Useful Equivalences: Each of these equivalences can be proven using our current rules of inference. (Hint: Know how to prove them!)

$$(x)(Fx \& Gx) \iff (x)Fx \& (x)Gx$$
$$(\exists x)(Fx \lor Gx) \iff (\exists x)Fx \lor (\exists x)Gx$$
$$-(x)Fx \iff (\exists x) - Fx$$
$$-(\exists x)Fx \iff (x) - Fx$$

If ϕ and ψ are logically equivalent WFFs (what does this mean??), then $(x)\phi$ and $(x)\psi$ are logically equivalent, and $(\exists x)\phi$ and $(\exists x)\psi$ are logically equivalent.

Example: Since $-(Fx \to Gx)$ is logically equivalent to Fx & -Gx, it follows that $(x)(-(Fx \to Gx))$ is logically equivalent to (x)(Fx & -Gx).