Homework 8.

Solve any three of the following problems.

These problems require you to make arguments about interpretations. Your answer should be a rigorous, but informal, argument — informal, in the sense that your argument will be in prose, and not in the formal deductive system of the predicate calculus. Please resist the temptation to mention anything about proofs, or about rules of inference (especially in problem #2).

- 1. Let ϕ_1, \ldots, ϕ_n and ψ be simple monadic sentences such that one of ϕ_1, \ldots, ϕ_n is existential and ψ is existential. Show that if the instances of ϕ_1, \ldots, ϕ_n with instantial name "a" truth-functionally imply the instance of ψ with instantial name "a", then ϕ_1, \ldots, ϕ_n jointly imply ψ .
- 2. Let ϕ_1, \ldots, ϕ_n and ψ be simple monadic sentences, with ψ universal. Show that ϕ_1, \ldots, ϕ_n jointly imply ψ if and only if: either ϕ_1, \ldots, ϕ_n are inconsistent, or the universal sentences among ϕ_1, \ldots, ϕ_n jointly imply ψ .
- 3. Show that if a simple monadic sentence ϕ is true in some interpretation \mathcal{I} of size n, then for every m > n, ϕ is true in some interpretation \mathcal{J} of size m. (Hint: Existential sentences never become false by adding more elements to the domain. For universal sentences, add new elements that are "just like" old elements.)
- 4. Let ϕ be a pure monadic sentence in which only the predicate symbol F occurs. Show that if ϕ is consistent, then there is an interpretation whose domain has two elements in which ϕ is true.

HW #8 p. 1 of 1