The propositional calculus is complete*

Hans Halvorson

We already know that the proof rules are safe, or not too strong: if there is a correctly written proof $(A_1, \ldots, A_n \vdash B)$ then A_1, \ldots, A_n semantically imply B. We wish now to show that the proof rules are $strong\ enough$, i.e. if A_1, \ldots, A_n semantically imply B, then there is a correctly written proof $(A_1, \ldots, A_n \vdash B)$. We state this fact as a theorem:

Completeness Theorem. For any sentences A_1, \ldots, A_n, B , if $A_1, \ldots, A_n \models B$ then $A_1, \ldots, A_n \vdash B$.

We claim that the following Lemma is sufficient to prove completeness. In other words, if we can prove this Lemma, then completeness will be a straightforward consequence.

Main Lemma. Let A be an arbitrary sentence, and let P be an atomic sentence. If $A \not\vdash P \land \neg P$, then A is consistent. In other words, if A is an inconsistency, then $A \vdash P \land \neg P$.

Let's see why the Main Lemma implies completeness. Suppose that $A_1, \ldots, A_n \not\vdash B$. Then

$$A_1 \wedge \cdots \wedge A_1 \wedge \neg B \not\vdash P \wedge \neg P$$
,

because if there were a proof of a contradiction from $A_1 \wedge \cdots \wedge A_n \wedge \neg B$, then starting with $A_1, \ldots, A_n, \neg B$, we could use \wedge -Introduction to derive $P \wedge \neg P$; so using RAA we get $\neg \neg B$, and using DN we get B. Hence the Main Lemma shows that the sentence $A = A_1 \wedge \cdots \wedge A_n \wedge \neg B$ is consistent. Therefore, $A_1, \ldots, A_n \not\models B$.

So how do we prove the Main Lemma? Here is the idea: We show first that for any sentence A there is a sentence A^d in disjunctive normal form such that $\vdash A \leftrightarrow A^d$. (This fact is proved as Lemma 4 below. The definition of disjunctive normal form is in the Appendix.) So, if $A \not\vdash P \land \neg P$ then also $A^d \not\vdash P \land \neg P$. Since A^d is in disjunctive normal form, it can be written as:

$$A^d = \bigvee_{i=1}^n S_i,$$

where the S_i are conjunctions of literals. We claim that there is an i such that for all sentences X, $S_i \not\vdash X \land \neg X$. Indeed, suppose for reductio ad absurdum that for all $i = 1, \ldots, n$, there is a sentence X_i such that $S_i \vdash X_i \land \neg X_i$. Clearly, if $S_i \vdash X_i \land \neg X_i$ then $S_i \vdash P \land \neg P$. So it would follow that $S_i \vdash P \land \neg P$ for all i. But then \lor E would yield $A^d \vdash P \land \neg P$, which we supposed is not true. Hence there is an i such that for all sentences X, $S_i \not\vdash X \land \neg X$. Now

^{*}Version 0.1, revised April 24, 2012. Please send suggestions and corrections to: hhalvors@princeton.edu.

we define a truth-valuation v on atomic sentences $\{P_1, P_2, ...\}$ by setting $v(P_j) = T$ if P_j occurs in S_i , and $v(P_j) = F$ otherwise. We claim that v(A) = T. Indeed, $v(S_i) = T$ since for any literal X occurring in the conjunction S_i , v(X) = T; and since $S_i \models A^d$, it follows that v(A) = T. Hence A is consistent.

So now we only need to show that each sentence A is provably equivalent to a sentence A^d in disjunctive normal form. For this, we need a few preliminary lemmas.

Definition. Let A and B be sentences. We say that A is provably equivalent to B, and write $A \equiv B$, just in case $\vdash A \leftrightarrow B$.

Lemma 1. The relation \equiv has the following properties:

- Reflexive: for all A, $A \equiv A$;
- Symmetric: for all A, B, if $A \equiv B$ then $B \equiv A$;
- Transitive: for all A, B, C, if $A \equiv B$ and $B \equiv C$ then $A \equiv C$.

Proof. (Reflexive) By the Rule of Assumptions, $A \vdash A$, hence $\vdash A \to A$ by CP. Then \land I and the definition of \leftrightarrow give $\vdash A \leftrightarrow A$.

(Symmetric) Suppose that $A \equiv B$, that is $\vdash A \leftrightarrow B$. By the definition of \leftrightarrow and \land E, $\vdash A \rightarrow B$ and $\vdash B \rightarrow A$. Putting these back together again in the opposite order gives $\vdash B \leftrightarrow A$, and hence $B \equiv A$.

(Transitivity) Left as an exercise for the reader.

Lemma 2. For all sentences A, A', B, B' if $A \equiv A'$ and $B \equiv B'$ then $\neg A \equiv \neg A'$ and $A \star B \equiv A' \star B'$, where \star stands for any of \land, \lor, \rightarrow .

Proof. Suppose that $A \equiv A'$, that is $\vdash A \leftrightarrow A'$. We first show that $\vdash \neg A \to \neg A'$. By the Rule of Assumptions $\neg A \vdash \neg A$. Applying \land -elimination to $\vdash A \leftrightarrow A'$ gives $\vdash A' \to A$. Then applying MTT to $\neg A \vdash \neg A$ and $\vdash A' \to A$ gives $\neg A \vdash \neg A'$. Finally, CP gives $\vdash \neg A \to \neg A'$. A similar argument shows that $\vdash \neg A' \to \neg A$, hence \land I gives $\vdash \neg A \leftrightarrow \neg A'$, that is $\neg A \equiv \neg A'$.

Now suppose that both $A \equiv A'$ and $B \equiv B'$. We show that $A \vee B \equiv A' \vee B'$. Let's show first that $\vdash (A \vee B) \to (A' \vee B')$. By assumption, $\vdash A \leftrightarrow A'$ and $\vdash B \leftrightarrow B'$, hence $\vdash A \to A'$ and $\vdash B \to B'$ by \land E. By the Rule of Assumptions, $A \vee B \vdash A \vee B$. Furthermore, $\vdash A \to A' \vee B'$ follows from $\vdash A \to A'$ by MPP and \lor I, and similarly $B \vdash A' \vee B'$ follows from $\vdash B \to B'$. Collecting these facts:

$$A \lor B \vdash A \lor B$$
, $A \vdash A' \lor B'$, $B \vdash A' \lor B'$.

Thus $\vee E$ gives $A \vee B \vdash A' \vee B'$, and CP gives $\vdash (A \vee B) \to (A' \vee B')$. A similar argument shows that $\vdash (A' \vee B') \to (A \vee B)$. Therefore $A \vee B \equiv A' \vee B'$.

We leave the cases of $A \wedge B \equiv A' \wedge B'$ and $A \rightarrow B \equiv A' \rightarrow B'$ as exercises for the reader.

The previous lemma has the following immediate generalization.

Lemma 3. Let A_1, \ldots, A_n and A'_1, \ldots, A'_n be sentences such that $A_i \equiv A'_i$ for $i = 1, \ldots, n$. Then $(\bigvee_{i=1}^n A_i) \equiv (\bigvee_{i=1}^n A'_i)$.

We omit the proof of this lemma. You should try to prove it yourself using induction on the number n of disjuncts in $\bigvee_{i=1}^{n} A_i$.

Lemma 4. For any sentence A, there is a sentence A^d in disjunctive normal form such that $A \equiv A^d$

Proof. It is actually easier to prove the following, apparently stronger claim: for any sentence A, there is a sentence A^c in conjunctive normal form, and a sentence A^d in disjunctive normal form, such that $A \equiv A^c \equiv A^d$. We prove this latter claim by induction on the complexity of formulas.

(Base case) Atomic sentences are already in both CNF and DNF.

(Inductive step \neg) Suppose that the result is true for A. We show that the result is true for $\neg A$. Let A^c be a CNF sentence and A^d a DNF sentence such that $A \equiv A^c \equiv A^d$. Write out $A^c = \bigwedge_{i=1}^n D_i$, where D_i is a disjunction of literals, and $A^d = \bigvee_{j=1}^m C_j$, where C_j is a conjunction of literals. By DeMorgan's rules (which are provable in our system) and DN, $\neg D_i$ is provably equivalent to a sentence \overline{D}_i that is a *conjunction* of literals. Then

$$\neg A^c = \neg (\bigwedge_{i=1}^n D_i) \equiv \bigvee_{i=1}^n \neg D_i \equiv \bigvee_{i=1}^n \overline{D}_i,$$

and the latter sentence is DNF. Here the first equivalence follows from DeMorgan's rules, and the second follows from Lemma 3. Since $\neg A \equiv \neg A^c$ (again by Lemma 3), it follows that $\neg A$ is provably equivalent to a DNF sentence.

(Inductive step \land) Suppose that the result is true for A and B. Thus, there are CNF sentences A^c, B^c and DNF sentences A^d, B^d such that $A \equiv A^c \equiv A^d$ and $B \equiv B^c \equiv B^d$. We show that the result is also true for $A \land B$. First we claim that $A^c \land B^c$ is a CNF sentence (that's obvious!), and $A \land B \equiv A^c \land B^c$. The latter claim follows from Lemma 3. Next we claim that $A^d \land B^d$ is equivalent to a DNF sentence. Write out $A^d = \bigvee_{i=1}^n S_i$ and $B^d = \bigvee_{j=1}^m T_j$, where each S_i and T_j is a conjunction of literals. Then

$$A^d \wedge B^d = (\bigvee_{i=1}^n S_i) \wedge (\bigvee_{j=1}^m T_j) \equiv \bigvee_{i=1}^n (S_i \wedge (\bigvee_{j=1}^m T_j)) \equiv \bigvee_{i=1}^n \bigvee_{j=1}^m (S_i \wedge T_j).$$

The two equivalences follow from the fact that $X \wedge (Y \vee Z) \equiv (X \wedge Y) \vee (X \wedge Z)$, which generalizes to the fact that

$$X \wedge (\bigvee_{i=1}^{n} Y_i) \equiv \bigvee_{i=1}^{n} (X \wedge Y_i).$$

(A rigorous proof of this fact would use induction on the number of disjuncts.) Now the sentence $\bigvee_{i=1}^{n}\bigvee_{j=1}^{m}(S_i\wedge T_j)$ is clearly DNF. Thus $A\wedge B$ is provably equivalent to $A^d\wedge B^d$, which is provably equivalent to a DNF sentence.

(Inductive steps \vee and \rightarrow) One could give a proof similar to the one we gave for \wedge ; or one could invoke the fact (also provable by induction!) that every sentence is provably equivalent to one containing only \wedge and \neg . We leave the remaining steps as an exercise for the reader.

As discussed on the first page, the Main Lemma follows from the fact that each sentence is provably equivalent to a DNF sentence. Furthermore, the completeness of the propositional calculus follows from the Main Lemma. So, with the proof of Lemma 4 completed, we have established the completeness of the propositional calculus.

A Appendix: Definitions

Definition. A sentence X is said to be a *literal* just in case it is atomic or the negation of an atomic. A sentence X is said to be a *simple conjunction* just in case it is a conjunction of literals. Similarly, a sentence X is said to be a *simple disjunction* just in case it's a disjunction of literals. A sentence X is said to be in *disjunctive normal form* if it is a disjunction of simple conjunctions. A sentence X is said to be in *conjunctive normal form* if it is a conjunction of simple disjunctions.