Phil 312: Solutions to PS2.

Alejandro Naranjo Sandoval, ans@princeton.edu
1879 Hall, 227

Problem 1. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Show that if $g \circ f$ is a monomorphism, then f is a monomorphism.

Assume that $g \circ f$ is a monomorphism. We want to show that f is a monomorphism too. Recall that this means that, for any two functions $h, k: Z \rightarrow X$, if $f \circ h=f \circ k$, then $h=k$. Thus, it suffices to show that, given any such functions h, k, we can conclude that $h=k$. By assumption, then, we have that $f \circ h=f \circ k$. Compose both sides of this equation with g on the left. Then we get

$$
g \circ(f \circ h)=g \circ(f \circ k) .
$$

By associativity of \circ on both sides, this gives us that $(g \circ f) \circ h=(g \circ f) \circ k$. But $g \circ f$ is a monomorphism. Hence, $h=k$, as we wanted.

Problem 2. Let $f: X \rightarrow Y$ be a function, and let $\delta_{Y}: Y \rightarrow Y \times Y$ be the diagonal map. Then $\delta_{Y} \circ f=\langle f, f\rangle$.

Let $\pi_{0}, \pi_{1}: Y \times Y \rightarrow Y$ be the two projections of the product $Y \times Y$ given by Axiom 2. Then, by the definition of δ_{Y}, we have both that (i) $\pi_{0} \circ \delta_{Y}=1_{Y}$ and (ii) $\pi_{1} \circ \delta_{Y}=1_{Y}$. Compose both sides of both equations with f on the right to get (i) $\left(\pi_{0} \circ \delta_{Y}\right) \circ f=1_{Y} \circ f$ and (ii) $\left(\pi_{1} \circ \delta_{Y}\right) \circ f=1_{Y} \circ f$. But by the definition of the identity 1_{Y} we get (i) $\left(\pi_{0} \circ \delta_{Y}\right) \circ f=f$ and (ii) $\left(\pi_{1} \circ \delta_{Y}\right) \circ f=f$. In turn, by associativity of \circ, this gives us the following two equations:

$$
\begin{aligned}
& \pi_{0} \circ\left(\delta_{Y} \circ f\right)=f \\
& \pi_{1} \circ\left(\delta_{Y} \circ f\right)=f
\end{aligned}
$$

These should look familiar: they are the equations which define the function $\langle f, f\rangle$ which we obtain from Axiom 2 (if we plug in ' Y ' for ' X ' and ' f ' for ' g ' in the original statement of the axiom). Note to that this axiom states that such function is unique. Hence we get that $\delta_{Y}=\langle f, f\rangle$, as we wanted.

Problem 3. If $f: X \rightarrow Y$ is surjective, then f is an epimorphism.
Suppose that $f: X \rightarrow Y$ is surjective (remember that this means that, for any $y \in Y$, there is an $x \in X$ such as $f \circ x=y$). We want to prove that f is an epimorphism, i.e., that for any two functions $h, k: Y \rightarrow Z$, if $h \circ f=k \circ f$ then $h=k$. Thus, it suffices to show that, given any such functions h, k, we can conclude that $h=k$.

To prove that $h=k$, recall that 1 is a separator for Sets, i.e., if for all $y \in Y$ we have that $h \circ y=k \circ y$, then $h=k$. So it suffices to show this. So given an element $y \in Y$. By f being a surjection, there is an element $x \in X$ such that $f \circ x=y$. Now, composing both
sides of this equation with h on the left gives us (i) $h \circ(f \circ x)=h \circ y$; whereas composing both sides with k on the left gives us (ii) $k \circ(f \circ x)=k \circ y$. By associativity of \circ, these two equations give us:

$$
\begin{aligned}
& (h \circ f) \circ x=h \circ y \\
& (k \circ f) \circ x=k \circ y
\end{aligned}
$$

Now, recall that by assumption $h \circ f=k \circ f$. So the left sides of these two equations are identical. Hence $h \circ y=k \circ y$. This is true for all $y \in Y$, and such $h=k$ as we wanted.

Problem 4. We want to show that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
Since sets are defined by their elements, it suffices to show that a set x is an element of $A \cap(B \cup C)$ if and only if it is also an element of $(A \cap B) \cup(A \cap C)$. So we proceed by showing this.

By definition of $\cap, x \in A \cap(B \cup C)$ iff $x \in A$ and $x \in(B \cup C)$. In turn, by definition of \cup, this is the case iff

$$
\text { (*) } x \in A \quad \text { and }(x \in B \quad \text { or } \quad x \in C) .
$$

But 'and' distributes over 'or' (i.e., if we have that $p \wedge(q \vee r)$, then we also have that $(p \wedge q) \vee(p \wedge r)$, and vice versa). So we get that (\star) holds iff $(* *)$ does:

$$
(\star \star) \quad(x \in A \quad \text { and } \quad x \in B) \quad \text { or } \quad(x \in A \quad \text { and } \quad x \in C) .
$$

Finally, by definition of \cap and \cup, we get that ($(*)$ holds iff $x \in(A \cap B) \cup(A \cap C)$, as we wanted.

