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Problem 1. Let f : X → Y and g : Y → Z be functions. Show that if g ◦ f is a
monomorphism, then f is a monomorphism.

Assume that g ◦ f is a monomorphism. We want to show that f is a monomorphism too.
Recall that this means that, for any two functions h, k : Z → X, if f ◦h = f ◦k, then h = k.
Thus, it suffices to show that, given any such functions h, k, we can conclude that h = k.
By assumption, then, we have that f ◦ h = f ◦ k. Compose both sides of this equation with
g on the left. Then we get

g ◦ (f ◦ h) = g ◦ (f ◦ k).

By associativity of ◦ on both sides, this gives us that (g ◦ f) ◦ h = (g ◦ f) ◦ k. But g ◦ f is a
monomorphism. Hence, h = k, as we wanted.

Problem 2. Let f : X → Y be a function, and let δY : Y → Y × Y be the diagonal map.
Then δY ◦ f = 〈f, f〉.

Let π0, π1 : Y × Y → Y be the two projections of the product Y × Y given by Axiom
2. Then, by the definition of δY , we have both that (i) π0 ◦ δY = 1Y and (ii) π1 ◦ δY = 1Y .
Compose both sides of both equations with f on the right to get (i) (π0 ◦δY )◦f = 1Y ◦f and
(ii) (π1 ◦ δY ) ◦ f = 1Y ◦ f . But by the definition of the identity 1Y we get (i) (π0 ◦ δY ) ◦ f = f
and (ii) (π1 ◦ δY ) ◦ f = f . In turn, by associativity of ◦, this gives us the following two
equations:

π0 ◦ (δY ◦ f) = f

π1 ◦ (δY ◦ f) = f

These should look familiar: they are the equations which define the function 〈f, f〉 which
we obtain from Axiom 2 (if we plug in ‘Y ’ for ‘X’ and ‘f ’ for ‘g’ in the original statement of
the axiom). Note to that this axiom states that such function is unique. Hence we get that
δY = 〈f, f〉, as we wanted.

Problem 3. If f : X → Y is surjective, then f is an epimorphism.

Suppose that f : X → Y is surjective (remember that this means that, for any y ∈ Y ,
there is an x ∈ X such as f ◦ x = y). We want to prove that f is an epimorphism, i.e., that
for any two functions h, k : Y → Z, if h ◦ f = k ◦ f then h = k. Thus, it suffices to show
that, given any such functions h, k, we can conclude that h = k.

To prove that h = k, recall that 1 is a separator for Sets, i.e., if for all y ∈ Y we have
that h ◦ y = k ◦ y, then h = k. So it suffices to show this. So given an element y ∈ Y . By
f being a surjection, there is an element x ∈ X such that f ◦ x = y. Now, composing both
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sides of this equation with h on the left gives us (i) h ◦ (f ◦ x) = h ◦ y; whereas composing
both sides with k on the left gives us (ii) k ◦ (f ◦ x) = k ◦ y. By associativity of ◦, these two
equations give us:

(h ◦ f) ◦ x = h ◦ y

(k ◦ f) ◦ x = k ◦ y

Now, recall that by assumption h ◦ f = k ◦ f . So the left sides of these two equations are
identical. Hence h ◦ y = k ◦ y. This is true for all y ∈ Y , and such h = k as we wanted.

Problem 4. We want to show that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Since sets are defined by their elements, it suffices to show that a set x is an element of
A ∩ (B ∪ C) if and only if it is also an element of (A ∩ B) ∪ (A ∩ C). So we proceed by
showing this.

By definition of ∩, x ∈ A ∩ (B ∪ C) iff x ∈ A and x ∈ (B ∪ C). In turn, by definition
of ∪, this is the case iff

(?) x ∈ A and (x ∈ B or x ∈ C) .

But ‘and’ distributes over ‘or’ (i.e., if we have that p ∧ (q ∨ r), then we also have that
(p ∧ q) ∨ (p ∧ r), and vice versa). So we get that (?) holds iff (??) does:

(??) (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C) .

Finally, by definition of ∩ and ∪, we get that (??) holds iff x ∈ (A ∩ B) ∪ (A ∩ C), as we
wanted.
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