference parameter. These are computed by combining the
bounding inequality described above for pairs of workers that share the same origin location
but have distinct observed wages in any given destination; e.g., because they are employed in
different sectors. The resulting inequality does not depend on workers’ expected migration
costs, amenities, and price levels, which are differenced out when comparing the utilities of
two workers of the same origin, but it depends on the wage difference between the two workers.
This inequality can thus be used to compute a confidence interval for the wage preference
parameter. In the second step, we bound one at a time each of the origin-by-destination fixed
effects that capture workers’ expected migration costs, amenities, and prices. Thus, instead
of estimating a joint confidence set for all fixed effects, which is infeasible in settings with
many choices, we estimate separate confidence intervals for each fixed effect. To compute
these, we use the bounds on the wage coefficient estimated in the first step and, in the second
step, combine the bounding inequalities described above with the type of odds-based moment
inequalities introduced in Dickstein et al. (2023).

We show theoretically that our inequalities provide bounds on all parameters when the re-
searcher correctly specifies a subset of workers’ information sets, and point identify them when
such subset coincides with the true information sets. Point identification is thus achieved pre-
cisely when maximum likelihood estimators are consistent, implying no loss of identification
power may be incurred in this case when using our inequalities.” When the researcher only
observes a proper subset of workers’ information sets, we show in simulations that the max-
imum likelihood estimates are not only biased but also often outside of the bounds defined
by our inequalities. Our simulations also illustrate that, when the researcher misspecifies the
content of the worker’s information set by assuming that a variable belongs to it when it
truly does not, the identified set defined by our moment inequalities may be empty. We use
this result to test how accurate workers’ wage information is.%

We employ our estimator to study internal migration in Brazil. We use data from the
Relagao Anual de Informagoes Sociais (RAIS), which has information on the wage and the
sector and region of work of all formal workers. We estimate our model for the population of

white male workers aged 25-64 with at least a high school degree.” We define a labor market

4More generally, our inequality will depend on the utility difference coming from any choice characteristic
(e.g., amenities) that is both observed by the researcher and not absorbed by the included fixed effects.

5See corollaries 1 and 3 in Section 3 for more details.

5Tn some misspecified models, the identified set is non-empty while not including the true parameter
value. See Molinari (2020) for a discussion of this phenomenon, and Andrews and Kwon (2024) and Kaido
and Molinari (2024) for inference procedures in partially identified models robust to misspecification.

"These are, respectively, the largest race, gender, and education categories in RAIS.



as a sector-region pair, and study the information workers in our population have on market-
by-period wage shifters. These shifters account for all demand and supply factors having a
common impact on the wages of all workers in our population in a market and period. To esti-
mate these shifters, we regress wages on sector-by-region-by-period fixed effects (which equal
our shifters of interest) while controlling for worker-by-sector fixed effects (which account for
unobserved worker cross-sectoral comparative advantage) and time-varying worker character-
istics (e.g., sector-specific experience) with sector-specific coefficients. With those shifters in
hand, we estimate the wage preference parameter using exclusively cross-sectoral variation in
the probability that workers in a given origin choose to migrate to a given destination. This is
in contrast with the standard approach in the migration literature of using cross-destination
variation in total migration probabilities to estimate the wage preference parameter. As a
result of our relying exclusively on cross-sectoral variation, unobserved destination-specific
amenities are not a source of potential omitted variable bias in our estimation of the wage
preference parameters.

Our analysis yields four conclusions. First, workers face substantial information frictions.
We reject the common assumption that workers have perfect information on prevalent wages
in every labor market. Furthermore, when exploring how finely workers can classify markets
on the basis of the previous year’s wage shifter, we conclude they can only classify markets
into four bins. In particular, we cannot reject that workers can classify each market as being
in the top 25% by its previous year’s sector-by-region wage shifter, in the 50-75% bracket, in
the 25-50% bracket, or in the bottom 25%, but we reject that every worker can classify every
market according to finer partitions. Concurrently, we find that workers” wage information is
heterogeneous and that geography plays a key role in driving that heterogeneity. Specifically,
we cannot reject that workers in regions with better internet access or larger populations
have more precise wage information, or that all workers have more accurate information
about wages in markets that are geographically close to their location of residence.

Second, relative to our moment inequalities, estimators common in the migration lit-
erature yield smaller estimates of the migration wage elasticity and larger migration cost
estimates. Specifically, our approach yields a 95% confidence interval for the elasticity of mi-
gration to expected wages centered at 1.5, and does not include the Poisson Pseudo-Maximum
Likelihood (PPML) estimate of 0.5. In addition, our migration cost estimates (measured in
utility terms) are centered around values 21% lower than the PPML estimates. Therefore,
in our setting, standard assumptions on the worker information set drive the researcher to

overestimate the role that non-wage factors play in determining workers’ location choices.®

8The PPML estimator we implement is consistent if all workers employed in the same sector have a common
information set. The difference between the PPML and moment inequality estimates is thus compatible with
our finding that information sets are heterogeneous by worker location.
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Third, we quantify workers’ individual welfare gains from improved wage information.
The 95% confidence interval for the welfare change that results from giving the average worker
perfect wage information is [2.5%, 4.1%]. Importantly, this welfare change is partly driven by
an increase in migration. When perfectly informed about wages, the average worker changes
locations in two consecutive years with probability between 9 and 14%; when they can only
discern quartiles of lagged wage shifters, this probability is between 4 and 7%. Importantly,
this relationship between wage information and migration probabilities is not due to workers
being too pessimistic about wages in locations other than the place of residence, as workers
in our model are always rational, regardless of the information to which they have access.

Fourth, migration costs and information frictions interact in rich ways when determining
workers’ migration rates. As a result, model-implied welfare gains from reductions in migra-
tion costs are sensitive to the researcher’s assumptions on workers’ information. The 95%
confidence interval for the welfare change that results from a 10% decline in migration costs
is [4.2%, 5.6%] if the worker is fully informed about current sector-by-region wage shifters,
but only [2.2%,2.9%] if they only observe the quartiles of the previous year’s shifters.

Our paper is related to three strands of the literature. First, it relates to work studying
workers’ mobility across locations, sectors, or occupations. Our static model incorporates
choice-specific idiosyncratic preferences and fixed costs as Tombe and Zhu (2019) and Morten
and Oliveira (2024). In the dynamic extension to our model, we further allow for forward-
looking workers and one-time switching costs (e.g. Kennan and Walker, 2011; Dix-Carneiro,
2014; Traiberman, 2019). Our contribution is to show how to estimate static and dynamic
migration models without fully specifying workers’ information, and to quantify the impact
on model estimates and counterfactual predictions of misspecifying workers” information sets.
However, our analysis has two limitations: it does not allow workers’ location decisions to
depend on unobserved wage determinants, and all our counterfactual predictions are partial
equilibrium.”

Second, we contribute to the literature on information frictions in migration. Recent work
has used randomized or natural experiments to evaluate the impact of workers” information
on their location choices; e.g., Bryan et al. (2014), Bergman et al. (2020, 2023), Wilson
(2021), and Baseler (2023). In the absence of exogenous variation in information sets, other
studies follow a structural approach. Kaplan and Schulhofer-Wohl (2017) introduce a model
in which workers acquire information on location characteristics through a Bayesian process.
Porcher (2022) extends this approach by endogenizing the information acquisition process
of rationally inattentive workers. Our contribution is to infer the importance of information

frictions while neither observing exogenous shifters of agents’ information sets nor imposing

9See Fan et al. (2023) for work incorporating flexible beliefs in a model & la Caliendo et al. (2019).



parametric restrictions on the stochastic process determining these sets.

Third, our paper is related to studies using choice data to identify agents’ preferences when
their expectations of choice characteristics are rational but unobserved. In the absence of
measures of agents’ expectations (Manski, 2004), it is common to assume that the researcher
observes agents’ full information sets (Manski, 1991). A recent approach allows the content
of these sets to be partly unobserved by the researcher, but rules out heterogeneity in such
content between agents of the same observable type (Traiberman, 2019). Building on Pakes
(2010), Ho and Pakes (2014), and Pakes et al. (2015), we allow information sets to vary
across agents in unobservable ways, and use moment inequalities to partially identify agents’
preferences in models, static or dynamic, with large choice sets and choice-specific fixed
effects. We combine our bounding inequality with the odds-based inequality in Dickstein
and Morales (2018) and Dickstein et al. (2023) to obtain tighter bounds than if each of these
two inequalities were used separately. When applying our estimator to the study of dynamic
models, we combine the bounding inequality with the Euler approach in Morales et al. (2019).

The paper is organized as follows. Section 2 presents a model of worker location choices.
Section 3 describes our moment inequality estimator, and Section 4 illustrates its properties

using simulated data. Section 5 discusses our empirical application. Section 6 concludes.

2 Model of Migration with Incomplete Information

We model the choice of location for workers in a population defined, e.g., by their demographic
characteristics and prior location. Workers in this population are partitioned into S types
defined, e.g., by their sector of employment. While all parameters may vary freely across
populations, we assume parameters do not vary across types. As shown in Appendix F, the
worker’s type may be endogenous and chosen simultaneously with their location.

We index types by s or 7 and workers by i or j within a type. Defining a variable 3!, that

equals one if worker i of type s chooses location [ (and zero otherwise), we assume

Yl =1{l = argmaX]E[Uil;\.Z-s]} foril=1,... L, (1)

U=1,..L
where 1{A} is an indicator function that equals 1 if A is true, U}, € R denotes the worker’s
utility of choosing I, J;, € R%s with d;, > 0 is the worker’s information set, and E[-|7;] is a

conditional expectation operator reflecting the worker’s beliefs.!”

YEquation (1) assumes a common choice set for all workers. The estimator described in Section 3 can be
adapted to allow for heterogeneous choice sets, if these are partly observed by the researcher and independent
of workers’ information sets and location-specific utilities.



We impose five assumptions on workers’ expected utilities. First, workers’ expectations
are rational; i.e., for any X;; € R, denoting by F(:|J;s) the cumulative distribution function
of X, conditional on 7, it holds that

xT

Second, the utility of choosing location [ for worker i of type s is

Z/Iils = ués + el (3a)

187

ul, = &'+ awl,, (3b)
where w!, is the natural logarithm of the nominal wage worker i of type s would earn if they
chose location [ and « captures the relative importance of wages in workers’ utility. The
terms x! and €!, are the common and idiosyncratic components of all other determinants of
utility. For simplicity, we refer to ' as location I’s amenity, although it will also account for
location-specific log prices and, depending on the definition of the population of study, for
other determinants of workers’ preferences such as migration costs.!!
Third, defining &;, = (g, ...,€L), we assume that

€is & u7isa (4)

where, for vectors X and X/, we use X € X’ to indicate that the distribution of X’ conditional
on X’ is degenerate. Equation (4) imposes that, when making their location choice, worker
i of type s knows ¢;5. It does not restrict which other variables belong to J;,.

Fourth, for worker ¢ of type s, worker j of a type r # s, and locations [ and !’, defining
Awll = w!, —wl,, it holds

is  Wisy

E[Aw| T, Tir] = B[Aw]|Ti] = E[Aw!| 7] = E[Aw Wi, (5)
with W, including all elements of 75 other than e;; i.e., Wis = Jis\{€is}. The first equality
in equation (5) imposes that a type-s worker has at least as much information as any worker
of a different type r about the differences in the wage a type-s worker would earn in different
locations. The second equality imposes that the worker’s expected wage difference between
locations [ and I” only depends on the expected difference between type-specific terms. Finally,

the third equality imposes that, once we condition on all other elements of the worker’s

HWhen workers differing in their prior location are classified into different populations, they may differ in
the value of x! in any I and, thus, these parameters will account for origin-by-destination migration costs.



information set, idiosyncratic preferences do not help the worker forecast wages.'?

The first equality in equation (5) naturally holds if all workers in the population have the
same information; i.e., if J;s = Jj, for any ¢, j, s, and r. It also holds if workers know more
about their type-specific wage differences than workers of a different type.!® Importantly,
this equality does not restrict the variation in information across workers of the same type.

The second equality in equation (5) is imposed by data limitations. Our moment in-
equality procedure permits to flexibly model the information workers have on payoff-relevant
variables whose ex-post (or realized) value the researcher either observes or can consistently
estimate. Generally, one cannot estimate, for every worker and location, a wage component
that is location- and worker-specific. Hence, we must impose that workers ignore their own
idiosyncratic location-specific wage shifters when making their location choices. In contrast,
equation (5) does not impose any assumption on the information workers have about worker-
by-type or type-by-location wage shifters. Specifically, when types correspond to sectors, we
impose no assumption on the information workers have about their own sectoral comparative
advantage or about sector-by-location specific shocks driving labor demand or supply.'*

The third equality in equation (5) is an implication of the exogeneity of idiosyncratic
shocks often assumed in discrete choice models.

Fifth, and last, denoting by F.(-) the cumulative distribution function of €, it holds

F(eis|Wis, Tjr) = Fe(€is|Wis) = F(eis) = exp ( - Zexp(—s@), (6)
=1

for any worker ¢ of type s and worker j of type r. The first equality imposes that a worker’s
idiosyncratic preferences are independent of all other workers’ information sets, including
their own idiosyncratic preferences. The second equality imposes that a worker’s idiosyncratic
preferences are independent of all other elements of their own information sets. The third
equality imposes a standard assumption in workhorse models of migration (e.g. Caliendo et
al., 2021; Morten and Oliveira, 2024): that !, is iid across locations and follows a type I

extreme value distribution with location parameter equal to zero and scale parameter equal

¥, we define Azl =zl — b

13When types correspond to sectors of employment, equation (5) imposes that, e.g., real estate workers
know more about differences across locations in real estate wages than healthcare workers, and vice versa.

4By assuming that unobserved (to the researcher) wage shifters are unknown to workers when choosing
locations, we rule out the selection mechanism in Roy (1951). We do, however, allow wages to vary by
individual-type is. In our application, individual-sector effects account for much of the variation in individual
wages, thus limiting the role individual-location effects play in determining wages. An alternative is to follow
the procedure in Section 8.2 in Dickstein and Morales (2018) and allow workers to choose locations based on
unobserved wage shifters; computational reasons would then force us to limit the number of parameters in
the wage equation.

. ’ ’
2Generally, for any variables z!  and x! L L



to one.'?

Equations (1) to (6) are the only model assumptions we impose. Hence, not only do we
allow for unobserved heterogeneity in workers’ information sets and, as a result, in workers’
wage expectations, but we also leave the wage data-generating process unrestricted. Fur-
thermore, equations (2) to (5) imply E[U.|T:s] = &' + aE[w! W] + €., and, thus, we can
interpret ' as capturing the expectation that all workers in the population have on amenities
in [. Consequently, we allow workers to have irrational expectations on amenities, but restrict
these expectations to be common across workers in the population. Conversely, equation (2)
restricts workers’” wage expectations to be rational, but the flexible modeling of information
sets allows expected wages in any given location to differ across all workers.

We assume the researcher observes a random sample of workers by type. For all workers,
the researcher observes the location choice y;; = (v, . ..,y%). Additionally, for all types, the
1 1 L

. 2Ly, with 2! a

researcher observes wage shifters wy = (w!, ..., wk) and a vector z, = (2}, ..., 2!
potential predictor of w!. Alternatively, w, may not be observed but consistently estimated.
We do not assume the researcher observes W, for any sampled worker.

Only differences between the elements of x are identified. We thus normalize k' = 0. The
goal of estimation is to recover a and (x2%,..., %), and to learn about workers’ information.
We denote by 0 = (0,0, ...,01) the parameter vector with true value 6* = (a, k2, ..., k%).
To infer workers’ information, we test the null hypothesis that, for a given set of locations,

certain wage predictors belong to the information set of all workers in a given group.

3 Estimation Through Moment Inequalities

If the number of choices L is large, 6 will be high dimensional. Common moment inequality
inference procedures rely on inverting a test at each point in a grid covering the parameter
space, complicating their applicability in models with large parameter vectors. We propose
a two-step procedure that circumvents these computational challenges and produces a confi-
dence interval for each element of 6 individually. In the first step, we compute a confidence
interval for 6, using inequalities that difference out the parameters 0y, ...,60r. In the second
step, for each [ = 2,..., L, we derive inequalities that depend only on 6, and 6;, which we
combine with the first-step confidence interval for 6, to obtain a confidence interval for ;.'

The moment inequalities used in the first step combine those used in the second step.

Thus, for exposition purposes, we first describe the second-step inequalities in Section 3.1.

5 Migration models often assume idiosyncratic preference shocks follow a Fréchet distribution under a
multiplicative utility formulation, which is equivalent to our assumption under a log-additive formulation.

161f 44!, included worker-by-location covariates other than the wage wf s (e.g., worker-by-location amenities),
the first-step inequalities could also be used to compute bounds on the coefficients on those covariates.



We then describe in Section 3.2 how we build the first-step inequalities. Section 3.3 explains

how we use these inequalities to estimate confidence intervals for the elements of 6.

3.1 Second-Step Moment Inequalities

We use two types of inequalities to partially identify 6, for each [ = 2,..., L. In Section 3.1.1,
we introduce a new type of inequality that we name bounding inequality. In Section 3.1.2,
we describe how we apply the odds-based inequality in Dickstein et al. (2023) to our setting.

Both the bounding and the odds-based inequality exploit the same implication of the
model described in Section 2. Specifically, equation (1) implies that, for any worker i of type

s and any two locations [ and [’, it holds that
(Yis + yi) (H{E[U, — UL Tis] = 0} — yi,) = 0. (7)

This equation indicates that, for any worker i of type s who chooses location [ or location I’
(for whom gl +%%. = 1), they would choose [ if and only if their expected utility of choosing [ is
larger than that of choosing I’; i.e., 4!, = 1 if and only if E[U}, —U"|Tis] = 0. As equation (7)
holds for every worker, it must also hold for the average worker with a particular information

set W who effectively chooses [ or I’. Equations (2) to (6) then imply the following equality:

exp(E[ul, — ul [W;])
1+ exp(E[ul, — ul,|[W;,

- yfs Wi87y7l;5 + yf; = 1] = 07
)
which we can rewrite as

E[y;, + yis (— exp(=E[uj, — uf,[Wii]))[Wis] = 0, (8)

where exp(—E[ul, —u’,|[Wi])) equals the probability of choosing I’ relative to that of choosing
[. This equality cannot be used to identify 6 due to the weak restrictions our model imposes
on the content of W, for any worker ¢ of type s. However, as shown in sections 3.1.1 and
3.1.2, the convexity of exp(—z) in = can be exploited to derive inequalities that do not
depend on W, and provide non-trivial bounds on 0.'” Specifically, the bounding inequalities
in Section 3.1.1 exploit the fact that any convex function is bounded from below by any
first-order approximation to it, regardless of the approximation point. Conversely, the odds-

based inequalities in Section 3.1.2 exploit the fact that, according to Jensen’s inequality, the

7The inequalities in sections 3.1.1 and 3.1.2 can be derived if the relative probability of choosing locations
I and I’ is convex (or concave) in the agent’s expected utility difference between them: the relative probability
of choosing I’ over choosing I becomes more (or less) sensitive to E[ul, —uw|WZ-S] as it increases. This property
holds in multinomial logit models; also in nested logit models when [ and I’ belong to the same nest.

10



expectation of a convex function is larger than the function of the corresponding expectation.

3.1.1 Bounding Moment Inequalities

Given equation (8) and the convexity of exp(—x) in z, we can use the first-order approxima-

tion to this function around any point e to derive the following moment inequality:
Elyt, — yis exp(—¢is) (1 + ey — Elug, — ui[Wi])Wi] = 0. (9)

Since y!, is measurable in J;5, we show in Appendix A.1 that, for any eilsl also measurable in
Jis, we can apply the Law of Iterated Expectations (LIE) to obtain:

E[y;, — yis exp(—ely) (1 + ey — (uf, —uf,)) [ Wis] = 0. (10)

(2

Finally, given any z; € W, applying again the LIE, we obtain the following inequality:
Elyt, — yis exp(—ei) (1 + el — (uf, — uf,))|2] > 0, (11)

which no longer depends on the unobserved information set W;, of any worker. The remainder
of this section explains how we use this inequality to derive bounds on 6, ..., 0.
Given locations [ and I’, we denote by Af; = 0, — 0, the unknown parameter whose true

. / / . . .
value is Ax" = k! — k', Then, for any two locations [ and !’ in the worker’s choice set, a

w

18

random vector z,, and a scalar random variable e, we define the moment

m'" (z,, M) = Blyi, — i, exp(—efy) (1 + ey — (A + alw))|z], (12)

which equals the left-hand side of equation (11) but written as a function of Af,. Theorem

1 establishes a property of this moment when Ay = Axl 18

Theorem 1 Assume equations (1) to (6) hold. Then, m" (z,, A!) = 0 if el < Jis and
Zs © W@'s-

The proof of Theorem 1 is in Appendix A.1. This theorem implies that, if its conditions
hold, the set of values of A8y for which

IIIl”/(Zs, Agll’) = 0 (13)

includes Ax! regardless of the value of z,, of the locations | and I’ being compared, and

of how the approximation points e are chosen. Ideally, we would like m" (z,, Afy) to be

18Note that, given the normalization x' = 0, it holds that Af;; = .
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negative for all values of Ay different from Ax!. We show in Appendix B.1 that, for any
worker i of type s, the value of ¢! that minimizes the moment m* (z,, Afy) for any given
instrument z, and parameter value Afy is given by the following expression:

el = Ay + aE[Aw! |z, yl, = 1]. (14)
To provide intuition on how the inequality implied by equations (12) to (14) may be used to
partially identify A6y, we show in Appendix B.1 that this inequality can be written as

E[y'ﬁs|zs]

—rT exp(—a]E[Awi,l,\zs, yﬁs = 1]) < exp(Afy). (15)
E[yzs|25]

As this inequality holds for any two locations, we can swap the identity of [ and I’ and obtain

E[y,ﬁs|2’5]

7 exp(—aB[AwWY |z, yl, = 1]) = exp(Abdy). (16)
E[yzs|25]

Equations (15) and (16) provide bounds on the amenity difference Afj. These bounds
are based on the relative probability with which workers who know z, choose [ over [,
E[y.,|z]/E[y%|z]. As in most spatial models, the mapping between relative choice probabil-
ities and amenity differences is not straightforward, as a location [ may be preferred over a
location I’ not only because of a higher amenity value in [ but also because of higher expected
wages in [. That is, to infer A/, one must first net out the effect of the expected wage dif-
ference between [ and I’. This step depends on the assumption placed by the researcher on
workers” wage expectations.

When the researcher knows workers’ information sets W, they can net out the effect of
expected wages exactly by setting z, = W;,. In this case, the decision to move to [ or I’ is
entirely determined by z, and does not provide additional information about workers’” wage
expectations. Therefore, E[Aw! |z, ¢, = 1] = E[AwY |z, 9% = 1] = E[Aw"|z] and the
bounds in equations (15) and (16) coincide, point-identifying amenities. We formalize this

intuition in the following Corollary, which we prove in Appendix B.2.

Corollary 1 Assume equations (1) to (6) hold. Then, the bounds in equations (15) and
(16) imply A0y = A& if E[Aw" |z, = E[AwY | Wi].

When the researcher only observes a subset z, of workers’ information sets W, the
decision to move to [ or I’ is not entirely determined by z,, and therefore provides addi-
tional information about workers’ wage expectations. In particular, by revealed preferences,

E[AwY |2z, 9}, = 1] = B[Aw! |z, vl = 1], reflecting that workers choosing location [ received
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more positive signals about wages in [ relative to I’. This is the key intuition behind our
inequalities in equations (15) and (16). By applying these equations, even though we do not

know the exact information sets of workers, we obtain bounds on the amenities.

3.1.2 Odds-based Moment Inequalities

As discussed in Dickstein et al. (2023), equation (8), the convexity of exp(—x) in z, and the

rationality of workers’ expectations imposed in equation (2) implies the following inequality:

E[yL, exp(—(ul, — ul,)) =yt [Wis] = 0. (17)

Thus, given any z; € Wi, the LIE implies
Ely;, exp(—(uj, — ujy)) — yi,|z] = 0. (18)

The remainder of this section explains how we use this inequality to derive bounds on A6y

for any [ and [’. For any two locations [ and [’ and a random vector z,, define the moment
m" (z,, AOy) = By, exp(— (A0 + aAw')) — ot |2], (19)

which equals the left-hand side of equation (18) but written as a function of the unknown
parameter Afy,. Theorem 2, from Dickstein et al. (2023), establishes a key property of this

moment when evaluated at Ay = Ax!.
Theorem 2 Assume equations (1) to (6) hold. Then, m (z,, Ak") = 0 if z, € Wi,.

The proof of Theorem 2, which follows Dickstein et al. (2023), is in Appendix A.2. This

theorem implies that, if its conditions hold, the set of values of Af; that satisfies
m? (z,, AGy) = 0 (20)

includes Ax". Appendix B.3 shows that this inequality can be rewritten as

E[yisl2:]

SLakEY o) AWzt = 1] = Aby). 21
]E[yésyzs] [(exp(a ws )) ’Z 7yzs ] exp( ll) ( )

By swapping the identity of locations [ and I’ in equation (21), we obtain the inequality

E[yzls|23]

— = (Elexp(adud) |z, vl = 1) < exp(Aby). (22)
]E[yzs|28]
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Equations (21) and (22) identify bounds on Af,. To gain intuition on these bounds, consider

the case in which z; = Wi, allowing to rewrite equations (21) and (22) as

Ey;|2]
Elyi ]

E[yisl2s]

E Aw')|2])t < Ay ) < 7
(E[exp(aAw )|2]) exp(Adir) Byl 2]

E[(exp(aduw))"z].  (23)
Due to Jensen’s inequality, these inequalities generally only partially identify Af;,. However,

the following corollary describes a case where these bounds coincide, point identifying A6 .

Corollary 2 Assume equations (1) to (6) hold. Then, the bounds in equations (21) and
(22) imply A0y = Ax if A = E[Aw | Wy].

We prove Corollary 2 in Appendix B.4. Corollary 2 strengthens the assumptions in Theorem
2 by requiring that workers be fully informed about Aw?, Aw? = E[Aw"|W,]. In this
case, the inequality in equation (20) only holds if Ay equals its true value Ax!". Thus, the
odds-based inequality point identifies Afy if workers forecast wages without error. This is

true regardless of the extent to which the researcher observes workers’ information sets.

3.1.3 Combining Bounding and Odds-based Moment Inequalities

There are advantages in using our bounding inequality jointly with the odds-based inequality
in Dickstein et al. (2023). As stated in theorems 1 and 2, the identified sets defined by these
two types of inequality always contain the true parameter value. However, as exemplified
by corollaries 1 and 2, these identified sets may differ. As a result, there may be gains from
combining both types of inequality in estimation; that is, the intersection of both identified
sets may be smaller than each of them individually.

The identified set defined by the odds-based inequality increases in the relevance of the
error affecting workers” expectations. Intuitively, these inequalities are convex in the agent’s
expectational error. Consequently, Jensen’s inequality implies that the odds-based moment
at any parameter value is larger in expectation the larger the relevance of the expectational
error, making the resulting moment inequality weaker. Thus, if workers are poorly informed
about wages, the identified set defined by the odds-based inequality will be large, including
parameter values quite distinct from the true one. Importantly, this is the case even if the
researcher observes the worker’s true information set. Conversely, the identified set defined
by the bounding inequality is not affected by the worker’s expectational error. Intuitively,
the bounding inequalities are linear in this error, making it irrelevant for the identified set
defined by these inequalities. Thus, even if workers are poorly informed about wages, the
resulting identified set will be tight as long as the researcher observes the key variables used

by workers to form their expectations. Moreover, as indicated in Corollary 1, the bounding
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inequality point identifies the parameter of interest if the researcher observes the worker’s
information set. This is important because full observability of the worker’s information set
is generally necessary for standard estimators (e.g., maximum likelihood) to be consistent;
thus, a researcher that uses bounding moment inequalities in her analysis will not suffer from
any loss of identification power whenever those standard estimators are consistent.

The identified set defined by the bounding inequality increases in the relevance of the
variables that enter the worker’s information set but the researcher does not observe. Intu-
itively, the optimal approximation point in equation (14) is the best approximation to the
worker’s true expected utility difference between locations [ and [’ that the researcher can
build with the variables she observes. The larger the mismatch between this point and the
agent’s true expected utility difference between [ and I/, the weaker the bounding inequality
is.1? Conversely, the identified set defined by the odds-based inequality is not affected by the
extent to which the worker’s information set is observed by the researcher. Even if workers
have access to information the researcher cannot observe, the identified set defined by the
odds-based inequality will be tight if the worker’s true information set allows them to fore-
cast wages with little error. Moreover, as indicated in Corollary 2, the odds-based inequality
point identifies the parameter of interest if workers do not experience expectational errors.

In sum, the bounding inequality being robust to workers’ expectational errors and the
odds-based inequality being robust to the presence of unobserved variables that belong to
the worker’s true information set implies there often are gains from simultaneously using
both types of inequality. We illustrate this in our simulation in Section 4. In settings such
as ours in which the choice set is large and the worker’s utility depends on choice-specific
fixed effects, the bounding inequality has the extra advantage that it is linear in the utility
difference between any two locations; see equation (11). As shown in Section 3.2, this allows
to combine multiple bounding inequalities in order to difference out the choice-specific fixed

effects, making our two-step estimation procedure feasible.

3.2 First-Step Moment Inequalities

Similarly to how we derive the bounding inequality in equation (11), we derive

E(y;, (vt — yis exp(—ei) (1 + efy — (uf, —ui,))|2s, 2] = 0, (24a)

0
E[yis (45 — 45 exp(—ej) (L + ey — (uf, — )]z 2] = 0, (24b)

Y\More specifically, the larger the distance between el and E[ul, — u!,|W;,], the worse the first-order
approximation is and, as a result, the larger the value of the left-hand side of the inequality in equation (9).
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for any locations [ and I, types s and r, random vectors z, and z,, and approximation points
(el e%) < Jis U Jjr. Loosely speaking, the moment in equation (24a) compares the utility of
choosing [ over I’ for a worker i of type s, and that in equation (24b) compares the utility of
choosing I’ over [ for a worker j of type r. If the approximation points in these two moments

coincide, the sum of the inequalities in equations (24a) and (24b) results in

]E[y'fsyjr + yi;yjr yzsygr eXp( zsyr>(2 + 2625]r QQ(AUZ + Auéli))|’237 27"] = 07 (25)

where eZ sjr denotes the common approximation point. As all workers, regardless of their type,
have a shared valuation of the amenities in every location, the amenity differences between
locations [ and I’ cancel when adding both moments in equation (24); thus, we can substitute
Aull + Aul! = a(Aw! + Aw!") in equation (25).° The remainder of this section explains
how we use the inequality in equation (25) to derive bounds on 6,. For any locations [ and

l', types s and r, vectors zs and z,, and scalar variable eW, we define the moment

MY (z,, 2, 0,) =
]E[yzsy]r + yi;yé,r yfsyélr eXp( zsyr)(2 + Qeii]r - QQ(AU}?/ + Awf:l))’z& ZT‘]’ (26>

which equals the left-hand side of equation (25) but written as a function of 6,. Theorem 3

establishes a property of the moment in equation (26) when evaluated at 6, =

Theorem 3 Assume equations (1) to (6) hold. Then, MY (2, 2., a) = 0 if ew]r < Jis U Tjr,
and (zs, 2,) € Wis U Wj,..

The proof of Theorem 3 is in Appendix A.3. This theorem implies that, if its conditions
hold, the set of values of 6, for which

M”/(zs, 2, 04) =0 (27)

includes « regardless of (z, z,.), of the locations [ and ', and of how the approximation points

eﬁlsljr are chosen. However, the set values of 0, other than « that satisfy equation (27) depends

on these approximation points. Appendix B.5 shows that, for any workers 7 and j of types s

and 7, respectively, the value of €/£. that minimizes the moment ﬂ\/[”’(zs, 2, 0,) for any given

isjr

instruments z, and z, and parameter value 0, is given by the following expression:

el = 0,E[0.5(Aw" + Aw”)\zs,zhyisyé; =1]. (28)

zsgr

20Ho and Pakes (2014) apply a similar strategy to difference out choice-specific fixed effects in a model
without individual-by-choice idiosyncratic preferences.
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As shown in Appendix B.5, equations (27) and (28) jointly imply that

Byt el2s: 2]

E[0.5(5L ot + oyl )|z, 2] < exp(0.E[0.5(Aw! + Aw'Y)|z,, 2, yf-syj.; =1]). (29)
’ isdjr isIjr)|1<sy <r

This inequality yields a lower bound on 6, if its right-hand side is increasing in this parameter,
and vice versa. Intuitively, if type-s workers are likely to choose location [ whereas type-r
workers are likely to choose I’, as represented by a high value of the ratio on the left-hand
side of equation (29), and type-s workers expect their wage to be higher in [ than in ', and
vice versa, as represented by a positive value of E[0.5(Aw! + Awl)|z, 2, ylyh, = 1], then
0. cannot be too low. Conversely, if both worker types are still likely to choose locations
[ and [’, respectively, but now type-s workers expect their wage to be lower in [ than in [/,
and vice versa, as represented by a negative value of E[0.5(Aw! + Awl!)|z, 2, ylyt, = 1],
then 6, cannot be too high. Generally, the parameter 6, is partially identified. The following
corollary describes when moment inequalities of the type in equation (29) point identify 6,,.
Corollary 3 Assume equations (1) to (6) hold, eﬁlsljr S Tis U Tpr, (25,2:) S Wig U W,
A" =0 and E[AuwY|z] = E[AWY W] = E[Aw!z,] = E[Aw ' W;,]. Then, moment
inequalities of the type in equation (29) can point identify 0.,.

The proof of Corollary 3 is in Appendix B.6. To understand this corollary, it is useful to
compare it to Corollary 1. The conditions listed in Corollary 3 are more restrictive. The
reason is that, unless these conditions are satisfied, there is a loss of identification power
coming from having to impose the common approximation point in equation (28) on each
of the inequalities in equation (24). When the conditions in Corollary 3 are satisfied, the
approximation point in equation (28) is optimal for each of the two inequalities in equation
(24) (i.e., it coincides with the approximation point in equation (14) for both moments) and
thus no loss of identification power occurs when deriving the inequality in equation (25).
Note that, although identification of the migration elasticity « requires instruments for
wages 2z and z,, their role here differs from that in standard gravity-based estimations. In
those settings, instruments address the correlation between wages and unobserved amenities
that also shape location choices. In our framework, amenities are likewise unobserved but
are differenced out by comparing workers across sectors, so they do not confound the rela-
tionship between wages and location choices in equation (27). Instruments are still necessary,
however, because workers’ expectations are unobserved and reported wages in the data may
be correlated with expectational errors. Thus, valid instruments must be uncorrelated with
expectational errors, regardless of their correlation with amenities. Under rational expecta-

tions, this condition is satisfied by any variable contained in workers’ information sets.
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3.3 Using the Inequalities for Estimation

For estimation, we use a set of unconditional moment inequalities that we derive from the
conditional ones introduced in sections 3.1 and 3.2. We describe here how we derive uncon-
ditional bounding moment inequalities from the conditional ones described in Section 3.1.1.
In practice, when computing a confidence interval for the amenity term A#;,, we combine
these unconditional bounding inequalities with unconditional odds-based moment inequali-
ties derived in a similar way from the conditional ones in Section 3.1.2. In Appendix B.7, we
describe how we rely on the conditional inequalities in Section 3.2 to derive the unconditional
inequalities we use to compute a confidence interval for 6,,.

We implement the following steps to derive £ = 1, ..., K unconditional moment inequal-
ities from the conditional one described in Section 3.1.1. First, we choose a scalar Az < z,
that is correlated with Awél/ and that we will use in all K inequalities. Second, for each k,

we choose a subset [z, 2] of the support of Az% and an integer d,. We then build
E[(y), — vis exp(—el) (1 + el — (A0 + aAwl])))ge(Az)] = 0, (30)
where the term in parenthesis coincides with the moment function in equation (12) and
G(AZ) = 1z, < A <z} AN o, &31)

The inequality in equation (30) is implied by that in equation (13) regardless of the choice
of predictor Azfj', interval limits z, and Zj, and exponent di. In practice, we fix a ¢ € N and
map z, and zj to consecutive elements of the vector of g-quantiles of the distribution of Azi,l/
across types and location pairs. E.g., if ¢ = 2 and d;, = 0 for all k, we use K = 2 inequalities
with instruments g;(AzY) = 1{A2" < med(Az")} and go(AzY) = 1{med(AZ") > A2},
which split all observations depending on whether Azél/ is above or below median. If ¢ = 4,
similar instruments will split observations according to the quartile Azil' belongs to. More
generally, the larger ¢ is, the larger the number of unconditional inequalities we use.

In practice, computing a confidence interval (CI) for Afy requires computing first a CI
for ,. To compute a 95% CI for A#;, we first compute 96% Cls for A6y conditional on each
value of 6, in a 99% CI for this parameter. We denote these as ©'ys(6,). We then compute
the 95% CI for 6, as the union of ©'y(6,) for each value of 6, in its 99% CIL. All our Cls are

computed following the moment selection procedure in Andrews and Soares (2010).2*

21 A potential alternative to our estimator is to apply to each element of (6,,60,...,0r) a procedure that
yields valid CIs for projections of partially identified parameters; e.g., Bugni et al. (2016); Kaido et al. (2019);
Andrews et al. (2023).
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4 Properties of Moment Inequalities: Simulation

This section uses simulations to illustrate properties of the moment inequalities introduced in
Section 3. Three insights emerge. First, consistent with theorems 1 to 3, when the conditions
in those theorems are satisfied, we obtain intervals that contain the true parameter values
even when workers imperfectly forecast wages and the researcher imperfectly observes agents’
information sets. Second, when the researcher misspecifies agents’ information sets, the
maximum likelihood (ML) estimator is inconsistent and often not within the bounds defined
by our moment inequalities. Third, our inequalities may yield empty confidence sets when
the researcher incorrectly assumes that certain covariates belong to agents’ information sets,

demonstrating the potential of our estimator to test for the true content of such sets.

4.1 Simulation Set-up

Workers choose between three locations [ = {1, 2, 3} according to the model in Section 2. We
simulate data for 6,000,000 workers, each of them of a different type, allowing us to index
observations by s.22 We set the wage coefficient to o = 1 and the location-specific amenities
to k! = k2 = 0 and k* = 1. While the estimator described in Section 3 is valid for any
stochastic process for wages and any specification of workers’ information sets, we need to
set out these model aspects to generate the model-implied choice for all sampled workers.

We assume the wage of worker s in location [ is determined by

l

l l l
Wy = 215 + Z9s + Z3s? (32>

with 2. independent across [, s, and k, and distributed uniformly with mean p! and support

l

L., 25, for all I. Consequently, for all s and [,

of length 20.%> We assume worker s observes (z
E[w![W,] = 2}, + 2L, and 2%, equals the expectational error worker s makes when forecasting
wl. Thus, the larger the value of o3, the larger the variance of the expectational error.

We assume the researcher observes (3%, w!, z},) for every worker s and location I. There-
fore, for all s and [, 2!, is a variable used by worker s when forming their expectations about

w! but not observed by the researcher. Thus, the larger the value of oy, the larger the role

22We do not aim to illustrate the statistical properties of our inference procedure (see Andrews and Soares,
2010) but to characterize the bounds defined by the inequalities introduced in Section 3. To this end, the
large number of workers is useful, as it limits the impact of simulation noise on our results. We set L > 2 to
illustrate that our inequalities apply to multinomial settings; larger values of L result in tighter bounds for
0. (as the number of inequalities of the type in equation (27) increases in the number of possible location
pairs) at the expense of more time needed to compute ClIs for the larger number of parameters (6s,...,0r).

BWe set pf = pb = 0 for all I and (pd, p3, 13) = (0,—0.5,—1); thus, mean wages decline in order from
Il =1tol=3. In terms of the dispersion, we set 0o = 4 and present results for different values of o1 and o3.
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in workers’ expectations of variables that are unobserved to the researcher.

4.2 Simulation Results

Table 1 presents the main simulation results. We consider cases that differ in the value of oy
and o3. The former determines the dispersion in zis and, thus, the relevance of unobserved (to
the researcher) variables that belong to the worker’s information set. The latter determines
the dispersion in z4, and, thus, the relevance of payoff-relevant variables that workers do
not observe. Section 4.2.1 discusses our Cls for the wage coefficient 6, displayed in Table 1
in the column labeled First Step and computed using the inequalities introduced in Section
3.2. Section 4.2.2 describes Cls for 6, and 63, displayed in the columns labeled Second Step
and computed using the inequalities introduced in Section 3.1. Appendix C.1 describes the

unconditional moment inequalities we use in this simulation exercise.

4.2.1 Confidence Intervals for the Wage Coefficient

Cases 1 and 2 share the feature that 0; = 0 and, thus, the researcher observes the agent’s full
information set—as 2!, = 0 for every [, the agent’s information set only includes 2}, which is
the wage predictor used by the researcher. In these cases, we obtain ClIs for 6, that are tight
around its true value. This is related to two aspects of our setting. First, we build first-stage
inequalities separately for each pair of locations; thus, as k! = k? in our simulation, the
inequality with location indices equal [ = 1 and I’ = 2 (or vice versa) verifies that Ax!"" = 0.
Furthermore, when building the inequality corresponding to any location pair [ and [’, we
match each worker s with a worker r such that E[Aw! |AzL] is close to E[Aw!!|AZL]. As
a result, consistent with Corollary 3, the inequalities used to compute the bounds on 6, in
Table 1 are close to point identifying this parameter whenever E[w!|W,] = E[w!|AZY] for
all [ and s. This extra condition is met precisely when oy = 0.2

Cases 3 and 4 share the feature that o7 > 0. Thus, the researcher only observes part of the
agent’s information set—the true information set is (2¢,, z}.) for every I, but the researcher
only observes z,_. By relying on only a subset of the agent’s information set when building
the moment inequalities, the CI for 6, becomes wider.

In case 5, the researcher wrongly assumes the agent has perfect information on wages. The
resulting CI is very tight without including the true parameter value; it only includes 6, =
0.87. This illustrates a problematic situation for the researcher using moment inequalities, as

such researcher may wrongly conclude that a = 0.87 and that the inequalities are very tight

24In Table C.3 in Appendix C.4, we present results for other values of (k!, 2, x%). The CI for 6, is tight
if Ak = 0 for at least two locations I and I’. In Table C.1 in Appendix C.2, we show that the CI becomes
wider as the mean difference between E[Aw!! |29,] and E[Aw.!|23,] for matched workers s and 7 increases.
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Table 1: Simulation Results - Moment Inequality Confidence Intervals

Case o1 o5 A First Step Second Step
0o Mom. Ineq. 02 03
Bounding [0,0] [1,1]
1 0 0 2, [1,1.02] Odds-based [0,0] [1,1]
Both [0,0] [1,1]
Bounding [0,0] [1,1]
2 0 1 2, [1,1.01] Odds-based -0.33,0.32] [0.68,1.33]
Both [0,0] [1,1]
Bounding [-0.31,0.31] [0.70,1.30]
3 1 0 2 [0.82,1.29] Odds-based [0,0] [1,1.01]
Both [0,0] [1,1.01]
Bounding [-0.31,0.31]  [0.69,1.31]
4 1 1 2, [0.82,1.31] Odds-based [-0.38,0.39] [0.68,1.45]
Both [-0.31,0.31] [0.69,1.31]
Bounding [-0.05,-0.01] [0.85,0.88]
5 0 1 w! [0.87,0.87] Odds-based %) %]
Both [0%] %)

The true parameter values are o = 1, k2 = 0, and %> = 1. The column 6, contains 95% Cls based on the
estimator described in Section 3.2. The columns 05 and 03 contain 95% CIs based on the estimators described
in Section 3.1. The rows labeled Bounding use the inequalities in Section 3.1.1; those labeled Odds-based use
the inequalities in Section 3.1.2; and those labeled Both combine both inequalities. Cls are computed using
the moment selection procedure in Andrews and Soares (2010). See Appendix C.1 for more details.

around the truth (see Molinari, 2020; Andrews and Kwon, 2024). In our setting, as shown in
Table C.2 in Appendix C.3, the resulting confidence set becomes empty as we increase the

number of instruments used to form our inequalities.

4.2.2 Confidence Intervals for Amenities

Consistently with Corollary 1, the bounding inequalities point identify 6, and 63 when the
agent’s information set is fully observed by the researcher; i.e., when o; = 0, as in cases 1 and
2. When o, > 0, as in cases 3 and 4, there are variables the agent knows but the researcher
does not observe and, as a result, the CIs built using the bounding inequalities alone include
parameter values in addition to the true ones. As a comparison of cases 1 and 2, or cases 3
and 4, illustrates, this holds regardless of how large the agent’s expectational errors are.?’
The length of the CIs on 6, and 63 defined by the odds-based inequalities increases in

the importance of the worker’s expectational errors; i.e., increases in o3, as a comparison of

25 All CIs in Table 1 are computed using the approximation points in equations (14) and (28). In Table C.4
in Appendix C.5, we show the Cls become wider when using other approximation points. How we compute
these points thus does not affect the validity of our inequalities, but it may affect how tight these are.
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cases 1 and 2, or cases 3 and 4, illustrates. When workers make no expectational errors (i.e.,
when o3 = 0) and the first-step CI for 6, equals its true value «, the odds-based inequalities
point identify the amenity parameters 6, and 63, as predicted by Corollary 2. When o3 = 0
but the CI for 6, includes values other than «, the odds-based moment inequalities may still
point identify the amenities (as in cases 1 and 3), but will not do so always.?

Since the bounding inequalities are insensitive to agents’ expectational errors (i.e., in-
sensitive to o3) and the odds-based inequalities are partially insensitive to agents having
information the researcher does not observe (i.e., partially insensitive to o), there are ad-
vantages from combining both types of inequalities in estimation (see Section 3.1.3). Cases
2 and 3 show that, when either o; = 0 or o3 = 0, combining bounding and odds-based
inequalities point identifies 5 and 63, although, when considered in isolation, neither of these
two inequalities point identifies these parameters in both cases.

Case 4 is likely the most empirically relevant: the agent’s information set is partly unob-
served (i.e., o1 > 0) and the agent predicts wages with error (i.e., 03 > 0). Our estimator
still yields CIs that contain the true parameter values. In this particular case, the odds-
based inequalities are redundant: the combined Cls are larger than those obtained from the
bounding inequalities alone.

Case 5 shows the bounding inequalities may fail to produce empty confidence intervals
when the researcher wrongly assumes workers have complete information. Conversely, the
odds-based inequalities alone, or when used jointly with the bounding inequalities, produce

empty Cls for 6, and 65 even when the CI for 6, is non-empty.

4.2.3 Maximum Likelihood Estimates

Table 2 reports ML estimates. Given a wage predictor 2, we compute the ML estimator of

(0a, 0o, 03) assuming that 2! is all the information worker s has on w'; that is,

argmax { ZS: 23: 1{y\ =1} In < xp(0h + falifwi2,]) ) } with 6, = 0.  (33)

(6o 5) | S S0 exp(fy + 0, E[Aw![2!])

If the researcher’s wage predictor equals 25, the ML estimator is consistent if and only if
o1 = 0, as in cases 1 and 2, as only then the worker’s wage expectation coincides with the
researcher’s assumed one; i.e., only then E[w!|W,] = E[w!|2!] for every s and . Conversely,
if 2L = 2L, and 0y > 0, as in cases 3 and 4, the worker’s expectation and the researcher’s

assumed one do not coincide and, as a result, the ML estimator is biased; in particular,

26For example, in unreported results, we observe that the confidence intervals for f; and 3 defined by the
odds-based inequalities include values other than the true ones when o1 = 2 and o3 = 0.
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Table 2: Simulation Results - Maximum Likelihood Estimator

l 2 3

Case o1 o3 Zy « K K
1 0 0 2. 1 0 1
2 0 1 2, 1 0 1
3 1 0 2, 0.91 0 0.92
4 1 1 2, 0.91 0 0.92
5 0 1 w! 0.87 -0.03 0.87

s

The true parameter values are o = 1, k2 = 0, and x> = 1. Estimates are computed according to equation
(33). Given the large sample size, unreported standard errors are always smaller than 0.001.

it underestimates the importance of expected wages in the worker’s utility. In case 5, the
researcher assumes workers have perfect information (i.e., 2\ = w! and, thus, E[w!|z!] = w!)
but, contrary to that assumption, workers make forecasting errors (i.e., o3 > 0), and the ML
estimator is also biased.

A comparison of the estimates in tables 1 and 2 yields three conclusions. First, when the
ML estimator identifies the true parameter values (as in cases 1 and 2), the Cls defined by
the bounding inequalities either include only the true parameter values (as it is the case for 6
and #3) or are very tight around them (as it is the case for #1). Thus, very little identification
power is lost when using our moment inequality estimator instead of the ML estimator in
those cases in which the latter is consistent. Second, when the ML estimator does not identify
the true parameter values (as in cases 3 to 5), our moment inequality estimator still yields
CIs that contain those values. Moreover, as illustrated by case 3, the Cls produced by our
moment inequality estimator may not include the corresponding ML estimates of some of

the parameters; e.g., for 6 and 65.

5 Empirical Application

In our empirical application, we study internal migration in Brazil. We describe our data in
Section 5.1, discuss our estimation approach and results in Section 5.2, and present tests of
the content of workers’ information sets in Section 5.3. In Section 5.4, we evaluate the effect

of counterfactual changes in information and migration costs.

5.1 Data

Our main data source is the Rela¢do Anual de Informagdes Sociais (RAIS), an administrative
dataset that includes information on workers and establishments in the Brazilian formal

labor market. We use the establishment’s location (microregion, the closest equivalent to a
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commuting zone in the Brazilian administrative map) and sector (industry) to define labor
markets, and we measure workers’ annual wages. By using wages aggregated over the year,
our wage measure includes information on work hours as well as on the number of days during
the year each worker was employed.?”

We restrict our sample to workers with similar demographic characteristics. Specifically,
we study workers aged 25-64 with at least a high school degree identified as male and white.
Since RAIS only covers formal employment, workers who are not employed or hold informal
jobs are absent from the dataset. Hence, our conclusions are limited to formal workers, and
we accordingly restrict our sample to individuals with a persistent attachment to the formal
labor market, selecting only those recorded in RAIS for at least seven years during our sample
period, which spans between 2002 and 2011.

To ensure we observe a large number of individuals per market, we focus on 1,000 labor
markets consisting of all combinations of the 50 microregions (out of 558) and 20 sectors (out
of 51) with the largest total employment reported in RAIS. We obtain the data we use in
estimation by randomly sampling one million individuals per year among those employed in
the 1,000 labor markets of interest. Appendix D provides more details on the RAIS data and

the construction of our sample, and reports summary statistics on migration rates.?

5.2 Estimation of Model Parameters

In Section 5.2.1, we detail the implementation of the moment inequality estimator. In Section

5.2.2, we discuss our estimates and compare them to those obtained using other estimators.

5.2.1 Implementation of Moment Inequalities

We estimate the parameters of the model described in Section 2, with the type s of each
worker defined by their sector. While we assume that the wage coefficient v is common to
all sampled workers, we let the location-specific fixed effects in the vector x vary by year t
and the worker’s prior location. Thus, we accommodate for unobserved expectations about

migration costs, amenities, and price levels that may vary over time and between workers with

2TRAIS is the only Brazilian panel dataset that provides yearly individual migration choices and wages.
We exploit the panel dimension to compute microregion-sector-year wages net of worker-sector fixed effects.
Cross-sectional household surveys cover the informal sector but provide data at more aggregated geographic
levels (e.g., PNAD), or do not provide past location and wages for the same period (e.g., census).

280ur moment inequalities are valid if the researcher observes a subset of the markets workers choose from;
see footnote 10. The informal sector and all microregion-sector pairs not included in the analysis may thus
still belong to the worker’s choice set. However, our estimates are based on how workers located in one of
the 50 largest microregions compare two regions among these 50. Thus, when interpreting our estimates,
one should think mostly of urban migrants evaluating other high-density regions. However, nothing prevents
performing a different analysis with rural areas or other demographic groups.
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different locations of origin. For simplicity, we refer to these origin-by-destination-by-year
effects as amenities.

Key variables entering our moment inequalities are the differences between any two loca-
tions [ and I’ in the location-by-sector-by-time wage shifters w!,. To estimate these shifters,
we use data on observed wages. Specifically, we assume the log wage a worker would have

obtained if employed in a particular sector, region, and year can be expressed as:

sl l s s s s s$\2 s s 2 sl
Wy = Wg + Ji + Blexpi, + Bi.(expy)” + Bragei + ﬁaaa’geiE + Vi, (34)
v
sector-specific skill

where expj, denotes the number of years of employment of worker 7 in sector s prior to year
t, age; denotes the age of worker i at ¢, and v§] is an unobserved term. Thus, in addition to
the labor market-specific term w!,, we allow wages to depend on a worker-by-sector-by-year
term and a residual that varies by sector, location, worker, and year. We model the worker-
by-sector-by-year term as the sum of an individual-by-sector fixed effect and a function of
the worker’s age and sector-specific experience.?”

Given equation (34), it holds that, for any locations [ and I/, Aw!Y’ = Aw' + A and,
thus, equation (5) implies that E[v|J;] = 0. We impose no assumption on the information
workers have on shifters w!,, which account for supply and demand factors that impact the
wages of all sampled workers in a labor market, or on their sector-specific skill. In particular,
at the time of choosing their labor market of employment for a year ¢, we allow workers to have
information on a worker-by-sector specific term that the researcher cannot observe; that is,
on the term 77. This selection of sectoral labor markets based on unobserved determinants of
wages is important in, e.g., Dix-Carneiro (2014). In contrast, we impose the assumption that
the selection of local labor markets is not driven by worker-by-location terms unobserved to
the researcher. This assumption is consistent with the findings in Kennan and Walker (2011),
who allow for a permanent worker-specific location-match component in wages, but conclude
that the estimated effect of this component is negligible.*°

In addition to having a measure of wage shifters wy; = (wl,, ..., wh), which we denote in
the following simply as wages, our inequalities require a wage predictor 2., for each sector,

region, and year. To build these predictors, we implement the following procedure. First, we

29We measure workers’ sector-specific experience using information from 1993 onward. As all coefficients
in equation (34) are indexed by s, we estimate them by running separate regressions for each of the 20 sectors
in our analysis. These regressions are run on our sample prior to extracting the set of 1 million individuals
per year that we use in our moment inequality estimation. The median R? across these regressions is 0.83.

30Some location choices may be driven by worker-by-location-by-year shocks; e.g., job offers. We conjec-
ture one can substitute the assumption E[vs!| 7] = 0 by the assumption E[vg!| ;] = vs! and still derive
inequalities compatible with our flexible treatment of workers’ information on w!,. Deriving these inequalities

requires generalizing to a multinomial setting the estimator in Section 8.2 of Dickstein and Morales (2018).
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fix b € N and calculate the vector of b-quantiles of the distribution of w!, ; across sectors
and locations. Second, we build as many “bins” as intervals can be constructed using two
consecutive elements of this vector of quantiles. Third, we identify the bin to which each
market belongs. Fourth, and finally, we compute 2., as the average wage in year ¢ — 1 across
all labor markets that belong to the same bin as w!, ;. Note that, as b increases, the wage
predictors become closer on average to the t — 1 wages. Thus, a larger b can be interpreted
as workers having more precise wage information. Specifically, if b = 2, our wage predictor
assumes workers can determine if lagged wages in a labor market are above or below the
median. If b = 4, workers can determine the quartile of the t — 1 wage distribution to which
a labor market belongs. As b — o0, 2!, and w!, | coincide and, thus, workers know every

market’s lagged wages. We provide additional implementation details in Appendix E.1.

5.2.2 Estimation Results

First-step estimates: wage coefficient. Panel (a) in Figure 1 reports 95% Cls for av under
different informational assumptions. When we set b = 2, and thus assume workers can at least
determine whether lagged wages in any given labor market are above or below the median
of the distribution of wages across all labor markets (the “2 bins” case), we obtain a 95%
CI that equals [0.24, 2.44]. The large width of this interval reflects that the dummy variable
indicating whether lagged wages are below or above the median is only loosely correlated
with current wages. When we increase the assumed precision of workers’ information and
impose that workers can at least determine the quartile to which lagged market-specific wages
belong (“4 bins”), we obtain a tighter interval equal to [1.21, 1.83]. Assuming workers can
classify locations according to more detailed quantiles of the wage distribution, or that they
know the actual value of lagged or current wages, yields empty Cls. Thus, we reject the
hypothesis that workers know lagged location-specific wages with a level of precision above
quartiles. Below, we use [1.21, 1.83] as our preferred set estimator of «.

For comparison, we also include 95% CIs computed using a two-step PPML-IV estimator
(see Artug and McLaren, 2015). As discussed in Appendix E.3, this estimator yields point
estimates of «a at the expense of assuming that all workers in the same sector in a period ¢
(regardless of their location of residence) have the same information set and, consequently,
the same wage expectations. This is a stronger assumption than the one required for our
moment inequalities to bound «, which requires the researcher to specify a (possibly dif-
ferent) variable that belongs to every worker’s information set, but does not restrict the
additional information each worker may have, which may vary flexibly across workers and
labor markets.® The PPML-IV estimator yields CIs for the wage coefficient that generally

31E.g., the moment inequality CI that uses quartiles of lagged wages as wage predictor is valid if workers,

26



Figure 1: Migration Elasticity and Amenities from Moment Inequalities vs. PPML-IV

(a) Migration Elasticity (95% conf. int.) (b) Amenities (95% conf. int. midpoint)
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Panel (a) reports 95% ClIs for . The blue circles delimit the moment inequality CIs. The absence of circles
for certain cases reflects that these Cls are empty. The orange squares mark the PPML-IV CIs. In panel (b),
the blue circles indicate the midpoints of the moment inequality 95% CI for &' ,, for t = 2011, and the orange

nt»’
squares indicate the PPML-IV estimates. The fit lines are kernel-weighted local polynomial estimates, with

the shaded area representing 95% Cls.

do not overlap with the main CI generated by our moment inequalities: while the PPML-IV
estimator yields Cls between 0.3 and 0.6, the lower bound in our preferred moment inequal-
ity CI is 1.21. Relative to our moment inequality estimator, the PPML-IV estimator thus
underestimates the value workers assign to the expected monetary returns of migration.
Values in our preferred CI for migration elasticity, [1.21, 1.83], are lower than the 4.5
reported by Morten and Oliveira (2024) for Brazil. However, the studies differ not only in
modeling framework and estimation method, but in time period (2002-2011 vs. 1980-2010),
migration frequency (annual vs. five-year), and location definition (meso- vs. microregions).
Second-step estimates: amenities. Panel (b) in Figure 1 illustrates the moment inequality
estimates of xl, for ¢ = 2011 and all origin n and destination [ locations in our sample.
Specifically, this panel displays midpoints of the 95% moment inequality CI for each amenity
term k! ,.3? For comparison, we also display PPML-IV estimates of these amenities. Although
we estimate each parameter k!, without imposing any restriction on their variability, our
estimates tend to increase in the distance between locations n and [, consistently with these
parameters accounting for migration costs in our model. The differences in levels between

the PPML-IV and the moment inequality estimates are substantial, the latter being on

even within the same sector, location, and period, have different information, as long as all workers can at
least classify labor markets into quartiles on the basis of lagged market wages.

32 Appendix E.2 displays the corresponding CIs. We report estimates for the 292 origin-destination pairs
with enough observed migration events to yield both PPML-IV and moment inequality estimates.
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average 21% smaller than the former. Moreover, if we convert migration costs into their
log-wage equivalents by dividing them by the estimates of the wage coefficient o obtained
by each estimation method, we find that the moment inequality estimates are 74% smaller.
In sum, estimation procedures commonly used in the migration literature yield estimates
of migration costs or, more generally, of the relative importance of non-wage variables in

migration decisions that are significantly larger than our moment inequality estimates.

5.3 Tests of Information Heterogeneity

As panel (a) in Figure 1 shows, the moment inequality 95% CI for « is nonempty when
we assume workers know the quartile to which lagged wages belong, but is empty when we
assume all workers can classify all markets into eight (or more) bins. However, it is possible
that some workers are more informed than others or that workers have more information
about some markets than others.

We explore here whether observed migration choices are consistent with certain workers
having more precise information about wages in some, but not all, markets. We do so by
checking whether the moment inequality 95% CI for o remains non-empty when we assume
that a group of workers has extra wage information on a group of labor markets. Specifically,
we consider worker groups defined by the population and internet penetration in their prior
location of residence, and groups of labor markets defined by their distance and past migration
flows from the worker’s location, and by their population and internet penetration.?

We implement the same testing procedure for each dimension of heterogeneity. First, we
classify workers (or markets) into six intervals delimited by the 10th, 25th, 50th, 75th, and
90th percentiles of the distribution of workers (or markets) along the corresponding dimen-
sion. We then order these intervals according to the direction along which we hypothesize
information may be more precise. For example, we classify workers into intervals depending
on the internet penetration in the location of residence, and order these from higher to lower
internet penetration. Consistently with our finding in panel (a) in Figure 1, we start from a
baseline information set according to which all workers can classify all markets into quartiles,
and test whether workers in the first interval can further classify markets into eight bins. In
practice, this translates into wage predictors with different levels of precision in different
combinations of workers and markets, affecting the values of the instruments in equation

(31) and thus changing our inequalities. If the resulting 95% CI for « is empty, we reject

33The distance between markets equals the geodesic distance between their centroids. Past migration flows
are measured as the total number of workers recorded in RAIS as having migrated between any two locations
in the three years prior to our sample period (1999-2001). The population of each location is computed as
the total employment in RAIS in 1999-2001. The measure of internet penetration in each location equals the
average share of households with broadband internet access between 2007 and 2011. See Appendix D.
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Figure 2: Testing for Heterogeneous Information Sets
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This figure displays patterns of information precision that cannot be rejected in the data.
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that assumption and end the testing. If it is not empty, we increase the level of precision to
16 bins on that first interval and perform a new test. Calling B; the maximum precision level
tested and not rejected for the jth interval, the next iteration maintains B; on that interval
and searches for the maximum level of precision in the interval j + 1, up to precision B;.
Figure 2 displays our results. Panel (a) shows we cannot reject workers are better informed
about wages in labor markets within the 25th percentile of distance (383 km) of their location
of residence. For those markets, we cannot reject they know ¢t — 1 wages with a precision
equivalent to 16 bins. As discussed in Section 5.4.1, migration rates in our model increase
in workers’ information. Thus, the fact that migration rates decrease in distance (Beine
et al., 2016) may be due less than previously thought to migration costs increasing in this
dimension and more to the role information plays in migration choices. In panel (b), we
observe that past migration flows between two locations are positively correlated with the
information residents in one location have about wages in the other. This finding may explain
why workers of a particular origin tend to persistently migrate to the same destinations,
providing an explanation for the impact of enclaves on migration flows (Munshi, 2020).
Panels (c¢) and (d) show that workers living in the five largest regions by population are
better informed, and that all workers have more information about wages in the top quartile
of regions by population. The information premium from living in highly populated areas
adds to the benefits of cities discussed in, for example, Glaeser and Maré (2001) and De la
Roca and Puga (2017). Finally, panels (e) and (f) provide evidence on a mechanism that
may explain the findings in panels (c¢) and (d): workers living in regions with higher internet
access are better informed, and all workers have better information about regions with high
internet access. This finding is consistent with prior evidence on the informational impact of

broadband internet access (Akerman et al., 2022).

5.4 Counterfactuals

To illustrate the relevance of the estimates described above, we quantify the impact of changes
in workers’ information sets and migration costs on their location choices and expected utility.
We study workers’ individual responses, omitting the impact that changes in information and
costs may have on migration flows through changes in wages and prices.

While we could compute the moment inequality estimates above without imposing any
assumption on the stochastic process of wages, specifying this element of the model is needed
to determine workers’ migration choices. Hence, to compute the results in this section, we
assume wages follow an AR(1) process with sector- and location-specific drifts, and estimate
this process using observed wages in our sample of 50 regions and 20 sectors over 2002-2011.

We find wages are strongly serially correlated, with a persistence estimate of 0.93.
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Additionally, while our estimation procedure makes it computationally feasible to obtain
CIs for all model parameters, computing model predictions that account for uncertainty in
all parameter estimates is costly, as it requires building a multidimensional grid that spans
all CIs and evaluating our model at each point in that grid. Instead, we consider all points
in the CI for the wage coefficient a, but calibrate amenities by regressing the midpoint of the
moment inequality Cls (see panel (b) in Figure 1) on a constant and logarithmic distance.

We compute all model implications for a set of one million individuals randomly drawn
from the 2002 empirical distribution of workers across the 50 locations and 20 sectors in our
sample. We simulate these workers’ choices during 2002-2011 for 100 simulation draws of the

wage process. We then report average outcomes across all workers and simulations.

5.4.1 Changes in Information Sets

We evaluate the impact of providing workers with information on market wages in all lo-
cations. Specifically, we assume all workers have an initial level of information on wages
common across all destinations, and focus on the impact of receiving perfect wage infor-
mation on workers’ migration probability, measured as the probability a worker changes
locations in two consecutive periods, and welfare. We measure welfare as the average utility
across simulated workers and periods, including the contribution of idiosyncratic tastes for
locations and, importantly, using ex-post wages as the income measure. Hence, workers with
perfect wage information choose locations maximizing their ex post utility, while workers
with incomplete information maximize expected utility, and may thus choose locations that
do not offer the highest utility ex post.

Panel (a) in Figure 3 shows that the gains from improving workers’ information can be
substantial. For workers whose initial information only allows them to determine whether
lagged market wages are above or below the median, welfare gains are between 3.5 and
5.2%, with the highest gains in this interval corresponding to the model that sets the wage
coefficient « at the highest value within its 95% CI. The gains remain significant for workers
who were initially better informed. Even if all workers observed perfectly lagged wages, a
hypothesis we reject in panel (a) in Figure 1, the gains from observing contemporaneous
wages would still range between 1.5 and 2.3%.

Panel (b) in Figure 3 reports migration rates for workers with different information.
Migration rates increase steeply in the precision of the worker’s wage information. They
are below 5% for workers with the coarsest information set we consider, and between 9 and

14% when information is complete.®® While it is hardly surprising that better-informed

34When assuming all workers know the quartile to which lagged wages belong, which is the strongest
informational assumption we tested without rejecting it (see Section 5.2.2), our model predicts a migration
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Figure 3: Effects of Providing Full Information About Wages

(a) Welfare Changes (b) Migration Rates
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For the information sets indicated in the horizontal axis, panel (a) displays changes in welfare as a result of
giving workers perfect wage information. Panel (b) displays migration rates for different information sets.
The intervals illustrate the range of model predictions consistent with a value of « in the 95% CI [1.21, 1.83].

workers have higher welfare, as better-informed workers choose more often the location that
yields higher ex post utility, it is not obvious that better-informed workers will have higher
migration rates. Workers in our model are rational, and thus, when acquiring additional wage
information, expected wages go up for certain workers and locations and down for others in
such a way that average expectations do not change. The reason why average migration
rates change while average expectations do not is that a worker’s migration probabilities are

a nonlinear function of the worker’s expectations.

5.4.2 Reducing Migration Costs

As shown in Bryan and Morten (2019) and Morten and Oliveira (2024), reducing physical
barriers to geographic mobility is an important policy lever to alleviate spatial misalloca-
tion. However, the benefits of reducing migration costs may depend on whether agents are
well-informed about the economic opportunities in different regions. In this section, we eval-
uate how the effect of reductions in migration costs depends on workers’ wage information.
Specifically, for several information sets, we compute the predictions of our model for a 10%
reduction in our calibrated migration costs.

Panel (a) in Figure 4 reveals that the welfare gains from a 10% reduction in migration

costs increase with the precision of workers’ wage expectations. When workers are fully

rate between 4.2 and 6.9%, which includes the average migration rate of 6.8% observed in the sample; see
Appendix D.2. This illustrates that our estimated model fits the baseline migration elasticity in the data.
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Figure 4: Effects of Reducing Migration Costs, by Information Level

(a) Welfare Changes (b) Migration Rates
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This figure displays counterfactual changes in welfare (panel (a)) and migration rates (panel (b)) from a 10%
reduction in migration costs, depending on workers’ information. The intervals correspond to the range of
model predictions consistent with a value of v in the 95% confidence interval [1.21,1.83].

informed, the welfare gains range from 4.2 to 5.7%, depending on the estimate of a. When
workers can only discern whether lagged wages in a location are above or below their median,
the same reduction in migration costs only yields 1.2 to 1.8% welfare gains.

Panel (b) in Figure 4 illustrates the increases in migration rates from reducing migra-
tion costs at each information level. Migration rates increase significantly for all information
levels, and more so in relative terms for workers with a lower level of information preci-
sion. However, those larger increases in mobility have a higher rate of mistakes when the

information precision is low, leading to the lower welfare gains reported in panel (a).

6 Conclusion

We introduce a new moment inequality method to measure the impact of migration costs
and information frictions on workers’ location decisions. Our method allows workers’ infor-
mation sets to be unobserved by the researcher and to vary flexibly between workers, and
migration costs to vary flexibly across pairs of origin and destination locations. Applying
our method to data on the internal migration of formal workers in Brazil, we obtain four
main results. First, workers have heterogeneous information on location-specific wages. In
particular, gravity forces play an important role in determining the precision of workers’
wage information. Second, accounting for this rich heterogeneity in information sets alters

the mapping from observed location choices and wages to workers’ preferences. More specifi-
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cally, our wage preference estimates are three times larger than those obtained using common
estimation procedures, and our migration cost estimates are, on average, 21% lower. Third,
our estimated model predicts that providing wage information to workers results in increases
in both migration rates and welfare. Fourth, relative to a setting in which workers have
perfect information on destination characteristics, policies that reduce migration costs by,
for example, improving transportation infrastructure are less effective in improving worker
welfare when workers are imperfectly informed about destination characteristics.

The two-step moment inequality estimator we introduce may be used more generally
to estimate multinomial discrete choice models when the choice set is large, payoffs are
parameterized with choice-specific fixed effects, and information sets are unobserved to the
researcher and potentially heterogeneous across any two agents. This type of model may be
suitable to study, for example, student decisions over which schools to apply to, or patient

decisions over which hospital to attend.
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A  Proofs

Appendix A.1 provides the proof of Theorem 1. Appendix A.2, following Dickstein et al.
(2023), provides the proof of Theorem 2. Appendix A.3 contains the proof of Theorem 3.

A.1 Proof of Theorem 1
Equation (1) implies that, for any worker i of type s and locations [ and !, it holds that
(vis + vis) (UELU, — U] Tis] = 0} = uiy) = 0.
Equations (2) to (5) imply we can rewrite this equality as
(4 + Yl (AR + aE[Aw) W] + Acll > 0} —yl,) = 0. (A1)

Equation (6) implies the expectation of this equality conditional on W;s and a dummy variable

that equals one if worker 7 of type s chooses either location [ or location [’ equals

[ exp(A&Y + aEB[AwY | Wi])

I l v
7 - . Wis, is + is - 1 == 07
1 4 exp(ARY + aE[AwY W) Yis Yis T ]

which implies the following moment equality
E[1 - yi, — yi, exp(=Ax" — aB[Aw [Wi]) Wi, i, + v, = 1] = 0.
Given the conditioning on the event y!, + yﬁ; = 1, we can further simplify this equality as
E[yf, + 45 (= exp(—(A&" + oE[Aw] W) Wi = 0. (A.2)

As —exp(—x) is concave in z, a linear approximation to it bounds it from above. The linear
approximation to —exp(—zx) at z = a is — exp(—a)(1 +a—x). Thus, given an approximation
point el for each worker i of type s, we derive the inequality

Elyts — yis exp(—ei) (1 + efy — Ax'" — aE[Aw] Wi ) Wi = 0. (A.3)
Consider the alternative moment,

E[yl, — yi, exp(—elb)(1 +ell — Ar — aAwl)|Wy]. (A.4)
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Given V¥ = Aw' — E[Aw" |J;,] and equation (5), we can rewrite this moment as
Elyl, — yi, exp(—eiy ) (1 + eff — Ax" — a(B[Aw] W] + vi)[Wi].
As Wis © Jis, we use the Law of Iterated Expectations (LIE) to write this moment as

E[E[y;, — i, exp(—eiy) (1 + ey = As" — a(B[Aw] W] + V)| Tis][Wis].

As (¢, e") € Jis, we can further write this moment as
E[yi, — yis exp(—eiy) (1 + ey — Ax" — a(B[Aw] W] + E[V{]Fis]) [ Wis)-

As equation (5) implies E[¢//|Jis] = 0, the moments in equations (A.3) and (A.4) coincide.

Thus, the moment inequality in equation (A.3) implies the following inequality:
E[yt, — yis exp(—eio) (1 + efy — A" — aduw)|Wi] > 0.
Finally, as z, € W, the LIE implies that m" (z,, As%) > 0, proving Theorem 1. |

A.2 Proof of Theorem 2

We start from the moment equality in equation (A.2). Consider the alternative moment
Elyis + yis(— exp(—(AR" + alw))) W] (A.5)
Given /! = Aw! — E[Aw|J;,] and equation (5), we can rewrite this moment as
Elyt, + yis(— exp(—(Ax" + a(E[Aw] W] + vig)) Wil
As, by definition, W;s € J;s, we can use the LIE to further write this moment as
E[E[ys, + yis(— exp(—(A&" + a(E[Aw] W] + vi0))|Tis] Wi
As —exp(z) is concave in x € R, equation (2) and Jensen’s inequality imply the inequality

E[E[y;, + yis(— exp(—(Ax" + a(B[Aw] Wis] + v))| Tis][Wis]
< Elyl, + yi.(— exp(—(A&" + aE[Aw] Vi) Wi,
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where the left-hand side coincides with the moment in equation (A.5), and the right-hand
side coincides with the moment in equation (A.2). Thus, given equation (A.2), it holds that

Elyls + yis(— exp(=(A&" + aduw)))|Wi] <0
After multiplying both sides of this equation by —1, we obtain
E[y;, exp(—(As" + adwl)) — i, W] =
Finally, as z, € Wi, the LIE implies m% (z,, Ax"") > 0, proving Theorem 2. |

A.3 Proof of Theorem 3

Equation (A.1) implies that, for any worker i of type s, any worker j of type r, and any
locations [ and [’, it holds that

Yir (s + i) (AR + aB[Aw! [Wi] + Aciy = 0} — i) = 0. (A.6)

Equation (6) implies the expectation of this equality conditional on Wy, Wj,, and a dummy

variable that equals one if worker i of type s chooses either location [ or location [’ equals

[ v ( exp(ALY + aE[Aw!” [Wy])

! ! v
: —Y; Wisuw'm is T Yis = 11 =0,
M\ 1 + exp(AR + aE[Aw | W,,]) yls) ‘ e ]

which, after some algebra, implies
Ely}, (1 — gk, — yhs exp(— (A" + aB[AwY W) [Wis, Wi, s + b = 1] = 0.
Given the conditioning on the event 3, + v, = 1, we can further simplify this equality as
E[yt.j, + Yisir (— exp(—(A&" + aE[Aw] Wi]))) Wis, W] = 0

As —exp(—z) is concave in x € R, any linear approximation to it bounds it from above.

Thus, given an approximation point eﬁ; for each worker ¢ of type s, we derive the inequality
E[yhh + vty exp(—ei) (—(1 + elt) + A" + aB[Aw Wi ) Wis, Wir] 2 0. (A7)

Consider the alternative moment,
Elysysr + istye exp(—eig) (—(1+ eif) + A+ alw)[Wis, Wi, (A.8)
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Given V¥ = Aw' — E[Aw" |J;,] and equation (5), we can rewrite this moment as

Elyhyl, + vl exp(—elf)(—(1 + ell) + A" + a(E[Awl [Wis] + v5) Wis, Wi ].
As, by definition, W;; < J;s and W, < Jj, , we can use the LIE to rewrite this moment as
E[E[yLy!, + viyh exp(—els) (—(1 + €lf) + Ax + a(B[AwWY (Wi] + Vi) Frs, Tiel [Wis, Wi .
As eélsl < Jis U Jjr, we can further write this moment as
Elyhyl, + vhh exp(—ell) (= (1 + elf) + A" + a(E[Aw! |Wi] + B[V | Tis, Tir ) Wis, Wi .

As equation (5) implies E[v|J;,, Jir] = 0, the moments in equations (A.7) and (A.8) coin-

cide. Thus, the moment inequality in equation (A.7) implies the following inequality:
Byl + istye exp(—eis) (= (1 + eff) + A" + aldwl ) Wi, W] 2 0. (A9)

This moment inequality is one of the two that we will combine to obtain that in equation

(27). To obtain the second moment inequality, we start from
Yl + 0 (AR + aB[AW ] + Al > 0) = yf) =0, (A.10)

which is analogous to that in equation (A.6). Following the same steps described above to

go from equation (A.6) to equation (A.9), we can derive the following inequality
]E[ywyj,, + ywyﬂ exp(—e )( (1+ e D+ AR aAWH Wi, W] = (A.11)

As the moments in equations (A.9) and (A.11) have the same conditioning set, we can add

them. If we further impose that elX = et! = el

i = €igjr, We obtain the following moment inequality:

E[yl !, + vyt + yhyh exp(—ell ) (=(1+ €lh) + a(Aw + Awlh) [ Wis, Wj,] = 0.

As z, € W, and 2z, € W,, the LIE implies M" (2, z,, @) = 0, proving Theorem 3. [
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B Additional Derivations

Appendix B.1 derives expressions appearing in Section 3.1.1. Appendix B.2 proves Corollary
1. Appendix B.3 derives expressions appearing in Section 3.1.2. Appendix B.4 proves Corol-
lary 2. Appendix B.5 derives expressions appearing in Section 3.2. Appendix B.6 proves

Corollary 3. Appendix B.7 shows how we use inequalities to identify the parameter 6,,.

B.1 Second-Step Bounding Inequalities: Additional Derivations

Derivation of equation (14). Consider points e/ such that el = h'(z,, Ay) for some

function A" (-). We compute the function in equation (14) by finding the value of h¥ (z,, Af;)
that minimizes the moment in equation (12) at each value of Afy,. Specifically, given z; and

Abyy, the first-order condition of the moment in equation (12) with respect to h'"' (z,, Afy) is
E[yﬁs(h”'(zs, AbOy) — (A + aAwi,l/))]zS] =0,

or, equivalently, E[A% (z,, AOy) — (Al + aAw')|z,, 9, = 1] = 0. Solving for b (z,, Aby),

we obtain the expression in equation (14).

Derivation of equation (15). Equations (12) to (14) imply the following inequality
E[y;, — Y, exp(— (A + aB[Aw |z, yi, = 11))(1 - a(Awy — E[Aw] |z, yi, = 1]))]2] = 0.
We can simplify this inequality as

Ely!.|2.] > exp(—(Aby + aB[Aw |z, L, = 1]))
< (Bl |z - aBlyl(Awt — B[Aw |z, 5, = 1))z,

or equivalently,

E[yi,| 2] > exp(—(A0w + aB[Aw |z, yj, = 1]))



X (E[yh] 2] — a(B[Aw] |2, v, = TE[Y),|2] — E[Aw] |z, yi, = 1]E[yl,]z])).
Eliminating terms that cancel each other, we obtain the inequality in equation (15); i.e.,

Ey;|2]

exp(—aB[Aw! |z, yl, = 1]) < exp(Aby).
Elyisl=]

Derivation of equation (16). Swapping the indices [ and [’ in equation (15) we obtain

Elyt.|:]

—aE[AW!! |z, b, = 1]) < exp(Aby).
]E[yis|zs] exp( «Q [ Wy ‘Z7yzs ]) eXp( ll)

Rearranging terms, we obtain the inequality in equation (16).

B.2 Second-Step Bounding Inequalities: Proof of Corollary 1
Equations (12) to (14) imply the following moment inequality:
E[yi, exp(— (A + aB[Aw |z, y, = 1])) = yi,|2] = 0. (B.1)
Assuming z;, € W;, and using the LIE, we can write
E[E[y;, exp(—(Aw + aE[Aw] |2, 5, = 1])) — i Wis][z] = 0
Given that z, € W,,, we can further rewrite
E[E[y;,Wis] exp(— (A0 + oE[Aw |z, 4, = 1])) — E[y[Wi]lz] = 0. (B2)

As 9!, is a function of (Wi, €;5), equation (5) implies E[Aw! [Wi,, 9] = E[Aw! [W,,]. Since
E[AwY|z,] = E[Aw"|W;,] according to Corollary 1, this corollary implies we can rewrite

equation (B.2) as
E[E[yi| Wis] exp(—(A0u + aB[Aw, |2])) = ElyiWis]|2] = 0
Given equation (6), we can further rewrite

"y "y -1
[exp(A%” + aE[AWY [Wi]) ( Z exp(AR"Y + aE[Aw!" |WZS])> X

"=1

exp(—(Abu + aE[Aul’|2,])) - Elyh Wil |z = 0



Using a similar expression for the probability of choosing I’ conditional on W, we derive

E[(eXp(A“lll — &) — 1)< ZL: exp(AR"" + aE[A lﬁl,Wzs])>_1

1"=1

zs] =0,
where we have used that E[Aw!|z,] = E[Aw! [W,,] according to Corollary 1. Then,

(exp(An!" = Afy) — 1) [(Zexp R+ aBAw! WD)

"=1

zs] = 0.

The expectation in this inequality is always strictly positive. Thus, the inequality implies

exp(AxY — AGy) —1=0 - AR = NGy . (B.3)
This inequality holds for any locations [ and [’. Swapping the indices [ and I’, we obtain:

exp(AR = AG)—120 < A& < Aby. (B.4)
Equations (B.3) and (B.4) imply As" = Afy, proving Corollary 1. |
B.3 Second-Step Odds-Based Inequalities: Additional Derivations
Derivation of equation (21). Equations (19) and (20) imply the following inequality

E[y;, exp(— (A6 + aduwl))|z] = Elyi|=].
We can rewrite this inequality as
E[y;, 2] exp(=Aduw) E[(exp(aduwy )™z, yi, = 1 = Elyg|z]-

Rearranging terms, we obtain the expression in equation (21); i.e.,

Blyf.Jz]

=L U1 A”/ 7131':12 AGy).
]E[yzl‘slzs] [(exp(a ws )) |’Z Jyzs ] eXp( ll)

Derivation of equation (22). Swapping the indices [ and !’ in equation (21), we obtain

Blylz]

A il = 1] = exp(Ab).
B o] Plesp(-adul) vl = 1] > exp(adn)

Rearranging terms, we immediately obtain the inequality in equation (22).



B.4 Second-Step Odds-Based Inequalities: Proof of Corollary 2
Equations (19) and (20) imply the following moment inequality:
E[y;, exp(—(Abu + alw)) =y |z] = 0. (B.5)
Assuming z;, € W, the LIE implies we can write this inequality as
E[E[y;, exp(—(Au + adwl)) = yi [ Wil=] >
Since Aw! = E[Aw!” [W,] according to Corollary 2, we can rewrite this inequality as
E[E[yi,| Wis] exp(—(Adw + adw))) — Ely;,[Wi]|2] = 0

Given the expression for the probability of choosing [ conditional on W, we rewrite
L
Elexp(Ax? — AOZZ/)(Z exp(AR"Y + aAw!') Tt — B[yl Wi | 2] =
1"=1
Using a similar expression for the probability of choosing I’ conditional on W, we derive
(exp(AKY — AGy) — 1)E 2 exp(AR"" + aAw!")) 7t z,] = 0. (B.6)
1"=1

The expectation in this inequality is always strictly positive. Thus, the inequality implies
exp(ARY —ABp) =10 < A = Aby. (B.7)

This inequality holds for any locations [ and [’. Swapping the indices [ and I’, we obtain:
exp(ART = AG) —120 < A < Aby. (B.8)

Equations (B.7) and (B.8) imply As" = Afy, proving Corollary 2. [

B.5 First-Step Moment Inequalities: Additional Derivations

Derivation of equation (28). Consider points ewﬁ, such that el = h'"(z, 2, 6,) for some
function A (-). We compute the function in equation (28) by finding the value of A (2, 2., 6,
that minimizes the moment in equation (26) at each value of 6,. Specifically, given z;, z,,

and 6, the first-order condition of the moment in equation (26) with respect to A (zq, 2, 6



is
E[yly) 20" (25, 20, 0) — Oa(Awl + Awlh))| 24, 2] = 0,

or, equivalently, E[2h" (2, 2, 00) — Ou(Aw! + AwlY)|z,, 2., ylyt, = 1] = 0. Solving for

h' (24, 2, 04), We obtain the solution in equation (28).

Derivation of equation (29). Equations (26) to (28) imply the following inequality

Elyl vt + vhyte — vl exp(—0.E[0.5(Awl + Awl!) |z, 2, yhoyh, = 1])x
(2 — 0o (A + Awl') — E[AwY + Awl!|2,, 2, yhfh = 11)) |25, 2] = 0,

or, equivalently,

E[yly!, + vyt 2z 2] = Elylyh, exp(—0.B[0.5(Aw! + Awl) |z, 2, gy, = 1])
2 - 0u((Al? + ") — B[AwY + Auz0, 20 gLl = 1)z 2]

Using the LIE, we can rewrite this inequality as

E[yzsyjr + yisy§r|zs7 ZT] = E[exp(_eaE[Ob(Awil + Awil)bsa Zry y”ﬁsygr = 1]) X
(2 = Ou (AW + Awl') — E[AwY + Awl |z, 20, vl = 1]))|26, 20, Yoyl = 1]
Elyl 4", |25, 2] = 0.

Simplifying this expression, and rearranging, we obtain the expression in equation (29).

B.6 First-Step Moment Inequalities: Proof of Corollary 3

Since z; € W, and z, < W, according to Corollary 3, we rewrite equation (29) as

[ [yzsyjr| 85 ] ]|287 ZT] <
E[0'5(E[yzl‘syjr|WzS7 Wi ] + E[?/ﬁ;?/é” iss Wir])|2s, 2r]
xp(OE05 (Al + Awl) |z, 2 bl = 1])

Equations (5) and (6) further imply that we can rewrite this inequality as

E[E[955|W18] [yjr|W]T’]|ZS7Z’V’] <
E[0.5(Ely;, Wi [E[yj, Wir] + Elyi Wil JE [?/ﬂ«\ ir])|zs; 2]
exp(0,E[0.5(Aw" + Awlh)|z,, zr,yisyﬂ =1]). (B.9)




Given equations (1) to (6), it holds that, for any l; = 1,...,Land Iy = 1,..., L, we can write

exp(Axl2 + aE[Awh2|W;,])

E ié Wis = ! ’
DVl = S xp(@n + B A WL

and similarly for worker j of type r. We then rewrite the inequality in equation (B.9) as
Elexp(A&!" + aE[Aw! [Wi,]) exp(AK" + aB[Aw  W;,])| 26, 2]
E[0.5(exp(A&Y + aE[Aw | W;s]) + exp(Arlt + aE[AwE W, 1))\ 2s, 2]
< exp(@alE[O.E)(Awil/ + Awf:l)|zs, zT,nyyé; =1]).

Simplifying this expression, we obtain
Elexp(aE[Aw! W) exp(aBE[Aw! W), ])| 2, 2]
E[0.5(exp(A&Y + oE[Aw | Wis]) + exp(Arlt + aE[AwlW;, 1))\ 25, 2]
< eXp(Qa]E[OB(Aw?I + Awffl)]zs, zr,yfsyé.; =1]).

Since E[Aw!|z,] = E[AwY' W] = E[Auw!Yz,] = E[Aw'W);,] = Aw, for a common

constant Aw € R, according to Corollary 3, this inequality becomes

exp(aAw) exp(aAw)
0.5(exp(Ax + aAw) + exp(Ak"! + aAw))

< exp(0,Aw).

If A" = 0, then it becomes

exp(aAw) exp(aAw)
0.5(exp(aAw) + exp(aAw))

< exp(f,Aw) < exp(aAw) < exp(f,Aw).

Thus, two inequalities of this type, one with Aw > 0 and the other one with Aw < 0, will

only be satisfied if 6, = «, proving in this way Corollary 3. |

B.7 Using Inequalities for Estimation of the Wage Parameter

We describe here how we use the inequalities in Section 3.2 to compute a CI for 6,. The
inequality in equation (26) is specific to locations [ and I’ and conditions on the vectors z; and

z.. Given that conditional moment inequality, we implement the following steps to derive

k = 1,..., K unconditional moment inequalities. First, we choose scalars Asz’ C z, and
AZI' € 2, that are correlated with Aw!" and Aw’!, and that we use in all K inequalities.

Second, for each k, we choose a subset [z, Zrs] of the support of Az a subset [z, Zx] of

the support of Az'!, and a exponent dj, € Z. Given these choices, we build the inequality



E[(y}y + vyt — vl exp(—ell ) (2 + 2¢lL — 0, (Aw! + Aw!?))) x

ge(AZY AZEN] = 0, (B.10)
where the term in parenthesis coincides with the moment function in equation (26) and
Ge(AZY A = 14z, < AV <z 1z, < A2 <z b AZY | AZEY)

Effectively, for a pre-specified ¢ € N, we choose limits z,, and Zy, that correspond to con-
secutive elements of the vector of g-quantiles of the distribution of Az across all types and
location pairs. We do the same for the limits z,, and Zy,.. Concerning the exponent dj, we
set it to either —1, 0, or 1. For example, when ¢ = 2 and dy = 0 for all k, the number of

inequalities of the type in equation (30) is K = 4, and the corresponding instruments are

VH{AZ < med(AZED)} if k=1,

1{Az" < med ) (Az,")}
VI{AZ' > med(AZLH} if k=2,
) (Az.)}
) (Az.")}

(
, 1{A2" < med(Az"
g(Asl Az = 1A (L
T{AZY > med(

(

1{AZ" > med(Az

}IL{Az” med if k= 3,
if k= 4.

To compute the sample analogue of the moment inequality in equation (B.10), we average
across worker types and workers within each type. If the cardinality L of the worker’s choice

set is large, it may be convenient to further average across all possible location pairs (I,1’).

C Additional Simulation Results

In Appendix C.1, we describe the inequalities we use to obtain the results in Table 1. In
Appendix C.2, we explore alternative ways of building the first-step inequalities. In Appendix
C.3, we present estimates analogous to those in Table 1, but using a larger set of instruments.
In Appendix C.4, we explore the robustness of the results in Table 1 to different values of
amenities. In Appendix C.5, we compare the estimates in Table 1 to alternative estimates

computed using approximations points other than those in equations (14) and (28).

C.1 Inequalities Used in Computing the CIs in Table 1

First step. Given a predictor z! of the wage level w! in every location I, a pair of locations I

and ', and a pair of indices k and k&’ determining the instruments we use, we compute the



CIs for 6, displayed in Table 1 using moment inequalities of the type:

S
D Wty + vl vk — vhuk exp(—el)
=1

(24261 — B (Aul + Awll)gn( A g (A1) = 0, (C.1)

where r(s) indexes the type matched with type s. We use this moment inequality for every
pair of locations in the set {(I,1');1 € {1,2,3},1' € {1,2,3},1 # I’} and every pair of instrument
indices in the set {(k,k'); k € {1,2}, k" € {1,2}}. Thus, we use 24 inequalities to identify 6,,.
We now describe in more detail how we choose the type r(s) for each s; how we define the
approximation points e/ for each s; and how we define the instrument g, (-) for k € {1,2}.

First, for each s = 1,...,5, we select r(s) randomly among those that satisfy

/

E[Aw) Az, gt = 1] = B[Awl,) Az, 4 = 1l < 7 (C.2)

r(s
with 7 = 0.002. In this equation, for example, E[Aw?l|Az?/,ys = 1] is the predicted value
of Aw? computed using a linear regression of Aw’ on Az¥ estimated on the subset of
observations with ¢! = 1. To understand why we impose the restriction in equation (C.2)
when selecting the type 7(s) to match with each given type s, one should note that, as .S goes
to infinity, the moment inequality in equation (C.1) will be satisfied at 6, = « regardless of
how the type r(s) for every s is chosen. However, Corollary 3 indicates that a condition for
this inequality to point identify 6, is that, given wage predictors z! and 2! for the types s

and r combined in the inequality, these wage predictors and types satisfy
E[AWY (W] = E[AWY |z,] = E[AWYW,] = E[Aw"z,]. (C.3)

By selecting the type r according to equation (C.2), we aim to approximate the condition in
equation (C.3) while taking into account that the sets W, and W, are generally not observed.
Second, in terms of the approximation point e for each type s used in equation (C.1),

we build on equation (28) and impose

e = 0,0 5(E[AWY |AZY 4 = 1] + E[Aw!! !Azll yT(S) 1]), (C.4)

r(s)

where, as indicated above, e.g., E[Aw! |Az% 4! = 1] is the predicted value of Aw! computed

using a linear regression of Aw! on Az? estimated on the subset of observations with
y. = 1. Equation (28) indicates that the optimal approximation point eff’ is a function of,

for example, the conditional expectation of Aw given Az " and yL = 1; in equation (C.4),



we compute instead a linear regression. In unreported results, we have instead approximated
nonparametrically the conditional expectation of Aw! given Az and ¢! = 1, obtaining very
similar results to those attained when using linear regressions instead.

Third, and finally, in terms of the function gi(-) for £ = 1,2, we impose:

1H{AZY < 0} fork =1,

: (C.5)
1{0 < AV} for k = 2.

ge(Az) = {

This instrument function corresponds to that in Section 3.3 with ¢ = 2 and d = 0.
Second step. Given a location [, a predictor 2% of w!, an index k determining the instru-
ments we use, and a value 6, that belongs to the CI for 6, computed in the first step of our

inference procedure, we compute Cls for 6; using either the following bounding inequalities
—yhexp(—e (1 + el — (6 + 0,Aw)))gr(AZY) = 0, (C.6a)

—ylexp(—e!)(1 + el + (6, + O, Aw)))gr(AZ) = 0; (C.6b)

i

or the following odds-based moment inequalities

S
2 Whexp(= (0 + Gadull)) — yi)gn(A2)) = 0, (C.7a)

s=1

S
Z (! exp(0; + O, Aw') — yh)gr(AZM) = 0; (C.7b)

or both the bounding and odds-based moment inequalities jointly. The instrument function
gr(+) in equations (C.6) and (C.7) is defined as in equation (C.5). The points e} and el!

entering the inequalities in equation (C.6) are

el = 0, + 0, E[Aw A 4l = 1], (C.8a)
— —0, + O E[Awl| Az 4t = 1], (C.8b)

where, as indicated above, e.g., E[Aw?|Azl 4! = 1] is the predicted value of Aw! computed

using a linear regression of Aw' on Az! estimated on the subset of observations with ¢! = 1.

Differences across cases. In cases 1 to 4 in Table 1, the wage predictor z! introduced
in equations (C.1) to (C.8) equals the shifter z}, in equation (32). In case 5, 2! equals w!.
In this case, equation (C.2) simplifies to |[Aw! — Awff(ls)| < 7; equation (C.4) simplifies to
el = 0,0.5(Awl + Awll,); and equation (C.8) simplifies to ¢! = 6, +0,Aw' and el = —€ll,



C.2 First-step Moment Inequalities with Loose Type Matches

In Table C.1, we present Cls for 6, computed according to equations (C.1) to (C.5), and
show how these ClIs vary as we change the value of 7 entering equation (C.2). Table C.1

shows that the 95% CI for 6, becomes wider as we increase the value of 7.

Table C.1: Simulation Results - Moment Inequality Confidence Intervals With Loose Matches

Case o1 03 2 T _ st Step
Oa
2 0 1 2 8 [0.73,1.32]
2 0 1 2 4 [0.79,1.25]
2 0 1 2 2 [0.94,1.08]
2 0 1 2b, 1 [0.98,1.03]
2 0 1 2 0.8 [0.99,1.03]
2 0 1 2 0.08 [1,1.02]
2 0 1 2 0.008 [1,1.02]
2 0 1 2z 0.002 [1,1.01]

The column 6, contains 95% Cls computed using the inequalities described in Appendix C.1 and the inference
procedure in Andrews and Soares (2010). The CI with 7 = 0.002 corresponds to that in Table 1.

C.3 Two-step Moment Inequalities with Additional Instruments

In Table C.2, we present Cls analogous to those in Table 1 with the only difference that,

instead of using the instrument function in equation (C.5), we use the following instrument

function
L{AZY < Qas(AZN)} for k = 1,
) 1 AZY < A2 < AZEVNY for k=2
gu(aty = H@s(Bs )= A% 1= QulAz )} fork =2 (C.9)
1{Qs0(AZY) < A2V < Qrs(AZY)} for k = 3,
1{Q7(AZV) < A2} for k = 4,

where Qa5 (A2, Qs0(AZY), and Q75(AzY) respectively denote the percentiles 25, 50, and 75
of the distribution of Az across all types s and pairs of locations [ and /. As a comparison
of the results in tables 1 and C.2 illustrates, the CIs for 6,, 6>, and 3, become tighter when
we swap the instrument function in equation (C.5) for the more detailed function in equation
(C.9). This change in instrument functions results in an increase in the number of moment

inequalities we use in our estimation.
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Table C.2: Simulation Results - Confidence Intervals With Additional Instruments

Case o1 s ] First Step Second Step
0., Mom. Ineq. 02 03
Bounding [0,0] [1,1]
1 0 0 2h, [1,1.02] Odds-based [0,0] [1,1]
Both [0,0] [1,1]
Bounding [0,0] [1,1]
2 0 1 2 [1,1.01] Odds-based -0.33,0.32] [0.68,1.33]
Both [0,0] [1,1]
Bounding [-0.31,0.31] [0.70,1.30]
3 1 0 2z [0.91,1.15] Odds-based [0,0] [1,1.01]
Both [0,0] [1,1.01]
Bounding [-0.31,0.31] [0.70,1.30]
4 1 1 2 [0.91,1.19] Odds-based [-0.32,0.32] [0.68,1.33]
Both [-0.31,0.31] [0.70,1.31]
Bounding (%] %]
5 0 1 w' %) Odds-based &) %)
Both (%] %]

This table contains 95% CIs computed using the inequalities described in Appendix C.1 with the only
exception that the instrument functions g () for all k = 1,..., K are not those defined in equation (C.5) but

those defined in equation (C.9).

C.4 Amenity Differences Across All Locations

In Table C.3, we present Cls for 6, computed according to equations (C.1) to (C.5), and

show how these CIs vary as we change the value of the amenity parameters (k!, k2, x*) used
to generate the simulated data (see Section 4 for details). Table C.3 shows that the 95% CI

o . / . . .
for 6, as the minimum value of Ax!" between any two locations [ and !’ increases; i.e., as

7 A i
MiNe(q 2.3}, 172 AK" 1NCTEAses.

Table C.3: Simulation Results - Confidence Intervals With Amenity Differences

Case o1 03 2 (k!, K2, K3) _ st Step
Oa
2 0 1 2, (0,0,1) [1,1.01]
2 0 1 zhg (0,0.5,1) [0.92,1.09]
2 0 1 2, (0,0,2) [1,1.02]
2 0 1 zhg (0,1,2) 0.73,1.29]
2 0 1 2, (0,0,3) [1,1.02]
2 0 1 2b, (0,1.5,3) [0.55,1.49]

The column 6, contains 95% Cls computed using the inequalities described in Appendix C.1 and the inference
procedure in Andrews and Soares (2010). The CI with (x!, k2, k%) = (0,0,1) corresponds to that in Table 1.
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C.5 Estimator with Alternative Approximation Points

Panel A in Table C.4 presents CIs computed similarly to those in Table 1. The results in
Panel B incorporate two differences in the way these Cls are computed: (a) instead of using

the approximation points in equation (C.4) in the first-step moment inequalities, we use

el = 0,0.5(Az) + Azl,); (C.10)

and, instead of using the approximation points in equation (C.8) in the second-step bounding

moment inequalities, we use

el =0, + 0,01
el = —0, + éaAzsU.

(C.11a)
(C.11b)

Table C.4: Simulation Results - Confidence Intervals With Alternative Approximation Points

l

o1 o3 z, Mom. Ineq. 0. 02 03

Panel A: Confidence Intervals Using Approximation Points in Eqs. (C.4) and (C.8)

0 0 Py Bounding [1,1.02] [0,0] [1,1]
0.25 0 2 Bounding [0.98,1.04] [-0.02,0.02] [0.98,1.02]
0.50 0 2. Bounding [0.95,1.06] [-0.09,0.08] [0.92,1.08]
0.75 1 2, Bounding 0.89,1.16] [-0.18,0.18] 0.82,1.18]

1 0 2. Bounding [0.82,1.29] [-0.31,0.31] [0.70,1.30]

Panel B: Confidence Intervals Using Approzimation Points in Egs. (C.10) and (C.11)

0 0 2, Bounding [1,1.02] [0,0] [1,1]
0.25 0 2, Bounding [0.98,1.04] [-0.02,0.02] [0.98,1.02]
0.50 0 2. Bounding [0.94,1.09] [-0.09,0.08] [0.92,1.08]
0.75 1 2, Bounding [0.88,1.24] [-0.20,0.20] 0.81,1.21]

1 0 2b, Bounding 0.81,1.50] [-0.41,0.42] [0.63,1.46]

Panel A contains 95% CIs computed using the inequalities described in Appendix C.1. Panel B contains
95% CIs computed using inequalities analogous to those Appendix C.1, with the only exception that the
approximation points in equations (C.10) and (C.11) are used instead of those in equations (C.4) and (C.8).
As the choice of approximation points only affects the Cls computed using bounding moment inequalities
(i.e., they do not affect the CIs computed using odds-based moment inequalities), we only report those in
the table.
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Relative to the approximation points in equations (C.4) and (C.8), those in equations (C.10)
and (C.11) have the advantage that they do not involve any estimation; in particular, they
do not require computing predicted values from a linear regression. Consequently, they do
not affect the validity of standard moment inequality inference procedures. However, as
a comparison of both panels in Table C.4 illustrates, the use of the approximation points
in equations (C.10) and (C.11) results in CIs that are larger than when the approximations
points in equations (C.4) and (C.8) are used. The difference between both sets of Cls increases

in the value of 0.

D Data and Summary Statistics

D.1 Data Sources and Sample Construction

The RAIS data. Our main data source is the Rela¢ao Anual de Informagées Sociais (RAIS),
an administrative dataset maintained by Brazil’s Ministry of Labor. It includes the universe
of formal employment spells in the private and public sectors. Individual workers are iden-
tified by government-issued identification numbers (PIS/PASEP and CPF), allowing us to
track them as they change employers. For all spells observed between 1993 and 2011, we use
information on their start and end dates, average monthly wage, number of work hours stip-
ulated in the contract, 2-digit sector (according to the Classificacio Nacional de Atividades
Econdmicas, CNAE), and information on the worker’s gender, age, race, and education level.
All information is reported by the employers.

We have no information on workers without formal jobs. These workers may be employed
in the informal sector, self-employed, unemployed, or out of the labor force. Based on the
2010 Census, 51% of the Brazilian labor force was in the formal sector. The implied total
number of formal workers in the Census closely matches the number of workers at RAIS.

Geography and wage definitions. To determine workers’ location, we use the microregion of
the establishment at which the worker is employed. Microregions are groups of municipalities
that span the entirety of the Brazilian territory. They are defined by the Instituto Brasileiro
de Geografia e Estatistica (IBGE). During our sample period, Brazil had 558 microregions.
While RAIS does not contain information on the residence of workers, Dix-Carneiro and
Kovak (2017) use 2000 Census data to show that only 3.4% of individuals lived and worked
in different microregions. Previous research has used microregions as local labor markets
(e.g., Dix-Carneiro, 2014; Dix-Carneiro and Kovak, 2017, 2019; Felix, 2022; Szerman, 2024).

Workers may hold multiple employment spells (jobs) in a year. To obtain a dataset in

which each observation corresponds to a worker and a year, we assign to each worker-year
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pair the microregion and sector corresponding to the job that the worker held for the most
extended period during that year. We compute the wage of a worker in a year by adding the
labor income earned in every job this worker had in the corresponding year. We calculate
the labor income of a worker in each of their jobs by transforming the average monthly wages
reported for that job into a measure of average daily wages and multiplying this one by the
total number of days worked in the job reported in the data. If no start or end dates are
provided, we assume that these are January 1 and December 31, respectively.

Sample restrictions and sampling. We limit our data to workers aged 25 to 64, as these are
the workers most likely to have completed their education and not yet retired. The sample
period is 2002-2011. We use 1993-2001 information to measure each worker’s experience in
each sector and microregion. To limit our data to workers with a sufficiently close labor
relationship with the formal sector, we restrict our sample to workers observed at RAIS for
at least seven years in the sample period. We also restrict our sample to workers with similar
demographic characteristics; specifically, we focus on workers with at least a high school
degree identified as male and white. For computational reasons, we focus on a sample of 10
million worker-year pairs. To ensure we observe a large enough number of individuals per
market, we focus on 1,000 labor markets consisting of all combinations of the 50 microregions
(out of 558) and 20 sectors (out of 51) with the largest total employment reported in RAIS.
We then obtain our sample by randomly sampling 1 million individuals per sample year
among those employed in the 1,000 labor markets of interest.

Additional data sources. We measure distances between microregions by the geodesic dis-
tance between their population centroids. Data on internet connections is from the Agéncia
Nacional de Telecomunicagoes (ANATEL), which provides the number of broadband con-
nections by municipality and year from 2007 onwards. We define internet access at the
microregion level as the average share of households with broadband internet access in the

2007-2011 period.

D.2 Summary Statistics: Migration

Consistently with our estimation sample, this section focuses on white male workers with
at least a high school education in the 2002-2011 period. However, statistics are computed
using information on all workers with those demographic characteristics; i.e., not only those
linked to the 50 largest microregions and 20 largest sectors.

Figure D.la provides yearly migration rates; i.e., the share of workers that change mi-
croregion of employment between years t and ¢ — 1. It shows an upward trend over the
sample period, from close to 6% in 2002 to 8% in 2011. Figure D.la also provides migra-

tion rates conditional on the distance between origin and destination microregions: about a
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Figure D.1: Migration and Sector Changes, by Year

(a) Migration Rates by Year (b) Sector and Microregion Changes
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Panel (a) shows migration rates, both aggregate and by distance. Panel (b) shows the share of workers that
changed sectors from the previous year (top line) and the share that both changed sectors and migrated
(bottom line). Data includes all white male workers with at least a high school education.

Figure D.2: Migration Patterns
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Panel (a) provides a histogram of distances between origin and destination microregions for observed migra-
tions. In Panel (b), each marker represents one of the 50 microregions in our sample. The y-axis measures
the out-migration rate, while the x-axis measures the in-migration rate. It considers migration with origins
and destinations to all microregions (including outside the 50 largest ones). The dashed line represents the
45-degree line. In both panels, data includes all white male workers with at least a high school education.

third of moves are to microregions within 100 km from the origin, and less than a sixth of
moves involve migration over a distance larger than 1,000 km. Figure D.1b provides a similar
figure for sectoral changes, which are more common. It also provides the share of workers
that change both microregion and sector of employment in a given year, revealing that most

changes in the employment sector are not accompanied by migration.
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Figure D.2a depicts the distribution of distances between origin and destination microre-
gions for those who migrate. Although more than half of moves occur between microregions
within 200 km of distance, a sizable share occurs at larger distances. Figure D.2b provides
a scatter plot depicting the distribution of in-migration and out-migration rates for the 50
microregions in our sample. Each marker represents one of these microregions. In- and out-
migration rates are strongly correlated across microregions, varying close to one-to-one. The

figure also shows that the bulk of microregions have migration rates in the 3 to 12% range.

E Appendix to Empirical Analysis

E.1 Implementation of Moment Inequalities

Approzimation points. Computing the moments in equations (12) and (26) requires speci-

. : 7 3 ! !
fying the approximation points el; and elf; ,

respectively. Equations (14) and (28) provide
functional forms for these approximation points that, according to corollaries 1 and 3, result
in second-step bounding inequalities and first-step inequalities, respectively, that can point
identify the parameters of interest. Furthermore, as discussed in Appendix sections B.1 and
B.5, the approximation points in equations (14) and (28) yield the tightest identified sets
among all approximation points in a family of functions described in detail in those sections.
The expressions in equations (14) and (28), however, depend on the expectation of specific
wage differences conditional on the wage predictor used to build the corresponding inequality.
Since we ignore the true value of those expectations, we must approximate them in some way.
In our empirical application, we use approximation points that are simple to compute and
that, importantly, do not depend on any regression estimate.®

Specifically, we compute the approximation points entering the bounding moment in-

equalities in equation (12) as
el = o + 1Azl (E.1)

where 1)y and 1, are constants the researcher chooses. In practice, we use simultaneously in

estimation several different bounding inequalities of the type in equation (12) computed using

35This stands in contrast with the approach we follow in our simulation setting when computing the Cls
reported in Table 1, where we approximate the conditional expectations entering equations (14) and (28)
using linear regressions; see Appendix C.1 for more details. While the large number of observations we use
in our simulation setting implies that any noise in the linear regression estimates will have a minimal impact
in our estimated Cls, this may not be true in our empirical application. Thus, to simplify the computation
of the moment inequality Cls in our application, we restrict ourselves to using approximation points that are
not functions of prior estimates.
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the approximation points in equation (E.1) with different values of the constants vy and ;.
Similarly, we compute the approximation points entering the first-step moment inequalities
in equation (26) as
ey = 10.5(Az + Azp)), (E-2)
where 15 is a constant. In practice, we also use simultaneously in estimation several different
first-step moment inequalities of the type in equation (26) computed using the approximation
points in equation (E.2) with different values of the constant 1).%°
Aggregating across pairs of locations in the first-step moment inequalities. The moment
inequality in equation (26) holds for any two locations [ and I’. As we consider 50 possible
locations in our empirical application, there is a very large number of potential location
pairs. Instead of using a correspondingly large number of different moment inequalities of
the type in equation (26), we use a smaller number of inequalities that aggregate across
location pairs. Our choice of which location pairs to combine is guided by Corollary 3. This
corollary indicates that a requisite for the inequality in equation (26) to point identify the
wage parameter 6, is that the locations [ and [’ being compared offer the same amenity

level in the population of reference; that is, using the notation in our empirical application,

l 4
nt — Fnt

variables that are only estimated later in our estimation procedure. However, as k

K = 0. Enforcing this condition is infeasible as these amenity levels are continuous

l

ne accounts

for migration costs in our setting, it is reasonable to expect it will vary with the distance
between locations n and [. Thus, we hypothesize that locations [ and I’ that are at a similar
distance to an origin n are more likely to have similar amenity levels from the perspective
of workers located in n and, when combined in the context of the inequality in equation
(26), should yield smaller identified sets. Consequently, we form the sample analogue of
the moment in equation (26) aggregating only across location pairs [ and I’ for which the
difference between the distance from n to [ and the distance from n to I’ is in the lower tercile
of all pairwise differences in distance to n. Given such location pairs, we form the moment
function in equation (26) by further aggregating across all sector pairs s and r, and across
worker pairs within those sectors.

Instrument vectors. Given a wage predictor z!, for every [, s, and ¢, we construct mo-

36The formulas for the approximation points in equations (E.1) and (E.2) are similar to those used to
compute the simulation results discussed in Appendix C.5. However, the formulas in equations (E.1) and
(E.2) differ from those in equations (C.10) and (C.11) in that they do not depend on the structural parameters
to estimate, but on constants chosen by the researcher. The fact that the researcher can explore the identifying
power of a large set of possible values for the constants (¢, 1, 12) has the advantage of generating tighter
CIs, and the computational disadvantage that the number of moment inequalities used in estimation increases
in the set of values of (1o, 11,1%2) the researcher uses.
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ment inequalities using instruments of the type in equation (31) for every dj € {—1,1} and

[zka Zk] € {[_OO’ Q25(Azéltl)]a [Q%(Azélt,)» Q50(Azéltl)]7 [Q5O(Azél7t/)7 Q?5(Azéltl)]u [Q75(Azélt/)7 OO]}7
where Q,(AzY) denotes the percentile ¢ of the distribution of AzYY'. Thus, we use 8 different

mstrument vectors.

E.2 Additional Result

I described in Section 5.2.2.

Figure E.1 provide the CIs of estimated amenities x;,,,

Figure E.1: Amenities from Moment Inequalities with Confidence Intervals
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Each point shows the midpoint of the 95% confidence interval for a given bilateral migration cost !, in the
year 2011, with the associated 95% confidence interval.

E.3 PPML-IV Estimator

We describe here our implementation of the estimator in Artug and McLaren (2015). To
rationalize the implementation of this estimator in our setting, we must assume all workers
employed in the same sector s have the same information set in any given period ¢, regardless
of their location of residence. Thus, J;s = Jys for any sector s, period ¢, and any two workers
i and 7" employed in s at t. Given this assumption, we can write the model-implied number

of sector s workers that migrate between locations n and [ at ¢ as:

M exXp (O‘E[wét‘jst] - “izt)

ns = L’I"Lst*l
' Zk eXp (QE[w§t‘~7St] - Hﬁt)
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= exp (aE[w,| Tl — #ipy + Tnst)
= exp (a(wit — VL) = Ky + Fnst)
= exp (AL, + UL, + Thst) (E-3)

where L,q_1 is the total number of workers in location n and sector s at period t — 1;

vl =w!, — E[wl,|Js] is these workers” expectational error when predicting wages in sector

s, period t, and location [; and

Alt = o(w, l — Vét), [g=—1In (Zexp St’\jst] — Ky, )) +1In Ly, \P{nt = izt‘
k

Using information on { nst}n 11=1 for a period t, sector s, and L origin and destination
locations, the procedure in Artuc and McLaren (2015) recovers estimates of a and {x?,}%", 1
in three steps. First, it computes PPML estimates of {AL}F ) {Thu}E_, and {W! }5F i1
using the expression in the last line in equation (E.3). Second, under the assumption that a
variable 2!, correlated with w!, belongs to the information set Jy, it computes an IV estimate
of a by regressing Ast on wlst using 2!, as an instrument, with Alst the first-step estimate of

AL,. Third, it recovers i, = —WL, for every origin n and destination /.

F Model with Endogenous Worker Types - Sectors

We model workers’ choice of market to supply labor. Each labor market is defined by a sector
s=1,...,5 and a location [ = 1,..., L, and we index each market by the combination of
indices sl. Defining a variable 35! that equals one if worker i chooses market s/ (and zero

otherwise), we assume

yl=1{l = argmaXE[Uis/l/|$]} foranyl=1,...,Land s=1,...,85.
U=1,..L
s'=1,...,8

Consistently with equation (2), we assume worker expectations are rational. However, instead

of equation (3), we assume the utility of choosing market sl for a worker i is:
U = k' +7° + aws! + &

where the new term 7° is a sector-specific unobserved term that accounts for sector-specific
amenities as well as for sector-specific switching costs.
The assumption in equation (4) applies directly to the model with endogenous worker

types. The assumption in equation (5) extends naturally to the model considered here.
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Specifically, for any sectors s and r, locations [ and ', and worker indices ¢ and j, it holds:

E[Awi"|T;, Tj] = E[Awi"| 7] = E[Aw" |W,] = E[Aw™ W],

sl sl

_ 1
=w

/ ! / . .
where Aw s —wi and Aw" = w* — w*"' | with w* a market-level wage shifter.

Finally, instead of equation (6), we assume that, for any workers ¢ and j, it holds that

F. (e, €j\Wi, Wj) = F.(ei) FL(gj

<
~—

where ¢ measures the extent to which the type I extreme value idiosyncratic shocks are
correlated across locations within a sector. Thus, the model with endogenous sectors is a

nested logit model, with each nest defined by a sector s = 1,...,5.

G Extension: Dynamic Model of Location Choice

We describe here how to extend our estimation method to settings with forward-looking
agents facing one-time migration costs. In Appendix G.1, we describe our dynamic migration
model. In Appendix G.2, we show how to adapt the procedure in Section 3 to the estimation

of the parameters of the dynamic model. Appendix G.3 provides additional details.

G.1 Theoretical Framework

Defining a dummy variable ¢!, that equals one if worker i of type s chooses [ at ¢, we assume

yl, = 1{l = argmax E[V..,| Jist]} fori=1,... L, (G.1)
r=1,..,
with VY, the choice-specific value function and E[] defined as in equation (2). We impose:
Vilst = Uést + 625257 (G2a)
Vi = By + X+ awly + Vi, (G-2D)

where n indexes the location of worker i of type s at period ¢t — 1, and

)

it 1314 It
Vi(st)+1 = l,gaf(LE[V'(stllLyiitJ)rl]' (G3)
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Equation (G.2a) splits the choice-specific value function into the idiosyncratic component &t

l

and a variable v;

i+ that equation (G.2b) defines as the sum of four terms. First, the migration

costs between locations n and [, modeled as a function of observed covariates x!,, and a vector
of parameters 3. Second, a location- and period-specific term A, which captures a location’s
amenities and (log) price index. Third, the wage component aw!,. Fourth, the product

of the discount factor § and a variable Vgﬁl that, according to equation (G.3), equals the

worker’s period-t + 1 value function conditional on choosing alternative [ at period .37
Defining A\, = (A}, ..., \F) and e, = (gL, . .., €k,), we assume that
(ists At) € Tist- (G.4)

Thus, when making choices at ¢, workers know the vectors of contemporaneous idiosyncratic

preferences ¢;; and amenities \;. Equation (G.4) does not restrict the information workers

L

have about wages w;s = (w)} i) for any ¢ >t or amenities \y for any t' > t.

sty s W
While we do not specify the full content of workers’ information sets, we limit the processes

that determine them and assume that, for any ¢’ > t,

t.7ist’ 1 yist‘tjist- (G5)

Thus, conditional on the worker’s information set at a period ¢, the worker’s information set
in subsequent periods does not depend on the worker’s choice at . Our framework thus does
not allow for endogenous learning, understood as the process through which the worker’s
information set at t may depend on the history of locations visited by the worker.

Defining AvlY, = v!,, — vL,, we impose that for any period ¢, locations [ and I, types s

and r, and workers 7 and j that share a common prior location n,
E[Avvl:ls/t|~7ista Tjrt] = E[Avgt|~7ist] = E[Avéls/t|wist]' (G.6)

The first equality imposes that every worker has at least as much information as any other
worker of a different type r with whom it shares prior location n about differences in their
own location-specific value functions. The second equality imposes that, once we condition

on all other elements of the information set of worker ¢ of type s at period ¢, the idiosyncratic

w I’ .38

preferences in €;5; do not contain any information on Av,

for any two locations [ and

3TA comparison of equations (3) and (G.2) shows that, at the expense of assuming § = 0, the static
model allows for a more flexible specification of migration costs, which may vary freely between locations
and periods.

38The variable Avll, depends on the worker’s future choices, which will depend on e;4 for ¢ > ¢; thus,

equation (G.6) will generally not hold unless ¢;4; is independent over time.

’
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As in the static model, we restrict the information workers have on location-specific wages.
For workers i and j of types s and r, respectively, and locations [ and [, we impose that

E[Aw

18t

’Wiszh ert] = E[Awél”th] (G7)

Thus, the worker’s period-t expectation of the contemporaneous wage difference between two
locations [ and I’ equals the expectation of terms that do not vary across workers of the same
type s. We do not restrict the information workers have about the difference in type- and
location-specific wages Awilt/, between any two locations [ and I’ and in any period t'.

Finally, as in equation (6), we assume that, for workers ¢ and j of types s and r,

L
Fu(iats £t Wists Wint) = F(aa) Fu(e5) = exp ( = S (exp(—ely) + exp(—sz-rt»). (G.8)
=1

That is, the vectors €;5; and ¢;,+ are independent of (W, W;,) and of each other, and each
of their elements is itd according to a type I extreme value distribution.
The elements of )\; are identified up to a common shifter. We normalize A} = 0 for all ¢;

the model parameters are thus (A2, ..., \L) for all ¢, o, and §3.

G.2 Estimation With Moment Inequalities

We provide a two-step estimator. In the first step, we compute a confidence set for («, ()
using inequalities that difference out the amenity term A! for all [ and ¢. In the second step,
for each [ = 2,...,L and sample period ¢, we derive inequalities that depend only on «,
B, and A, and combine these inequalities with the confidence set for (o, 3) to compute a
confidence interval for AL.. We denote by (6.,03) the parameter vector with true value («, ),
and by O(q,) the set of possible values of (,,03). We denote by 6! the parameter with
true value A\l and by ©! the set of possible values of 6. In Appendix G.2.1, we discuss the
estimation of {#!};;. In Appendix G.2.2, we describe the estimation of (6, 0s).

G.2.1 Second-Step: Estimating Location-Specific Amenities

Denote by Af! = 0! — 6 the parameter with true value AN = Xl — M and by 6% the set
of possible values of AG¥. Then, for any pair of locations I and I, zy, and scalar random

. !
variable e, we define the moment

18t

i (2,0, A0 ) = Elyiy — vy exp(—eiy) (1 + ey — AT (AG))] 2], (G.9)

1st
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with

l//

AT (AT = BAZY, + AGY +aAwm+5/32yfi?i’1 (o) — abr). (G.10)

1"=1
Theorem 4 establishes a property of this moment when evaluated at A@il/ = A)\él/.

Theorem 4 Assume equations (G.1) to (G.8) hold. Then, " (z,, Ax") = 0 if ¥, < Tig

and zZsg S Wist.

We prove this theorem in Appendix G.3.1. Theorem 4 shows that, given knowledge of (o, /),
one may bound the amenity difference AN for any sample period t and locations [ and [’,
and provide an expression for the optimal scalar ell, in Appendix G.3.2

To obtain the inequality th* (zy, A)\ff ) = 0, we first follow steps analogous to those taken

to derive the static bounding inequality in equation (13).° In this way, we obtain

]E[yi;t - yzl'st eXp( zst)(l + ezst <U7llst zst))‘zSt] 2 O (Gll)

This inequality cannot be used for estimation as the value function difference v!,, —v%, is not
a function only of observed covariates and parameters. We follow Morales et al. (2019) and
implement a discrete analogue of Euler’s perturbation method to derive an inequality that

can be used for estimation. Specifically, we substitute vflst in equation (G.11) by a function

~l/

o', where v!,, and ¢!, differ in that the latter conditions on the choices that, from period

ist

t + 1 onwards, would be optimal for worker i of type s if they had chosen alternative [ at t.

. o1 - . ~J!
As our dynamic model exhibits one-period dependence, v!,, — o

.ot 15 @ function exclusively of

the difference in static utilities at period ¢ and the discounted difference in static utilities at

t + 1 that are due to whether the worker chooses alternatives [ or I’ at t. Specifically,

! ~y (1t) l” L %
Uist = Uisp = zst zst + 55 Z yzst-‘rl It+1 ‘rl’tJrl) <G12)
1"=1

where yg?f/l is the optimal choice at t+1 of worker ¢ of type s if they were to choose alternative

[ at t. The expression in equation (G.12) is a function of observed covariates and parameters.

Moreover, v

ist 2

ot for every worker, period, and ch01ces [ and !". Thus, the sign of the

moment inequality in equation (G.11) is preserved if o%, takes the place of vl,,.

ist

39While it may be feasible to use the odds-based moment inequalities introduced in Section 3.1.2 in the
context of our dynamic model, we have not found a way of doing so.
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G.2.2 First-Step: Estimating Migration Costs and Wage Coefficient

For any period ¢, locations [ and [’, worker i of type s and worker j of type r, vectors z, and

w

Zrt, and scalar random variable e;;,,, we define the moment

M"Y (24t 201, Oy 0) = (G.13)
Byl vty + v, — vyl exp(—e, ) (2 + 268, — (ATY, + ATEL) |26, 2]
yzsty]rt yzsty]rt yzstyjrt P 1787t 178rt 15t grt ERNad N

Theorem 5 establishes a property of this moment when evaluated at 8, = « and 03 = 3.

Theorem 5 Assume equations (G.1) to (G.8) hold. Then, M¥ (z,, 2., o, B) = 0 if il

isjrt —

-.71'815 U L7jrt7 Zst & ist s and Zrt & grt-

We prove Theorem 5 in Appendix G.3.3. Theorem 5 states that, given equations (G.1) to
(G.8), the assumption that zy belongs to the information set of worker ¢ of type s at period ¢,
and the assumption that z,; belongs to the information set of worker j of type r at period t,
the moment in equation (G.13) is positive when evaluated at (6,,03) = (a, 5). Furthermore,
this is true regardless of the period ¢, the two locations [ and I’ we compare, the workers is

and jr we consider, the vectors zg and z,; on which we condition, and scalar random variables

i

€iisre We use to form the moment. We thus may compute the set of values of (0,,0s) that

satisfy
Mlll(zsbzrheave,@) = 07 <G14)

and, if equations (G.1) to (G.8) hold, zst S Jist, 20t S Jjrt, and el S Tt U Tjrts (o, )

isjrt —

will belong to this set.

G.3 Proofs and Additional Details
G.3.1 Second-Step Bounding Inequalities: Proof of Theorem 4

Equation (G.1) implies that, for any worker i of type s, period ¢, and locations [ and ',
(yést + yfl;t)(]l{E[stt - Vil;t‘jist] >0} — yzl'st) =0.
Equations (G.2a), (G.4), and (G.6) imply we can rewrite this equality as

(yést + yé;t)Ol{E[Avlgt‘Wist] + Agils/t >0} — yzl'st) =0, (G.15)

(2
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l U

where Avl, = vl, — vl and Ael, = !, — £, This equality holds for any worker i of

ist ist
any type s, any period ¢, and any two locations [ and /. Thus, computing a conditional
expectation of both sides of this equality, we obtain

[]]'{IE[AU WZSt] + Agzst 0} - yést|Wista yffst + yff;t = 1] = 0

ist |

Following steps analogous to those described in Appendix A.1, we can derive the following

moment inequality
E[yzst + yzst GXp( zst)( (1 + ezst) + szst”ZSt] = O (G16>

This moment differs from that in equation (12) only in that the difference in the static utility
between alternatives [ and I’ entering equation (12) (i.e., Afy + aAw!) is substituted by
the difference in the corresponding choice-specific value functions (i.e., Avlt)).

The inequality in equation (G.16) is not immediately useful for the 1dent1ﬁcation of the

parameters of the dynamic model described in Appendix G.1. The term Av!¥, depends on the

ist
optimal choices of worker ¢ of type s in every period t' > t both conditional on choosing [ at
period ¢ (which matters for the value of v!,,) and conditional on choosing I’ at period ¢ (which
matters for the value of v%,). To derive a moment inequality that can be used to partially
identify the parameters of the model described in Appendix G.1, we follow the approach in

Morales et al. (2019). Specifically, we substitute AvY,

ist

by the variable

Af}ll/t = ,Uist ﬁffw (G.17)
where %, is the discounted sum of static utilities from period ¢ onwards (that is, in every
period ¢ > t) if worker i of type s chooses location [ at period t but follows in every
subsequent period t’ > ¢t the path of Choices that would be optimal if they had instead chosen
and o

location [ at ¢t. To define ! denote by

ist) zst? ist)

It 1)1 It)L
yz‘(st2 = (yz(st2 e 7yi(st2 ) (G.18)

the choices of worker i of type s at ¢’ if they were to choose alternative [ at ¢t. Then,

1 . lt l” l” 14 14
Uist = ’int + awst + 5 Z yzst+1 lt+1 + awst+1 + 6zst+1) (G19a>
"=1
t—t (lt)l” l”
+ 2 0 Z Z zst’ 1Yiser \Fprw + awst’ + gzst’)
t'>t+1 n/=11"=1

25



G vt l” 14 "
Uist = ’int + awst + 5 2 zst+1 I{l’t+1 + awst-‘rl + 6zsiﬁ+1) (G19b>

1"=1
t t l/t)n/ (l/ l// l// l//
+ 2 0 Z Z Yistr— 1yzst/ Ky + awst’ + 8zst’)
t'>t+1 n/=11"=1
o (1t) l” ol 1 Iz
Vist = "fnt + awst +9 Z yzst+1 Vel T OWg iy + Eigiin) (G-19¢)
"=1
t—t (lt)l” l”
+ Z 0 Z Z zst’ 1Yist wy awst’ + Ezst’)
t'>t+1 n'=11"=1

Equations (G.1) and (G.5) imply that E[vl,,|Wis] = E[0%,[Wi«], and, consequently,

zst

[A’U”/

ist

Wist] = [AU”/

ist| Wist]- (G.20)
Equations (G.16) and (G.20) imply the following moment inequality
Ells: + Yt exp(—Rly(zots AN (= (1 + b (260, AX)) + AT |2] = 0. (G.21)

Comparing the expressions for v}, and @, in equations (G.19a) and (G.19c), we can write

w l ~U l v (1t) l” KL v
Ay = Vi — Uy = (Kpp — Kopy) + 0‘( )+ Z yzst-i—l 1t+1 — K1)
=1
l U ! 4 lt l” l// "
= Blay — i) + (A = A7) + a(w ) +6p Z yzst+1 1t+1 — Tree)- (G.22)

=1
Combining equations (G.22) and (G.21), we obtain an inequality whose moment equals that
in equation (G.9) for Afy = AN, Equations (G.21) and (G.22) thus imply Theorem 4. B
G.3.2 Second-Step Bounding Inequalities: Additional Derivations

(Zsta A911)

that minimizes the moment in equation (G.9) at each value of Afy,. Given zgy and Afyy, the

Derivation of optimal approxvimation points. Given zy € Zy,compute el, = hll,

first-order condition of the moment in equation (G.9) with respect to hlt,(zy, Afy) is

E[yior (R

ist

(zst, Al ) — Aﬁﬁls/t)yzst] = 0;

equivalently, B[R, (24, Abiw) — A, 24, 4L, = 1] = 0. Solving for hl¥,(zs, Aby), we obtain:

hll/

ist

(Zsta Aell’) = [Avflst"zsh yzl'st = 1]7 <G23)
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G.3.3 First-Step Moment Inequalities: Proof of Theorem 5

For choices [ and I, worker i of type s, worker j of type r, and ¢, equation (G.15) implies
yé/rt (yﬁst + yé;t)(ﬂ{E[szsAWlSt] + Agzst O} - yzl'st) = 0. <G24)

Taking the expectation of both sides of this equality conditional on Wis, Wy, and a dummy

variable that equals one if worker i of type s chooses either [ or I at ¢, we obtain
E[yé/rt(yist + yi;t)(ﬂ{E[Avfitywlst] + Agzst 0} - yzst)’WZsb W]’f‘t7 yzst + yzst = 1] = 0

Given equations (G.1) and (G.8), we can rewrite this moment equality as

i (RERD_ )

rt\ 1 + exp(E[AvY [Wig

1st

Wzsta erta yzst + yzst = O’

" Wist]), and rearranging,

or, equivalently, after multiplying by 1 + exp(—E[AvY
E[?Jélrt(l - yﬁst - yést eXp(_]E[AvglsHWist]))|Wistv Wirt, yﬁst + yvl;lst =1]=0.
Given that this expectation conditions on the event y!,, + ¢, = 1, we can further rewrite
E[yﬁlstyj’lrt + yﬁstyé;t(— eXp(_E[szl‘ls,t|Wist]))|Wistv ert] =0

As —exp(—z) is concave, we derive the following inequality given any scalar %mv

E[yzstyjrt + yzsty]'rt exp( Z]STt)( (1 + ezgsrt) [Aviit|wi8t]>|wi5t’ WjT’t] = 0. (G25)

Let’s consider the alternative moment

E[yzstyjrt + yzsty]rt eXp( Z]STt)( (1 + ewsrt) + szst) WiSt? Wjﬁ]' (G26)

Awll

1st

Equation (G.6) implies v — E[AwY [Wigt, Wyi] and, thus, we can conclude that

zst
[ zst|Wzst7W]7"t] = U. (G27>
As Wig © Tist and W,y  Jjre, the LIE allows to write the moment in equation (G.26) as

E[E[yz;tyj/rt + yZSty]’!’t exp( zgsrt)( (1 + 61]57‘75) + E[Avfit|W23t] zst)) |\715t’ \7]7"75] |W15t7 Wﬂ"t]
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Equation (G.1) implies E[y!y% | Tist, Tirt] = Ylaylny. Consequently, if zy S Wiy and 2, <

Wi, then zy © Jis and 2, < Jj, and we can rewrite the moment in equation (G.26) as
]E[yzstyjrt + yzsty]rt eXp( il]srt)(_(l t+e zysrt) + E[E[Avfit‘wlé’t] + stt’W13t7 W]Tt])|W18t7 WJ”]’

and equation (G.27) implies we can rewrite the moment in equation (G.26) as

]E[ylsty]rt + yzsty]rt eXp( Z]srt)( (1 + ezgsrt) [AvfitD/VlSt]) |W’LSt7 W]Tt]
This moment is the same in equation (G.25), hence, we have shown:
E[yz;ty]/r‘t + yzsty]rt eXp( Zsrt)(_(l te z]srt) + szst)|w’ist7 ert] = 0. <G28)

Following steps analogous to those we follow to derive the inequality in equation (G.21) from
that in equation (G.16) (see Appendix G.3.1), we derive the following inequality from that
in equation (C.28), where A9, is defined as in equation (G.22):

E[yf;ty;/'rt + yzl'styj'/rt eXp(_eélj,srt)( (]' + ezgsrt> + Avii/t”WiSt? WjTt] = 0. (G29>

This inequality is one of the two we combine to obtain the inequality that we use to bound

the parameters 6, and 63. To obtain the one, we start with the following expression
yzl'st(y;'rt + y;‘;t)(]l{E[AUﬁJWm] + Ag]rt >0} — yj'/rt) = 0. (G.30)

Following the same steps we use to go from equation (G.24) to (G.29), we derive from equation

(G.30) the following inequality

]E[yzstyjrt + yzstyjrt eXp( zgsrt)( (1 + ez]srt) + A/Uj’r‘t) WlSt’ ert] = Y- <G31)

As the moments in equations (G.28) and (G.31) share the same function g%-’srt: Zgy X Zpp X

O(a,5) — R and the same conditioning set, we add them to obtain:
Byl e + Ut — vt exp(—ell (2 + 26— (A, + AT Wi, Wini] = 0
YistYjrt T YistYjre = YistYjre €XP zysrt Cijsrt — Vist Ujirt usty VVgrt] = Y
with

i ’ i IAAVE " "
Avfét /B(wizt - xfzt) + ()‘i - )‘vlf) + ( ) + 48 Z yz(st)Jrl §t+1 Ié’t—&-l)

=1
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! / ! 1AV " "
Avéwft = 5(xlm - xlmt) + ()‘ft - )‘i) + O‘(“’f«t ) + 68 2 1(st)+1 §'t+1 Iét-&-l)

=1

Finally, if z;; € Wig and 2, S Wj,¢, we can use the LIE and conclude that

]E[yzl‘styért + yf;tyélrt yzstyjrt eXp( Z]S’I”t)(z + 261]5rt (Aviit + Avjrt))|25t7 ZT't] = O? <G33)
with

i l l
szst + AU]T‘t (wist zst + wjrt wjrt)

KAV " " " "
+ 08 Z yz(st)Jrl §t+1 $é’t+1 +x§’t+1 x§t+1) (G.34)
1"=1
Plugging equation (G.34) into equation (G.33), we obtain a moment inequality whose moment
equals that in equation (G.13) when evaluated at (6,,03) = (o, 8). Equations (G.33) and

(G.34) thus imply Theorem 5. |

G.3.4 First-Step Moment Inequalities: Additional Derivations

Derivation of optimal approximation points. Consider approximation points expressed as

i

ezysrt = gmsrt

(Zst, 2rts B0y 0p). We find the value of gfé’srt(zst, Zrt, B0, 03) that, given zy € Zy
and z,; € Z,;, minimizes the moment in equation (G.33) at each value of (6,,63). Specifically,
given zg, zt, 0o, and O, the first-order condition of the moment in equation (G.33) with

respect to the scalar gl (2st, 21, 0o, 05) is

E[yzsty]rt(2gwsrt(28ta Zrts 0047 95) (A,Ugt + AU]Tt)) |28’ ZT’] = 07

or, equivalently, ]E[Zg%’srt(zst, Zrt, Oy 05) — (ATY

ist

+ A@;Zt)\zst, Zrt yfstyg;t = 1] = 0. Solving for

w -
gijsrt(zsta 2ty Oa,s 95), we obtain:

gfé/srt(zsh Zrt) 00!7 95) [Avilst + Avjrt|zst7 yzst 1]7 <G35)

with At

ist

+ Avﬂt

defined as in equation (G.34).
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