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Problem 1. Let f: X — Y and g : Y — Z be functions. Show that if go f is a
monomorphism, then f is a monomorphism.

Assume that g o f is a monomorphism. We want to show that f is a monomorphism too.
Recall that this means that, for any two functions h, k : Z — X, if foh = fok, then h = k.
Thus, it suffices to show that, given any such functions h, k, we can conclude that h = k.
By assumption, then, we have that f o h = f o k. Compose both sides of this equation with
g on the left. Then we get

go(foh)=go(fok).

By associativity of o on both sides, this gives us that (go f)oh = (go f)ok. But go f is a
monomorphism. Hence, h = k, as we wanted.

Problem 2. Let f: X — Y be a function, and let dy : Y — Y X Y be the diagonal map.
Then dy o f = (f, f).

Let mp,m : Y XY — Y be the two projections of the product Y x Y given by Axiom
2. Then, by the definition of dy, we have both that (i) mg o dy = 1y and (ii) m 0 dy = 1y.
Compose both sides of both equations with f on the right to get (i) (mpody)o f = 1y o f and
(ii) (m ody)o f = 1y o f. But by the definition of the identity 1y we get (i) (mpody)o f = f
and (ii) (m; o dy) o f = f. In turn, by associativity of o, this gives us the following two
equations:

moo (dy o f)=f
7T10(5yof):f

These should look familiar: they are the equations which define the function (f, f) which
we obtain from Axiom 2 (if we plug in ‘Y’ for ‘X’ and ‘f’ for ‘g’ in the original statement of
the axiom). Note to that this axiom states that such function is unique. Hence we get that
dy = (f, f), as we wanted.

Problem 3. If f: X — Y is surjective, then f is an epimorphism.

Suppose that f : X — Y is surjective (remember that this means that, for any y € Y,
there is an # € X such as fox =y). We want to prove that f is an epimorphism, i.e., that
for any two functions h,k : Y — Z,if ho f = ko f then h = k. Thus, it suffices to show
that, given any such functions h, k, we can conclude that h = k.

To prove that h = k, recall that 1 is a separator for Sets, i.e., if for all y € Y we have

that hoy = k oy, then h = k. So it suffices to show this. So given an element y € Y. By
f being a surjection, there is an element = € X such that f o x = y. Now, composing both
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sides of this equation with A on the left gives us (i) ho (f o x) = h o y; whereas composing
both sides with & on the left gives us (ii) ko (f oz) = ko y. By associativity of o, these two
equations give us:

(hof)ox=hoy

(kof)ox=koy

Now, recall that by assumption ho f = ko f. So the left sides of these two equations are
identical. Hence h oy = k oy. This is true for all y € Y, and such h = k as we wanted.

Problem 4. We want to show that AN (BUC) = (ANB)U(ANC).

Since sets are defined by their elements, it suffices to show that a set x is an element of
AN (BUCQC) if and only if it is also an element of (AN B) U (AN C). So we proceed by
showing this.

By definition of N, 2 € AN(BUC) iff x € A and x € (BUC). In turn, by definition
of U, this is the case iff

(x) z€A and (r€B or z€().

But ‘and’ distributes over ‘or’ (i.e., if we have that p A (¢ V r), then we also have that
(pAq)V (pAr), and vice versa). So we get that (x) holds iff (*) does:

(xx) (r€A and z€B) or (€A and ze€(C).

Finally, by definition of N and U, we get that (%) holds iff z € (AN B)U (AN C), as we
wanted.



