
Semantics for the Predicate Calculus: Part I
(Version 0.3, revised 6:15pm , April 14, 2005. Please report typos to hhalvors@princeton.edu.)

The study of formal logic is based on the fact that the validity of an argument
depends only on its logical form; for the purposes of logical investigation, we
can ignore that argument’s content. In particular, if two arguments have the same
logical form, then either they are both valid, or they are both invalid.

Our main goal in this course is to figure out what it means to say that an argument
is valid; or, in other words, to define what a valid argument form is. As an aid
in achieving this goal, we have developed two ways for representing argument
forms: First we developed the propositional calculus, which is supposed to give a
perspicuous representation of the role of (truth functional) sentence connectives in
sentences and arguments. Then we developed the predicate calculus, which also
represents the role of quantifiers such as “all” and “some.”

Now, since the sentences of the propositional and predicate calculi have no content,
they are not, by themselves, either true or false. But our definition of validity makes
use of the notion of truth-preservation:

An argument form is valid just in case: In any situation where its
premises are true, its conclusion is also true.

We make precise this notion of “situation” by means of the concept of aninterpre-
tation. In the propositional calculus, an interpretation of a sentence is just a line in
that sentence’s truth table; or, it other words, it is an assignment of truth values to
the elementary sentences that occur in that sentence.

We now need a notion ofinterpretationfor sentences in the predicate calculus. But
truth tables will not do the trick: in the predicate calculus, we cannot arbitrarily as-
sign truth values to truth-functionally simple sentences. For example, the sentence
(∃x)(Fx& −Fx) is truth-functionally simple, but we do not want to say that this
sentence could be true! So, an interpretation of a predicate calculus sentence must
start at a more primitive level than the level of truth-functionally simple sentences.
Rather, it must start at the level of names and predicates.

A predicate calculus interpretation includes three things: (a) a specification of the
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class of objects that we will be talking about; (b) an assignment of names to objects;
(c) an assignment of predicate letters to predicates, or classes of objects.

1 Informal Counterexamples

Let’s begin by looking at an example. You will share my intuition that:

(x)(Fx ∨Gx)
(x)Fx ∨ (x)Gx

is not a valid argument form. And if asked to justify your claim, you would most
likely think of examples ofpredicatesto replaceF andG so that the premise comes
out as true, and the conclusion comes out as false. For example, you might present
the following argument as a counterexample:

All numbers are either even or odd
Either all numbers are even, or all numbers are odd.

Since this argument has true premises and a false conclusion, it certainly cannot
have a valid form.

What you have done here is to give an interpretation of the argument form. Here
are the details of your interpretation:

(a.) The domain is the natural numbers:1, 2, . . . (“Domain” is just a fancy name
for the collection of things that you are talking about.)

(b.) The predicate letterF is interpreted as the predicate “is even”, and the pred-
icate letterG is interpreted as the predicate “is odd.”

2 Interlude: predicates and their extensions

Definition. The extensionof a predicate is just the collection of those things to
which the predicate truly applies.
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Example.The extension of the predicate “is even” (relative to the domain of natural
numbers) is just the collection of even numbers.

Example.Suppose that our domain consists of just the numbers 1,2 and 3. Then
the extension of the predicate “is even” consists of just the number 2.

3 Interlude: elementary set theory

To be more precise about predicate calculus interpretations, we are going to have
to learn a bit of elementary set theory. Set theory is the science of collections of
objects; and a collection of objects is called aset. Elementary set theory does not
require any knowledge that you do not already have — it only requires learning
some notation to make your reasoning more perspicuous and efficient.

Here are three numbers:2, 6, 17. The set of those three numbers is{2, 6, 17}.
That is, we use brackets around the objects to indicate the set that consists of those
objects.

The number2 is a member of the set{2, 6, 17}. We can indicate this fact by writing
2 ∈ {2, 6, 17}, where “∈” is shorthand for “is a member of.”

Every member of the set{2, 17} is also a member of the set{2, 6, 17}. So, we
say that{2, 17} is asubsetof {2, 6, 17}. And if we don’t feel like writing out the
words, we might just write{2, 17} ⊆ {2, 6, 17} as a shorthand.

Notice that is doesnot make sense to write2 ⊆ {2, 6, 17}, because2 is not itself a
set. It does make sense to write{2} ⊆ {2, 6, 17}.

Two setsA andB are equal, writtenA = B, just in case they have the same
members (and order does not matter). So, for example,{2, 6, 17} and{17, 2, 6}
are the same set.

There is one (and only one) set that does not contain anything at all. This set is
called theempty set, and it is sometimes denoted by∅.

Question. Is the empty set a subset of{2, 6, 17}?

If A andB are sets, we useA ∩ B to denote the set that consists of those things
that are in bothA andB. We useA ∪ B to denote the set that consists of those
things that are in eitherA orB.
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4 Formal Counterexamples

Now we revisit the concept of counterexamples and interpretations, this time with
an eye toward precision and rigor.

Definition. An interpretationof a sentence (or sentences) of the predicate cal-
culus consists of:

(a.) A setX, called thedomain of quantification.

(b.) An assignmentRef of names to elements ofX.

(c.) An assignmentExt of predicate letters to subsets ofX.

Definition. A formal counterexampleto an argument in the predicate calculus is
an interpretation where the premises of the argument are true, and the conclusion
of the argument is false.

I have not yet given a precise definition of when a sentence is true relative to an
interpretation. I have not done so because the definition turns out to be quite com-
plicated, and your intuitions will be sufficient for many cases.

Example.Consider the interpretation with domainX = {1, 2, 3, 4} and

Ref(m) = 1, Ref(n) = 1, Ref(o) = 2,
Ext(Fx) = {1, 2, 3} Ext(Gx) = {3, 4} Ext(Hx) = ∅.

Then, it follows that:

• (∃x)(Fx&Gx) is true relative to this interpretation, since the element3 is
in bothExt(Fx) andExt(Gx).

• (x)(Fx → Gx) is false relative to this interpretation, since the element1 is
in Ext(Fx) but not inExt(Gx).
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• (x)(Fx ∨ Gx) is true relative to this interpretation, since every element in
the domain is in eitherExt(Fx) or Ext(Gx).

• (x)(Hx → Gx) is true relative to this interpretation, sinceExt(Hx) is the
empty set.

Problem. Give a formal counterexample to the argument:

(x)(Fx ∨Gx) ` ((x)Fx ∨ (x)Gx).

Solution: Let X = {1, 2}, let Ext(Fx) = {1} andExt(Gx) = {2}. Since all
elements ofX are either inExt(Fx) or Ext(Fx), (x)(Fx∨Gx) is true relative to
this interpretation. But sinceExt(Fx) is not equal toX, (x)Fx is not true relative
to this interpretation. Similarly,(x)Gx is not true relative to this interpretation,
and so(x)Fx ∨ (x)Gx is not true relative to this interpretation.

Problem. Give a formal counterexample to the argument with no premises and
conclusion(x)(y)(Fx→ Fy).

4.1 Specifying interpretations with tables

It can be boring to write out the interpretations of a bunch of predicates. So, in
order to spice up life, we give here an alternative way to specify the interpretation
of predicate letters. (This method only works when the domainX is a finite set.)

First we list the predicate letters in the top row of the table, and we list the elements
of the domain in the first column of the table. We then write “+” in cell (i, j) if
the predicate in columnj applies to the object on rowi. Otherwise, we write “−”
in cell (i, j).

Problem. Give an interpretation for a problem involving the predicate lettersF,G,H,
and the namesm,n, o.

Solution:

X = {1, 2, 3}, Ref(m) = 1, Ref(n) = 1, Ref(o) = 2.
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F G H

1 + − −
2 + + −
3 + − −

Instead of drawing the table, we could have just written:

Ext(Fx) = {1, 2, 3}, Ext(Gx) = {2}, Ext(Hx) = ∅.

But don’t underestimate how fun it can be to draw tables.

When giving an interpretation, you must be clear and explicit about which subsets
are assigned to which predicate letters. But given that you satisfy the requirements
of clarity and explicitness, you can use whatever method you want to specify your
interpretation.

Note. An interpretation must assign the same subset of the domain to bothFx and
Fy, even though they have different variables. In other words, the interpretation
gives the extension of the predicate letterF , and doesn’t care about what variable
we put afterF . We will deal later with the tricky case of sentences that involve
the same predicate letter with different variables — e.g.,(x)(y)(Fx → Fy) and
(∃x)(Fx→ (y)Fy).

5 Semantic properties of sentences, relations between sen-
tences

Recall that when we were doing the propositional calculus, we defined a bunch
of special kinds of sentences (e.g., tautologies, inconsistencies), and a bunch of
special logical relationships between sentences (e.g., implies, is subcontrary to).
Actually, each of those concepts was defined in terms interpretations, and so they
can be naturally extended to predicate calculus sentences. For example, a predicate
calculus sentence istautologousjust in case it istrue relative to every interpreta-
tion.

Definition.

• If φ is false relative to some interpretation, thenφ is said to befalsifiable.

PHI 201, Introductory Logic p. 6 of 15



• If φ is false relative to every interpretation, thenφ is said to beinconsistent.

• If φ is true relative to some interpretation, thenφ is said to beconsistent.

• Let Γ be a set of sentences. If there is an interpretation relative to which
every sentence inΓ is true, thenΓ is said to beconsistent. Otherwise,Γ is
said to beinconsistent.

• A setΓ of sentenceslogically impliesa sentenceψ if there is no interpreta-
tion that makes all ofΓ true while makingψ false. That is, there is noformal
counterexample. In that case, the argument with premisesΓ and conclusion
ψ is valid.

• Two sentencesφ, ψ arelogically equivalentif they have the same truth value
relative to every interpretation.

Example.(x)(Fx∨−Fx) is tautologous, because in any interpretation, each object
in the domain is either inExt(Fx), or is not inExt(Fx).

Example.(∃x)(Fx& − Fx) → Gm is tautologous, because(∃x)(Fx& − Fx)
is inconsistent.

6 Semantic problems and answers

An answer to a problem requiring the presentation of an interpretation is best seen
as having two parts, as follows: (1) state the domain of your proposed interpreta-
tion, and present (using one of the above methods) the interpretation of the names
and predicate symbols; (2) state the truth values of the various sentences, defend
your claim that they have those truth values, and (most importantly) be explicit as
to how this information solves the problem you began with. Let’s consider a couple
of examples of solved problems.

Problem. Show that(∃x)Fx→ (x)Fx is not tautologous.

Solution:

1. LetX = {1, 2}, and letExt(Fx) = {1}.

2. The sentence is false relative to this interpretation: Since1 is in Ext(Fx),
(∃x)Fx is true relative to this interpretation. However, since2 is not in
Ext(Fx), (x)Fx is false relative to this interpretation. Therefore (by truth
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tables)(∃x)Fx → (x)Fx is false relative to this interpretation. Since the
sentence is false relative tosomeinterpretation, it is not tautologous. �

Problem. Show that the sentence from the previous problem is consistent (true
relative to some interpretation).

Solution:

1. LetX = {1}, and letExt(Fx) = {1}.

2. SinceExt(Fx) = X, it follows that(x)Fx is true relative to this interpreta-
tion, and therefore (by truth tables)(∃x)Fx→ (x)Fx is true relative to this
interpretation. Since the sentence is true relative to some interpretation, it is
consistent.

6.1 Is there an algorithm for finding interpretations?

Solving a semantic problem (e.g., “is the argument with premisesΓ and conclusion
φ valid?”) requires one to check all possible interpretations. But there are infinitely
many interpretations. So, it seems that your next homework assignment will take a
long time to finish!

Joking aside, it is generally quite difficult to figure out if a predicate calculus ar-
gument is valid. Moreover, the difficulty cannot be fully resolved — as it is in the
propositional calculus, where truth tables providing a completely reliable test for
validity. Indeed, logicians have proven thatthe task of deciding if a predicate cal-
culus argument is valid cannot be reduced to a routine algorithm. (This interesting
result would be discussed in an advanced logic course, such as PHI 312 or PHI
321.)

However, in the special case where our sentences contain only monadic predicates
(i.e., no “relation symbols”), we can transform this hard task into a routine algo-
rithm. That will be our next topic.
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7 Decision procedures for monadic predicate calculus

7.1 Algorithm A

The truth table method is an algorithm for testing the consistency of sentences.
In the spirit of inflationary terminology, we shall henceforth call the truth table
method“Algorithm A.”

7.2 Algorithm B

Definition. Suppose that we put together some predicate letters with the same
variable using truth functional connectives. For example:

(Fx&Gx) → −Hx.

Suppose that we then put a quantifier in front, yielding a sentence. For example:

(x)((Fx&Gx) → −Hx).

The result is called asimple monadic sentence. So, a simple monadic sentence is a
sentence with only one quantifier at the very front.

Definition. If φ is a simple monadic sentence, we letφa denote the instance ofφ
that is obtained by taking off the initial quantifier and replacing all instances of the
variable with the namea.

We now show how to determine if a collectionφ1, . . . , φn of simple monadic sen-
tences is consistent. We assume that the firstm sentences are existential, and the
remaining sentences are universal.
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1. If m = 0, then choose one arbitrary namea. Perform a truth table test
for consistency onφa

1, . . . , φ
a
n. If the truth table test says consistent, then

output Yes. If the truth table test says inconsistent, then output No.

2. If m ≥ 1, then choosem arbitrary namesa1, . . . , am. Perform a truth
table test for consistency on:

φa1
1 , . . . , φ

am
m

φa1
m+1, . . . , φ

am
m+1

...
φa1

n , . . . , φ
am
n

If the truth table test says consistent, then output Yes. If the truth table test
says inconsistent, then output No.

7.3 Algorithm C

Before you read this section, you need to know how to transform a sentence into a
“disjunctive normal form” equivalent. Please read Appendix A of Lemmon’s book.

Definition. A pure monadic sentenceis a sentence that is a truth-functional com-
bination of simple monadic sentences. For example:

(∃x)Fx&(y)(Gy → Fy),

is a pure monadic sentence.

The following algorithm will determine if a collectionφ1, . . . , φn of pure monadic
sentences is consistent.
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1. Transformφ1, . . . , φn into disjunctive normal form. The result will be of
the formψ1∨· · ·∨ψm, where eachψi is a conjunction of simple monadic
sentences and negated simple monadic sentences.

2. Within each disjunctψ1, . . . , ψn, change each negated simple monadic
sentence into a simple monadic sentence using the quantifier-negation
equivalences.

3. Test each disjunct using Algorithm B. If Algorithm B answers Yes for one
of the disjuncts, then output Yes. If Algorithm B answers No for each of
the disjuncts, then output No.

7.4 The small domain method

Although Algorithm C always gives the correct answer, it has the drawback that
it does not match the way that we normally reason when we try to decide if some
sentences are consistent. So, here I give you another method to test for consistency.

The small domain method is based on the following fact that has been proven by
paid logicians:

Fact: If a pure monadic sentence is consistent, then it is true relative
to some “small” domain. (In fact, the size of the domain needed is a
function of the number of predicates and variables in the sentences.)

Thus, to test a pure monadic sentence for consistency, do the following: Find a
quantifier-free sentence that is equivalent to the original sentence relative to a do-
main with one object; test this resulting sentence for consistency using ordinary
truth tables. If the resulting sentence is consistent, you are done — the original
sentence is true in that domain. If the resulting sentence is inconsistent, then start
over again with a domain with two individuals. If the resulting sentence is consis-
tent, you are done — the original sentence is true in that domain. If the resulting
sentence is inconsistent, then repeat the procedure in a domain with three individ-
uals, etc., until either you find an interpretation relative to which the sentence is
true, or you conclude that there is no such interpretation. For when you are entitled
to draw the latter conclusion, see the last section.
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7.4.1 Finding equivalent quantifier-free sentences

Suppose that the domainX has only three objects1, 2, 3. In this case, the universal
statement “(x)Fx” is equivalent to a conjunction: “1 is anF , 2 is anF , and3 is
anF .” Similarly, the existential statement “Something is aF ” is equivalent to the
disjunction “Either1 is anF , or 2 is anF , or 3 is anF .” In sum, when there are
only finitely many things, we can (by naming each object) translate every simple
monadic sentence into a sentence without quantifiers.

The same sort of equivalences also hold for truth-functional combinations of simple
monadic sentences (i.e., pure monadic sentences). For example, if we take the
standard association of names with numbers:

Ref(a) = 1 Ref(b) = 2 Ref(c) = 3,

then(x)Fx→ (∃x)Fx is equivalent to:

(Fa&Fb&Fc) → (Fa ∨ Fb ∨ Fc).

Generally, in order to obtain a quantifier-free sentence that is equivalent (relative
to some finite domain) to a sentenceφ, you should:

1. Disassembleφ into truth-functionally simple components;

2. If any of these components are quantified statements, expand them into
equivalent conjunctions or disjunctions;

3. Put the expanded statements back together again using the original truth-
functional connectives.

Problem. Find a quantifier-free sentence that is equivalent in a domain with three
objects to(x)(Fx→ Gx) ∨ (∃x)(Hx&Mx).

Solution: Since the main operator is a disjunction “∨”, we separate the original
sentence into(x)(Fx → Gx) and(∃x)(Hx&Mx). Since these two statements
are quantified statements, we expand them as follows:

(x)(Fx→ Gx) ≡ (Fa→ Ga) & (Fb→ Gb) & (Fc→ Gc)
(∃x)(Hx&Mx) ≡ (Ha&Ma) ∨ (Hb&Mb) ∨ (Hc&Mc)
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Finally, we put these back together again using∨ to obtain:

[(Fa→ Ga) & (Fb→ Gb) & (Fc→ Gc)]
∨ [(Ha&Ma) ∨ (Hb&Mb) ∨ (Hc&Mc)].

�

Problem. For each of the sentences(x)Fx, (∃x)Fx → (∃x)Gx, (x)(Gx ∨ Gx),
find a quantifier-free sentence that is equivalent relative to a domain containing two
individuals.

Solution:

(x)Fx ≡ Fa&Fb
(∃x)Fx→ (∃x)Gx ≡ (Fa ∨ Fb) → (Ga ∨Gb)

(x)(Gx ∨ Fx) ≡ (Ga ∨ Fa) & (Gb ∨ Fb)

7.4.2 Testing for consistency

Relative to domains with a finite number of individuals, we can test the consistency
of a sentence of monadic PC using ordinary truth tables: Just translate the sentence
into an equivalent quantifier-free sentence.

Problem. Could(∃x)Fx&(∃x)− Fx be true relative to a domain with only one
object?

Solution: If there were only one thing in the universe, then(∃x)Fx&(∃x) − Fx
would be equivalent toFa& − Fa, which is a contradiction. So, no; it couldn’t
be true if there were only only object in the domain. �

Problem. Could(∃x)Fx&(∃x)−Fx be true if there were exactly two objects in
the domain?

Solution: In this case(∃x)Fx&(∃x)− Fx would be equivalent to:

(Fa ∨ Fb) & (−Fa ∨ −Fb).

A truth table test shows that this sentence is consistent — e.g., choosev(Fa) = T
andv(Fb) = F. So, yes;(∃x)Fx&(∃x) − Fx could be true if there were two
things in the domain. �
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7.4.3 Putting it all together

Problem. Use the small domain method to show that(x)(Fx→ −Fx) is consis-
tent.

Solution: In a domain with one individual, the original statement becomesFa →
−Fa. This is true whenFa is false. So,(x)(Fx→ −Fx) can be true in a domain
with one individual. In particular, here is an interpretation which shows explicitly
that(x)(Fx→ −Fx) is consistent:

X = {1}, Ext(Fx) = ∅.

�

Problem. Use the small domain method to determine if the following argument is
valid:

1. (∃x)Hx→ (x)(Fx→ Gx)

2. (∃x)Fx // (∃x)Hx→ (x)Gx

Solution:Relative to a domain with one member, we get the argument:

1. Ha→ (Fa→ Ga)

2. Fa // Ha→ Ga

A truth table test shows that if the two premises are true, then the conclusion must
also be true. So, we now try a domain with two members. Relative to a domain
with two members, we get the argument:

1. (Ha ∨Hb) → ((Fa→ Ga) & (Fb→ Gb))

2. Fa ∨ Fb // (Ha ∨Hb) → (Ga&Gb)
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A truth table test shows that the premises can be true while the conclusion is false.
For example, we could choose the truth-assignment:

v(Ha) = T v(Hb) = F

v(Ga) = T v(Gb) = F

v(Fa) = T v(Fb) = F

Therefore, the original argument is invalid. �

7.4.4 Decision procedures

Suppose that you need to determine whether a sentenceφ is consistent. You check
a domain with one individual, andφ is false. You check a domain with two indi-
viduals andφ is false. You check a domain with three individuals andφ is false.
Surely you cannot check domains of all sizes! When, if ever, are you entitled to
conclude that there isno interpretation relative to whichφ is true? Amazingly, it
has been shown that:

Suppose thatφ is a pure monadic sentence withn predicate letters. If
φ is consistent, then there is an interpretationI whose domain has
less than or equal to2n elements, andφ is true relative toI .1

So, to take a specific case, ifφ has two predicate letters, then forφ to be consistent,
it must be true in some domain with at most 4 objects! It follows that the small
domain method is a “decision procedure” for the consistency of pure monadic sen-
tences: it will answer any question you have about consistency in a finite amount
of time.

1Compare with Boolos and Jeffrey,Computability and Logic, p. 250.
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