Lecture 1. von Neumann Algebras

1.1. Three topologies on %#(#). If # is a complex Hilbert space with in-
ner product ( , ), the norm topology on the *-algebra & (#) of all bounded

linear operators on # is defined by the norm: ||x|| = sup ¢e (x| .
i<t

In finite dimensions x is a matrix and ||x||2 may be calculated as the
largest eigenvalue of x*x. The same is true in infinite dimensions if we
replace “largest eigenvalue” by “spectral radius”, where the spectral radius
of an operator a is sup{|A| : A — a is not invertible}. If we consider # =
L*([0, 1], dx), L™([0, 1], dx) acts on # by pointwise multiplication and
the norm of f € L™ is the essential sup of |f|. Thus the continuous
functions C([0, 1]) form a norm closed subalgebra of L*([0, 1], dx) on
# . (Note that the choice of ([0, 1], dx) is inessential. The same things are
true for any compact space and measure you are likely to think of in the next
ten minutes.)

The strong topology on # (#) is that defined by the seminorms x — | x¢&||
as ¢ runs through # . Thus a sequence (or net if you must) x, converges
to x iff x,{ converges to x{ in # for all { € #. The strong topology
is much weaker than the norm topology. In fact we will soon see that, for
the example of L*([0, 1]) and C([0, 1]) acting on Lz([O, 1), C([0, 1)
is actually strongly dense in L>([0, 1]). To see a sequence that converges
strongly without converging in norm, let x, be the characteristic function of
[0, 1/n] viewed as an element of L™ . Obviously x, tends strongly to zero,
but |lx,||=1 forall n.

The weak topology on #(#) is that defined by the seminorms x —
[{x¢,n)| as & and n run through #. The Cauchy-Schwarz inequality
shows that the strong topology is stronger than the weak topology. In fact the
weak topology is so weak that the unit ball of % (#) is weakly compact—
which is often very useful. Probably the simplest example of a sequence of
operators tending weakly but not strongly to zero is the sequence ™ in
L™(S") (on L*(S")), which by Fourier series is the same as the obvious

shift operator on Z%(Z).
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The interplay between the above three topologies is basic to von Neumann
algebras. We refrain from mentioning the many other topologies around.

1.2. von Neumann’s bicommutant theorem. Let us prove the following sim-
plified version of von Neumann’s bicommutant theorem (see [vIN1]). We use
the following standard notation: if S C #(#) then §' = {x € Z(¥) :
xs=sx forall s€S},and " = (5.

THEOREM. Let S be a subset of & (&) with the following two properties:

a) If x€S then x" € S;
b) 1 €S (1 isthe identity operator on & (#)).

Then alg(S) is strongly (hence weakly) dense in S" . (alg(S) is the algebra
generated by S.)

PRrooF. First check that alg(S) C S”. Now suppose y € S”. What we
must show is this: for any finite set ¢,, ..., ¢, in #, there is an element
x of alg(S) with x¢; arbitrarily close to y¢; for all i. Let us suppose at
first that we only want to approximate one vector y&. The trick is this: let
V' be the closure of the vector subspace alg(S)¢ and let p be the operator
that is orthogonal projection onto V. Clearly aV C V forall a € §; so by
property a), ap = pa. Thus yp = py since y € S”. So yV C V. But by
property b), £ € V' so that y¢ € alg(S)¢, which is precisely what we wanted
to prove.

The general case of ¢, ..., ¢, involves another trick which is used all
over the subject: make ¢,,¢&,, ..., ¢, into a single vector on the Hilbert
space 63;;1}7 . Then alg(S;) and y act diagonally on @;;1’7/ and we can,
after making some matrix calculations to see how commutants behave under
this “amplification” of # , repeat the previous argument with ¢ replaced by
@}, & to conclude the proof. O

Norte. If 1 did not belong to S the theorem still applies provided one
cuts down to the closed subspace of # that is all that S notices.

This beautiful little theorem shows that two notions, one analytic (closure
in the strong topology) and one purely algebraic (being equal to one’s bicom-
mutant) are the same for *-subalgebras of % (#) containing 1. It thoroughly
justifies the definition of §1.3. Note also that the theorem shows that “strongly
closed” and “weakly closed” are the same thing for a *-subalgebra of Z(#).

1.3. (Concrete) von Neumann algebras.

DErFNITION. If # is a complex Hilbert space, a von Neumann algebra is
a *.subalgebra M of % (#) containing 1 such that either M is strongly
(weakly) closed or M = M". If S is a selfadjoint subset of Z(#) then
S” is the von Neumann algebra generated by S.
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EXAMPLES.

i) The algebra F(#) itself is certainly closed, thus a von Neumann
algebra.

ii) The algebra L>([0, 1], dx) is easily shown to be its own commutant,
thus a von Neumann algebra.

iii) If G is a group and g — u, is a unitary representation of G, then
the commutant {u g}' is a von Neumann algebra.

iv) If # is finite-dimensional, it is not too hard to see that a von Neu-
mann algebra M is just a direct sum of matrix algebras correspond-
ing to some orthogonal decomposition # = # @ --- @ # so that
the matrices in M will look like

dim # dim %,

r—— -
Xy X3 Xk
dim # ® & -8 dim #,
X, X, X,
where the x;’s are matrices.
v) f M on # and N on % are von Neumann algebras there are

obvious notions of direct sum M &N on # . % and tensor product
M®N on Q% .

We list some important facts about von Neumann algebras.

1) The set of all projections of a von Neumann algebra M forms a
complete (orthomodular) lattice. M is generated by its projections
since it contains the spectral projections of any selfadjoint element.

2) Abelian von Neumann algebras are completely understood. As well as
example ii) above there is Z*°(N) on / 2(N) and obvious reductions
and combinations with example i1). One must allow some kind of
“multiplicity” as can be seen in finite dimensions. But on a separable
Hilbert space that is the whole story. Probably the best way to deal
with the multiplicity question is to relegate it to the spectral theorem
and state, as von Neumann did, the structure theorem for abelian
von Neumann algebras as the fact that they are generated by a single
selfadjoint operator.

3) von Neumann algebras can be abstractly characterized as C*- alge-
bras which are duals as Banach spaces. See [Sa].

1.4. Factors. The center Z(M) of a von Neumann algebra is abelian.
So by fact 2 of §1.3 we know everything about it. In finite dimensions
it would be a direct sum of copies of C, one for each summand in the
decomposition of example 4 of §1.3. In general, using the spectral the-
ory, von Neumann defined ([vN2]) (in the separable situation) a notion of
“direct integral” of Hilbert spaces [ f A (A)du(d) so that, for instance, for
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L>([0, 1]) on Lz([O, 1]) the corresponding decomposition of Lz([O, 1])
would be f[g” H?Z’ (A)dx(A) where #(A) = C. The whole algebra M re-
spects this decomposition and we end up with a notion of direct integral
of von Neumann algebras: M = [ f M(A)di on | f #(A)dA, the whole de-
composition being essentially unique. The individual M (4)’s will have trivial
center (to get a feel for this, work it out in finite dimensions). Thus any von
Neumann algebra is the direct integral of ones with trivial center.

Although the technical details of this theory are rather messy, and it can
usually be avoided by “global” methods, the direct integral decomposition is
tremendously helpful in trying to visualize a von Neumann algebra on a basic
level. Of course one does not get any further than the M(A)’s with trivial
center.

DEFINITION. A von Neumann algebra M whose center is just the scalar
multiples of the identity is called a factor.

EXAMPLES.

a) F(¥) is a factor.

b) In finite dimensions a factor will always be of the form % (#)®Cid
on #Z ® % . This is also true in infinite dimensions provided the
factor is isomorphic, as an abstract algebra, to some Z(¥).

Example b) explains the name “factor”—such factors correspond to tensor
product factorizations of the Hilbert space. The remarkable fact, discovered
by Murray and von Neumann in their works [MvN1, 2, 3] is that not all
factors are like this, and indeed, as we shall see, it is not very difficult to
construct examples.

1.5. Examples of factors. a) Let I" be a discrete group (e.g., the free group
on two generators) all of whose conjugacy classes are infinite, except that of
the identity (we will call such groups i.c.c.). Let y — u, denote the left-

regular representation of I' on /> (I"). As matrices on ’? (T") with respect
to the obvious basis indexed by y € I', the u,, and hence all elements of

alg({u,}) are of the form x, , = f(y-lu) (forgive me if the inverse is in the
wrong place) for some function f of finite support on I". The same is true
for weak limits of such operators except that f will no longer be of finite
support. However, applying the operator to the basis element for the identity
we see that f isin / 2| It is thus convenient and accurate to write elements
of M = {u}" assums 3 .. f(»)u, where f € /% (although not all /?
functions define elements of Af). The sense of convergence of the sum will
be clear later on. In any case, in order that 3 - S Yu, belong to the center

of M, it must commute with u, for all v, which implies f (l/)’l/_l) = f(y),
i.e.,, f is constant on conjugacy classes. But f isin / 2 and all nontrivial
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conjugacy classes are infinite. Thus the support of f is the identity so that
M is a factor. Call it vN(I').

One may see quickly that this factor is not as in example b) of §1.4 by ob-
serving that the linear function tr(}_ f (y)uy) = f(identity) has the property
tr(ab) = tr(ba) and is not identically zero. It is simple to show that no such
function exists on #(#) unless dim# < co.

b) The previous example was an example of a very general construction
called the crossed product, where one begins with a von Neumann algebra
N on # and a group I' acting by automorphisms on N (in example a),
N =C) and one forms a von Neumann algebra M = NxI" (on g/ 2(1"))
generated by u, = id®u, and anaction of N on V474 2(I") . All elements of

N xT can be represented as sums E},Er XU, X, € N, and uyxu; = 7(x)
(the action of y on x) for x € N. Itis then trivial to show that the following
conditions together suffice to imply that N xI" is a factor.

(i) The action of I' is “free”, i.e., xy = yy(x) for all x € N implies

y=0o0ry=1.

(ii) The algebra of fixed points for I" is a factor.
Crossed products may also be formed by continuous (locally compact) groups,
but they are algebraically less transparent.

c) Let us give an important example of the previous construction. The
group will be Z and N will be L°°(Sl ). The generator of Z will act by an
irrational rotation. As in example a) there is a trace functional on L*(S ! YNZ
givenon Y. ., f,u, by [u f,(6)d0. This example can obviously be varied
by replacing Z by any discrete group and s! by any finite measure space,
provided the group action preserves the measure and is free and ergodic. It
was recognized very early on that in this situation the crossed product algebra
depends only on the equivalence relation defined on the measure space by the
orbits of the group action, indeed that it is possible to define the crossed
product algebra given only the measure space and the equivalence relation
(with countable equivalence classes). For the definitive treatment see [FM].

d) The G.N.S. construction provides an elementary but useful way to pass
from a *-algebra which is not necessarily complete to a von Neumann algebra.
The necessary data are a *-algebra 4 and ¢ : 4 —» C with ¢(a"a) > 0. One
then forms a Hilbert space by defining a not necessarily definite inner product
on A by {a, b) = ¢(b*a). The Hilbert space 2;’, is then the completion of
the quotient of 4 by the kernel of this form. Under favorable circumstances
(such as if 4 isa C*-algebra), 4 will act on Zq’, by left multiplication. This
representation of A is called the G.N.S. representation. The von Neumann
algebra generated by the image of A in this representation should be thought
of as a completion of A with respect to ¢ . In general, it is difficult to say if
the G.N.S completion is a factor or not. One often meets surprises where A
has trivial center but its completion does not.
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To illustrate the procedure let us give an alternative way of constructing
the example 1.5 a). On the group algebra CI' of finite sums E}, ¢,y one
defines y* = y"l and tr(Zy ) =¢q4. It is clear that the G.N.S. Hilbert
space #; is naturally the same as 12(F) and the G.N.S. representation of
CI" on it is just the lincar extension of the left-regular representation.

Of more interest, especially for these lectures, are the following examples.
Let (4,, ¢,) be an increasing union of finite-dimensional von Neumann
algebras together with compatible linear functionals ¢, (i.e., ¢, s =90,
Then the union or inductive limit of the A4, ’s is a *-algebra and the ®,’s
define a ¢ on it for which the G.N.S. construction works perfectly. One
obtains many interesting factors in this way. The simplest nontrivial example
occurs when A, = @;_, M,(C), the inclusion of 4, in 4,,, isa — (29)
and ¢, is the trace, normalized so that ¢, (id) = 1. Once again the G.N.S.
completion of 4 admits a trace so is not & (#). We will have occasion to
examine many more examples in the course of these lectures.

1.6. Comparison of projections.

DeFiNITION. If M is a von Neumann algebra on # and p and ¢ are
projections in M , we say that p < ¢ if there is an operator u € M with
uu* = p and u'ug = u'u (or equivalently, u*u is a projection onto a
subspace of # contained in ¢/# , written u*u < ¢q). We say that p and
q are equivalent (p ~ q) if thereis u in M with uu" =p,u'u=¢q. Itis
true that p~gq if p <q and ¢ <p (see [MVN1]).

The point is that the operator # must be in M so that the notion of
comparison depends heavily on M. If M = & (#) it is trivial that two
projections are equivalent if and only if their images have the same dimen-
sion. Thus the idea was born that equivalence classes of projections represent
an abstract notion of dimension for an arbitrary factor. The first result con-
firming this is the following.

THEOREM. If M is a factor and p, q are projections in M then either
pP=<qorg=<p.

A proof may be found in [MvN1]. The result and the proof are quite natu-
ral if one considers the analogy with ergodic theory, p and ¢ corresponding
to measurable subsets of a measure space on which a group is acting. Ergod-
icity corresponds to being a factor and p < g means that the set p admits
a (countable) partition into subsets p; for each of which there is an element
g; of the group with g;(p;) C ¢ and g,(p,) ngj(pj) =0 for i #j.Infactl
have heard tell, but never followed up the references, that the whole theory of
comparison of projections, including the type I, II, III classification of §1.7,
was done in the ergodic theory context by E. Hopf in [Hop], before [MyN1].
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1.7. Types I, II,, II_, and III factors. So far the only way we have
distinguished between factors was by the existence or otherwise of a trace
function. The comparison of projections will give a related but more precise
tool.

We begin by calling a projection g finiteif p < q, p ~q implies p = g
and infinite if there isa p ~ ¢ with p S g. A projection p # 0 is called
minimal if it dominates no other projection in M other than 0.

DEerINITION. A factor M is of type I, II,, II_, or III according to the
following mutually exclusive conditions:

type I: M has a minimal projection;

type II, : M has no minimal projections and every projection is finite;

type II_: M has no minimal projections but it has both finite and infinite
projections;

type III: M has no finite projections except 0.

It is easy to see that if M has a trace tr with tr(x*x) > 0 for x # 0
then it is finite-dimensional or of type II, . It is also fairly easy to prove that
if M is of type I it is like Z(#)®id on # ® %, and that any type II
factor is a tensor project of a II, and a type I factor.

Murray and von Neumann showed in [MvN1] that if M is a factor there is
an essentially unique “dimension function” d: projections of M — [0, oo]
subject to

(i) d(0)=0,
(ll) d(Ei:lp,) = Ezl d(p,) if D; —ij for i #j;

(iii) d(p)=d(q) if p~q.

It follows that d(p) = d(q) = p ~ q and that d may always be normalized
so that its range is as follows:

type I. {0,1,2,...,n} with n =00 possible;

type II,: [0, 1] = the whole unit interval,;

type I : [0, oo];

type III: {0, 1}.

It should be clear at this stage that examples 1.5 a) and c) are both type II,
factors. One can “see” the dimension function on projections in example 1.5
c) by examining the abelian subalgebra L™(S 1) . A projection in here is the
characteristic function of some set and its dimension is its (normalized) Haar
measure. Thus continuous dimensionality is not a mysterious phenomenon
at all.

In these examples the dimension function comes from a trace and in
[MvN2] it is shown that any II, factor has a unique normalized trace ex-
tending its dimension function.

1.8. Standard form for II, factors. A II, factor M, considered as an
abstract complex *-algebra, possesses a (unique) trace tr which is a state of
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the kind for which the G.N.S. construction may be performed. The resulting
Hilbert space completion of M for the inner product (a, b) = tr(b*a) is
denoted L*(M, tr) or often L*(M). The reason for this notation is that
if M were L™(X, u) for some nice probability space (X, ) and if tr(f)
were [, fdu then L (M) would be the Hilbert space L (X, u). Indeed,
there is a highly developed theory of “noncommutative L’ spaces” for II,

factors, where the p-norm ||x|, of x € M is defined to be (tr(|x|? ))% ; see
[Di2], [N].

The continuity properties of tr are such that the algebra of operators
on L2(M } defined by left multiplication by M is already weakly closed so
that M acts on LZ(M ) as a von Neumann algebra. This action is called
the standard form of M. Since tr(ab) = tr(ba), right multiplication by
elements of M also extends to give bounded operators on LZ(M } to give an
action of the opposite von Neumann algebra M°® on L*(M). The situation
is completely symmetric and M’ = M°®. It is important to see that the
symmetry between the left and right operations of M is implemented by a
conjugate linear isometry J : L? (M) - LZ(M ) , which is simply the extension
to L*(M) of the map x — x* defined on M. It is a trivial calculation that,
if £ € LZ(M) then ¢x = Jx*JE so that JMJ = M'. For full details see
[Di1].

One must think of the standard form as being nothing but the left regular
representation of M .

1.9. The fundamental group of a II, factor. The continuous dimensionality
of II, factors makes them look somewhat homogeneous. If g is a nonzero
projection in a II, factor M it follows from basic theory that gMg is also
a II, factor, which one might guess to be isomorphic to A . Further thought
shows that there is no good reason for thinking this, though notice that this
isomorphism property depends only on the trace (hence equivalence class) of
g . The fundamental group encodes the set of all traces of projections ¢ for
which M = gqMgq.

The best way to define the fundamental group of M is to consider the type
I factor M®F (#) of infinite matrices over M . This M®% (#) hasan
infinite trace tr and an automorphism a of M ®.% (#) may multiply tr by
a positive real constant 1. (There are no minimal projections to normalize
tr by and tr(1) = 00.) The set {4|1 € R and there is a € Aut(M ® F(¥))
with troa = Atr} is obviously a group and is called the fundamental group
of M.

We see that if A < 1 is in the fundamental group and p is a mini-
mal projection of Z(#) then (1 ® p)M @ Z(#)(1 ® p) = M, and if
a is an automorphism with troa = Atr then «(l ® p) < p. But then
a{l ® p) is of the form g ® p for ¢ € M,tr(g) = A. But then
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M 2 (1ep)MFE (X )(18p) = (q@p)MRFE (#)(q®p) = gMgq . Conversely,
given an isomorphism 6§ : M — gMg one may construct an automorphism
of M ® #(#) which scales tr by tr(q).

1.10. Type III factors. Although we will not spend much time on them in
the lectures, it seems that this rapid survey would be absurd and misleading
if we did not discuss, in the same freewheeling spirit we have established, the
structure of type III factors.

Murray and von Neumann obviously considered them pathological and
many problems were solved for a long time in all cases except type III. The
technical problem one runs into is that if one considers the G.N.S. construc-
tion for a faithful state ¢ : M — C for a type III factor M (¢ weakly
continuous), the mapping * : M — M, which would be an isometry if ¢
were a trace, does not extend to an operator on the Hilbert space completion
% of M . It was Tomita who first used the unbounded operator S defined
by *. One needs to extend its domain so that it is a closed operator and then
one may consider the polar decomposition S = J A2 where A is a positive
operator and J is a conjugate linear isometry. What Tomita saw and what
was ultimately proved (see [Tal]) was that J may be used in place of *. In
particular, JMJ = M’ . But it is also true that A"MA™" = M (for ¢t € R);
SO one gets a one-parameter automorphism group at” , the modular group,
straight from the state ¢! Connes showed in [Col] that af only depends
on ¢ up to inner automorphisms so that the group T(M) = {tlaf is inner}
is an invariant of M itself. There are still many questions of interest about
T(M), but another invariant S(M), defined by Connes to be the intersection
of the spectra of the A’s obtained by the above process, (minus zero) letting
@ vary, is necessarily a closed multiplicative subgroup of R* and hence one
may classify type III factors into III,, A € [0, 1], by:

I,: S(M)={1};
IIIA,O</1<1. S(M) = {A"|n € R};
I, : S(M)=R"

To obtain an example of all this, one may look at ®;>, M,(C) and con-
sider on it the state ¢,, for 0 <A< 1, given by

1 10
P,(x, ®%,8 - ®x,81®1® - Htrace( (0 A)x)

The von Neumann algebras coming from the G.N.S. construction are the
Powers factors R;. They were shown to be mutually nonisomorphic type
III factors by Powers in [Pow]. The operators A and J can be handled by
finite-dimensional calculations and one may show that the factors are of type
111, . The modular group is just conjugation by @72, exp(i(3)) -

An alternative construction of III, factors is to take an automorphism o
of a Il factor M, scaling the trace by 4, and forming the crossed product
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MXZ, Z acting via o. Connes showed that all III, factors, 0 < A < 1, arise
in this way and all III, factors also, if one replaces M by a II_ nonfactor
with o acting ergodically on its center.

There is no such general discrete decomposition for III, factors but Take-
saki showed in [Ta2] that any III, factor is of the form M xR where M is
a II_ factor and R acts so as to scale the trace nontrivially.

Thus, in some sense, type III factors are reduced to type II factors and
their automorphism groups.

1.11. Hyperfiniteness, R. A famous question in algebra is this: is a dis-
crete group I' determined up to isomorphism by the isomorphism class of
the integral group ring ZI"? If we change from Z to C the answer is clearly
no (witness Z/4Z and Z/2Z & Z/2Z) and we might be led to ask the ques-
tion: to what extent does the von Neumann algebra completion vN(I') (see
§1.5) remember I'? There seem to be two answers to this question depending
on what kind of group I' is: not very much, and completely. The second
possibility has been raised by Connes (though not yet proved), working by
analogy with the Mostow rigidity result [Mos], for discrete cofinite subgroups
of semisimple Lie groups of real rank > 2. We shall concentrate on the other
extreme. We will see that as soon as a group I' is a union of finite subgroups
(and is i.c.c.) then the II, factor vN(I') is independent of I'.

We shall say that a von Neumann algebra M is hyperfinite (not wonder-
ful terminology but it seems to have some primitive appeal) if there is an
increasing sequence A, of finite-dimensional von Neumann subalgebras of
M whose union is weakly dense in M .

It is a fundamental theorem of Murray and von Neumann that there is,
up to abstract algebraic isomorphism, a unique hyperfinite II, factor which
we shall denote by the letter R. This is proved by a cutting and rebuilding
argument which is nowadays considered standard technical machinery.

Let us reconsider the examples of §1.5 in the light of the above theorem.
If T is the group S of finite permutations of N, vN(I') is obviously
hyperfinite, so = R. It follows from deep results of Connes (see §1.12) that
vN(I') is hyperfinite as soon as I' is amenable, i.e., there is a left-invariant
mean on /*(T"). It is not obvious but true that the II, factor L*(S 1) XZ
is also hyperfinite. In fact, the crossed product of L™(X, u) by Z is always
hyperfinite. Much more generally, by the results of [Co6], M %I is hyperfinite
as soon as M is and I" is amenable. The infinite tensor product algebra of
§1.5 d) is obviously hyperfinite.

Are there nonhyperfinite II, factors? Let us point out a special fea-
ture of R using, say, the VN(S_) model. Let S; be the transposition
(i i + 1), permutation of N. If we use the 2-norm |x|, = /tr(x"x), it
is clear that for any y € CS_,[S;, ¥] = 0 for large i, so that for any
y € vN(S_ ), lim,___|I[S;, ¥]ll, = 0. On the other hand, tr(S;) =0; so S
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stays well away from the center of VN(S_). Such a (norm bounded) se-
quence is called a central sequence (exercise: prove that all central sequences
are trivial in finite dimensions). Thus R has nontrivial central sequences.
On the other hand, if T is the free group F, with generators a and b, it
is not hard to show that there is a constant K such that, for y € vN(F,),
ly — tr()1|l, < Kmax{||[a, ¥]ll,, l[&, ¥1ll,} . Thus any central sequence in
VvN(F,) is trivial. Hence vN(F,) ¥ R.

So how many II, factors are there? More than you care to think about.
With one glorious exception due to Connes (using Kazdan’s property T; see
[Co2]), all constructions of many many II, factors ultimately rely on a clever
manipulation of central sequences. If there are none, and property T is not
around, we remain totally in the dark. It is shameful but true that we do not
know if vN(F,) & vN(F;)! Nor do we know if the fundamental group of
VvN(F,) contains a single element different from 1.*

In fact all hyperfinite factors are known. The type I case is trivial, the II,
case is given by the uniqueness result of Murray and von Neumann. Connes
showed that there is only one hyperfinite factor in the cases II_, III, , 0 < 4 <
1, and that hyperfinite III, factors are classified by ergodic transformations,
using work of Krieger ([Kr]). Haagerup proved uniqueness of the hyperfinite
III, factor, in [Ha].

*But for F_ it appears that the fundamental group is R according to recent results of
Voiculescu and Radulescu.



