
The Category of Theories

Hans Halvorson

December 7, 2016

Contents

1 Basics 1

2 Boolean algebras 5

3 Equivalent categories 9

4 Propositional theories are Boolean algebras 10

5 Boolean algebras again 17

6 Stone spaces 24

7 Stone duality 31

8 Discussion 36

1 Basics

Definition. We let Th denote the category whose objects are propositional
theories, and whose arrows are translations between theories. We say that two
translations f, g : T ⇒ T ′ are equal, written f = g, just in case T ′ ` f(φ)↔ g(φ)
for every φ ∈ Sent(Σ). [Note well: equality between translations is weaker than
set-theoretic equality.]

Definition. We say that a translation f : T → T ′ is conservative just in case:
for any φ ∈ Sent(Σ), if T ′ ` f(φ) then T ` φ.

Proposition 1.1. A translation f : T → T ′ is conservative if and only if f is
a monomorphism in the category Th.
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Proof. Suppose first that f is conservative, and let g, h : T ′′ → T be translations
such that f ◦ g = f ◦ h. That is, T ′ ` fg(φ) ↔ fh(φ) for every sentence φ of
Σ′′. Since f is conservative, T ` g(φ)↔ h(φ) for every sentence φ of Σ′′. Thus,
g = h, and f is a monomorphism in Th.

Conversely, suppose that f is a monomorphism in the category Th. Let φ
be a Σ sentence such that T ′ ` f(φ). Thus, T ′ ` f(φ) ↔ f(ψ), where ψ is
any Σ sentence such that T ` ψ. Now let T ′′ be the empty theory in signature
Σ′′ = {p}. Define g : Σ′′ → Sent(Σ) by g(p) = φ, and define h : Σ′′ → Sent(Σ)
by h(p) = ψ. It’s easy to see then that f ◦ g = f ◦ h. Since f is monic, g = h,
which means that T ` g(p)↔ h(p). Therefore, T ` φ, and f is conservative.

Definition. We say that f : T → T ′ is essentially surjective just in case
for any sentence φ of Σ′, there is a sentence ψ of Σ such that T ′ ` φ ↔ f(ψ).
(Sometimes we use the abbreviation “eso” for essentially surjective.)

Proposition 1.2. If f : T → T ′ is essentially surjective, then f is an epimor-
phism in Th.

Proof. Suppose that f : T → T ′ is eso. Let g, h : T ′ ⇒ T ′′ such that g◦f = h◦f .
Let φ be an arbitrary Σ′ sentence. Since f is eso, there is a sentence ψ of Σ
such that T ′ ` φ ↔ f(ψ). But then T ′′ ` g(φ) ↔ h(φ). Since φ was arbitrary,
g = h. Therefore, f is an epimorphism.

What about the converse of this proposition? Are all epimorphisms in Th
essentially surjective? The answer is Yes, but the result is not easy to prove.
We’ll prove it later on, by means of the correspondence that we establish between
theories, Boolean algebras, and Stone spaces.

Proposition 1.3. Let f : T → T ′ be a translation. If f is conservative and
essentially surjective, then f is a homotopy equivalence.

Proof. Let p ∈ Σ′. Since f is eso, there is some φp ∈ Sent(Σ) such that T ′ ` p↔
f(φp). Define a reconstrual g : Σ′ → Sent(Σ) by setting g(p) = φp. As usual,
g extends naturally to a function from Sent(Σ′) to Sent(Σ), and it immediately
follows that T ′ ` ψ ↔ fg(ψ), for every sentence ψ of Σ′.

We claim now that g is a translation from T ′ to T . Suppose that T ′ ` ψ.
Since T ′ ` ψ ↔ fg(ψ), it follows that T ′ ` fg(ψ). Since f is conservative,
T ` g(ψ). Thus, for all sentences ψ of Σ′, if T ′ ` ψ then T ` g(ψ), which means
that g : T ′ → T is a translation. By the previous paragraph, 1T ′ ' fg.

It remains to show that 1T ' gf . Let φ be an arbitrary sentence of Σ.
Since f is conservative, it will suffice to show that T ′ ` f(φ)↔ fgf(φ). But by
the previous paragraph, T ′ ` ψ ↔ fg(ψ) for all sentences ψ of Σ′. Therefore,
1T ' gf , and f is a homotopy equivalence.

Before proceeding, let’s remind ourselves of some of the motivations for these
technical investigations.

The category Sets is, without a doubt, extremely useful. However, a person
who is familiar with Sets might have developed some intuitions that could be
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misleading when applied to other categories. For example, in Sets, if there are
injections f : X → Y and g : Y → X, then there is a bijection between X
and Y . Thus, it’s tempting to think, for example, that if there are embeddings
f : T → T ′ and g : T ′ → T of theories, then T and T ′ are equivalent. [Here
an embedding between theories is a monomorphism in Th, i.e. a conservative
translation.] Similarly, in Sets, if there is an injection f : X → Y and a
surjection g : X → Y , then there is a bijection between X and Y . However, in
Th the analogous result fails to hold.

Technical Aside. For those familiar with the category Vect of vector spaces:
Vect is similar to Sets in that mutually embeddable vector spaces are isomor-
phic. That is, if f : V → W and g : W → V are monomorphisms (i.e. injective
linear maps), then V and W have the same dimension, hence are isomorphic.

The categories Sets and Vect share in common the feature that the objects
can be classified by cardinal numbers. In the case of sets, if |X| = |Y |, then
X ∼= Y . In the case of vector spaces, if dim(V ) = dim(W ), then V ∼= W .

Proposition 1.4. Let f : T → T ′ be a translation. If f∗ : M(T ′) → M(T ) is
surjective, then f is conservative.

Proof. Suppose that f∗ is surjective, and suppose that φ is a sentence of Σ
such that T 6` φ. Then there is a v ∈ M(T ) such that v(φ) = 0.1 Since f∗ is
surjective, there is a w ∈M(T ′) such that f∗(w) = v. But then

w(f(φ)) = f∗w(φ) = v(φ) = 0,

from which it follows that T ′ 6` f(φ). Therefore, f is conservative.

Example. Let Σ = {p0, p1, . . . }, and let T be the empty theory in Σ. Let
Σ′ = {q0, q1, . . . }, and let T ′ be the theory with axioms q0 → qi, for i = 0, 1, . . . .
We already know that T and T ′ are not equivalent. We will now show that there
are embeddings f : T → T ′ and g : T ′ → T .

Define f : Σ → Sent(Σ′) by f(pi) = qi+1. Since T is the empty theory, f is
a translation. Then for any valuation v of Σ′, we have

f∗v(pi) = v(f(pi)) = v(qi+1).

Furthermore, for any sequence of zeros and ones, there is a valuation v of Σ′ that
assigns that sequence to q1, q2, . . . . Thus, f∗ is surjective, and f is conservative.

Now define g : Σ′ → Sent(Σ) by setting g(qi) = p0 ∨ pi. Since T ` p0 ∨ p0 →
p0 ∨ pi, it follows that g is a translation. Furthermore, for any valuation v of Σ,
we have

g∗v(qi) = v(g(qi)) = v(p0 ∨ pi).

Recall that M(T ′) splits into two parts: (1) a singleton set containing the
valuation z where z(qi) = 1 for all i, and (2) the infinitely many other valuations

1Here we have invoked the completeness theorem, but we haven’t proven it yet. Note that
our proof of the completeness theorem (page ??) does not cite this result, or any that depend
on it.
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which assign 0 to q0. Clearly, z = g∗v, where v is any valuation such that
v(p0) = 1. Furthermore, for any valuation w of Σ′ such that w(p0) = 0, we have
w = g∗v, where v(pi) = w(qi). Therefore, g∗ is surjective, and g is conservative.

Exercise. In the example above: show that f and g are not essentially surjec-
tive.

Example. Let T and T ′ be as in the previous example. Now we’ll show that
there are essentially surjective (eso) translations k : T → T ′ and h : T ′ → T .
The first is easy: the translation k(pi) = qi is obviously eso. For the second,
define h(q0) = ⊥, where ⊥ is some contradiction, and define h(qi) = pi−1 for
i > 0.

Technical questions about theories

1. Does Th have the Cantor-Bernstein property? That is, if there are
monomorphisms f : T → T ′ and g : T ′ → T , then is there an isomorphism
h : T → T ′?

2. Is Th balanced, in the sense that if f : T → T ′ is both a monomorphism
and an epimorphism, then f is an isomorphism?

3. If there is both a monomorphism f : T → T ′ and an epimorphism g :
T ′ → T , then are T and T ′ homotopy equivalent?

4. (Quine and Goodman, “Elimination of extra-logical postulates.”) Can
any theory be made true by definition? That is, can T be embedded into
a theory T ′ that has no axioms?

5. If theories have the same number of models, then are they equivalent? If
not, then can we determine whether T and T ′ are equivalent by inspecting
M(T ) and M(T ′)?

6. How many theories (up to isomorphism) are there with n models?

7. (Supervenience implies Reduction) Suppose that the truth value of a sen-
tence ψ supervenes on the truth value of some other sentences φ1, . . . , φn,
i.e., for any valuations v, w of the propositional constants occurring in
φ1, . . . , φn, ψ, if v(φi) = w(φi), for i = 1, . . . , n, then v(ψ) = w(ψ). Does
it follow then that ` ψ ↔ θ, where θ contains only the propositional con-
stants that occur in φ1, . . . , φn? (The answer is Yes, as shown by Beth’s
theorem, ??.)

8. Suppose that f : T → T ′ is conservative. Suppose also that every model
of T extends uniquely to a model of T ′. Does it follow that T ∼= T ′?

9. Suppose that T and T ′ are consistent in the sense that there is no sentence
θ in Σ∩Σ′ such that T ` θ and T ′ ` ¬θ. Is there a unified theory T ′′ which
extends both T and T ′? (The answer is Yes, as shown by Robinson’s
theorem, ??.)
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Philosophical questions about theories

1. What does it mean for one theory to be reducible to another? Can we
explicate this notion in terms of a certain sort of translation between the
relevant theories?

Some philosophers have claimed that the reduction relation ought to be
treated semantically, rather than syntactically. In other words, they would
have us consider functions from M(T ′) to M(T ), rather than translations
from T to T ′. In light of the Stone duality theorem proved below, it
appears that syntactic and semantic approaches are equivalent to each
other.

2. Consider various formally definable notions of theoretical equivalence.
What are the advantages and disadvantages of the various notions? Is
homotopy equivalence too liberal? Is it too conservative?

3. Many more to come . . .

2 Boolean algebras

Definition. A Boolean algebra is a set B together with a unary operation
¬, two binary operations ∧ and ∨, and designated elements 0 ∈ B and 1 ∈ B,
which satisfy the following equations:

1. Top and Bottom
a ∧ 1 = a ∨ 0 = a

2. Idempotence
a ∧ a = a ∨ a = a

3. De Morgan’s rules
¬(a ∧ b) = ¬a ∨ ¬b, ¬(a ∨ b) = ¬a ∧ ¬b

4. Commutativity
a ∧ b = b ∧ a, a ∨ b = b ∨ a

5. Associativity
(a ∧ b) ∧ c = a ∧ (b ∧ c), (a ∨ b) ∨ c = a ∨ (b ∨ c)

6. Distribution
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

7. Excluded Middle
a ∧ ¬a = 0, a ∨ ¬a = 1

Here we are implicitly universally quantifying over a, b, c.
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Example. Let 2 denote the unique Boolean algebra with two elements ∅ and 1.
We can think of 2 as the powerset of a one-element set 1, where ∧ is intersection,
∨ is union, and ¬ is complement.

Note that 2 looks just like the truth-value set Ω. Indeed, Ω is equipped with
operations ∧,∨ and ¬ that make it into a Boolean algebra.

Example. Let F denote the unique Boolean algebra with four elements. We
can think of F as the powerset of a two-element set, where ∧ is intersection, ∨
is union, and ¬ is complement.

Let Σ = {p}. Define an equivalence relation ' on sentences of Σ by φ ' ψ
just in case ` φ ↔ ψ. The resulting set of equivalence classes naturally carries
the structure of a Boolean algebra with four elements.

We now derive some basic consequences from the axioms. The first two
results are called the absorption laws.

1. a ∧ (a ∨ b) = a

a ∧ (a ∨ b) = (a ∨ 0) ∧ (a ∨ b) = a ∨ (0 ∧ b) = a ∨ 0 = a.

2. a ∨ (a ∧ b) = a

a ∨ (a ∧ b) = (a ∧ 1) ∨ (a ∧ b) = a ∧ (1 ∨ b) = a ∧ 1 = a.

3. a ∨ 1 = 1

a ∨ 1 = a ∨ (a ∨ ¬a) = a ∨ ¬a = 1.

4. a ∧ 0 = 0

a ∧ 0 = a ∧ (a ∧ ¬a) = a ∧ ¬a = 0.

Definition. If B is a Boolean algebra and a, b ∈ B, we write a ≤ b when
a ∧ b = a.

Since a ∧ 1 = a, it follows that a ≤ 1, for all a ∈ B. Since a ∧ 0 = 0, it
follows that 0 ≤ a, for all a ∈ B. Now we will show that ≤ is a partial order,
i.e. reflexive, transitive, and asymmetric.

Proposition 2.1. The relation ≤ on a Boolean algebra B is a partial order.

Proof. (Reflexive) Since a ∧ a = a, it follows that a ≤ a.
(Transitive) Suppose that a ∧ b = a and b ∧ c = b. Then

a ∧ c = (a ∧ b) ∧ c = a ∧ (b ∧ c) = a ∧ b = a,

which means that a ≤ c.
(Asymmetric) Suppose that a ∧ b = a and b ∧ a = b. By commutativity of

∧, it follows that a = b.
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We now show how ≤ interacts with ∧,∨, and ¬. In particular, we show that
if ≤ is thought of as implication, then ∧ behaves like conjunction, ∨ behaves like
disjunction, ¬ behaves like negation, 1 behaves like a tautology, and 0 behaves
like a contradiction.

Proposition 2.2. c ≤ a ∧ b iff c ≤ a and c ≤ b.

Proof. Since a ∧ (a ∧ b) = a ∧ b, it follows that a ∧ b ≤ a. By similar reasoning,
a ∧ b ≤ b. Thus if c ≤ a ∧ b, then transitivity of ≤ entails that both c ≤ a and
c ≤ b.

Now suppose that c ≤ a and c ≤ b. That is, c ∧ a = c and c ∧ b = c. Then
c ∧ (a ∧ b) = (c ∧ a) ∧ (c ∧ b) = c ∧ c = c. Therefore c ≤ a ∧ b.

Notice that ≤ and ∧ interact precisely as implication and conjunction inter-
act in propositional logic. The elimination rule says that a ∧ b implies a and b.
Hence, if c implies a∧ b, then c implies a and b. The introduction rule says that
a and b imply a ∧ b. Hence if c implies a and b, then c implies a ∧ b.

Proposition 2.3. a ≤ c and b ≤ c iff a ∨ b ≤ c

Proof. Suppose first that a ≤ c and b ≤ c. Then

(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) = a ∨ b.

Therefore a ∨ b ≤ c.
Suppose now that a ∨ b ≤ c. By the absorption law, a ∧ (a ∨ b) = a, which

implies that a ≤ a ∨ b. By transitivity a ≤ c. Similarly, b ≤ a ∨ b, and by
transitivity, b ≤ c.

Now we show that the connectives ∧ and ∨ are monotonic.

Proposition 2.4. If a ≤ b then a ∧ c ≤ b ∧ c, for any c ∈ B.

Proof.

(a ∧ c) ∧ (b ∧ c) = (a ∧ b) ∧ c = a ∧ c.

Proposition 2.5. If a ≤ b then a ∨ c ≤ b ∨ c, for any c ∈ B.

Proof.

(a ∨ c) ∧ (b ∨ c) = (a ∧ b) ∨ c = a ∨ c.

Proposition 2.6. If a ∧ b = a and a ∨ b = a then a = b.
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Proof. a∧ b = a means that a ≤ b. We now claim that a∨ b = a iff b∧ a = b iff
b ≤ a. Indeed, if a ∨ b = a then

b ∧ a = b ∧ (a ∨ b) = (0 ∨ b) ∧ (a ∨ b) = (0 ∧ a) ∨ b = b.

Conversely, if b ∧ a = b, then

a ∨ b = a ∨ (a ∧ b) = (a ∧ 1) ∨ (a ∧ b) = a ∧ (1 ∨ b) = a.

Thus, if a ∧ b = a and a ∨ b = a, then a ≤ b and b ≤ a. By asymmetry of ≤, it
follows that a = b.

We now show that ¬a is the unique complement of a in B.

Proposition 2.7. If a ∧ b = 0 and a ∨ b = 1 then b = ¬a.

Proof. Since b ∨ a = 1, we have

b = b ∨ 0 = b ∨ (a ∧ ¬a) = (b ∨ a) ∧ (b ∨ ¬a) = b ∨ ¬a.

Since b ∧ a = 0, we also have

b = b ∧ 1 = b ∧ (a ∨ ¬a) = (b ∧ a) ∨ (b ∧ ¬a) = b ∧ ¬a.

By the preceding proposition, b = ¬a.

Proposition 2.8. ¬1 = 0.

Proof. We have 1 ∧ 0 = 0 and 1 ∨ 0 = 1. By the preceding proposition, 0 =
¬1.

Proposition 2.9. If a ≤ b then ¬b ≤ ¬a.

Proof. Suppose that a ≤ b, which means that a ∧ b = a, and equivalently,
a ∨ b = b. Thus, ¬a ∧ ¬b = ¬(a ∨ b) = ¬b, which means that ¬b ≤ ¬a.

Proposition 2.10. ¬¬a = a.

Proof. We have ¬a∨¬¬a = 1 and ¬a∧¬¬a = 1. By Proposition 2.7, it follows
that ¬¬a = a.

Definition. Let A and B be Boolean algebras. A homomorphism is a map
φ : A → B such that φ(0) = 0, φ(1) = 1, and for all a, b ∈ A, φ(¬a) = ¬φ(a),
φ(a ∧ b) = φ(a) ∧ φ(b) and φ(a ∨ b) = φ(a) ∨ φ(b).

It is easy to see that if φ : A → B and ψ : B → C are homomorphisms,
then ψ ◦ φ : A → C is also a homomorphism. Moreover, 1A : A → A is a
homomorphism, and composition of homomorphisms is associative.

Definition. We let Bool denote the category whose objects are Boolean alge-
bras, and whose arrows are homomorphisms of Boolean algebras.
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Since Bool is a category, we have notions of monomorphisms, epimor-
phisms, isomorphisms, etc.. Once again, it is easy to see that an injective
homomorphism is a monomorphism, and a surjective homomorphism is an epi-
morphism.

Proposition 2.11. Monomorphisms in Bool are injective.

Proof. Let f : A→ B be a monomorphism, and let a, b ∈ A. Let F denote the
Boolean algebra with four elements, and let p denote one of the two elements in
F that is neither 0 nor 1. Define â : F → A by â(p) = a, and define b̂ : F → A by

b̂(p) = b. It is easy to see that â and b̂ are uniquely defined by these conditions,
and that they are Boolean homomorphisms. Suppose now that f(a) = f(b).

Then fâ = f b̂, and since f is a monomorphism, â = b̂, and therefore a = b.
Therefore f is injective.

It is also true that epimorphisms in Bool are surjective. However, proving
that fact is no easy task. We will return to it later in the chapter.

Proposition 2.12. If f : A→ B is a homomorphism of Boolean algebras, then
a ≤ b only if f(a) ≤ f(b).

Proof. a ≤ b means that a ∧ b = a. Thus,

f(a) ∧ f(b) = f(a ∧ b) = f(a),

which means that f(a) ≤ f(b).

Definition. A homomorphism φ : B → 2 is called a state of B.

3 Equivalent categories

We now have two categories on the table: the category Th of theories, and the
category Bool of Boolean algebras. Our next main goal is to show that these
categories are structurally identical. But what do we mean by this? What
we mean is that they are equivalent categories. In order to explain what that
means, we need a few more definitions.

Definition. Suppose that C and D are categories. We let C0 denote the objects
of C, and we let C1 denote the arrows of C. A (covariant) functor F : C→ D
consists of a pair of maps: F0 : C0 → D0, and F1 : C1 → D1 with the following
properties:

1. F0 and F1 are compatible in the sense that if f : X → Y in C,then
F1(f) : F0(X)→ F0(Y ) in D.

2. F1 preserves identities and composition in the following sense: F1(1X) =
1F0(X), and F1(g ◦ f) = F1(g) ◦ F1(f).

When no confusion can result, we simply use F in place of F0 and F1.
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Note. There is also a notion of a contravariant functor, where F1 reverses
the direction of arrows: if f : X → Y in C, then F1(f) : F0(Y ) → F0(X) in
D. Contravariant functors will be especially useful for examining the relation
between a theory and its set of models. We’ve already seen that a translation
f : T → T ′ induces a function f∗ : M(T ′) → M(T ). In Section ??, we will see
that f 7→ f∗ is part of a contravariant functor.

Example. For any category C, there is a functor 1C that acts as the identity
on both objects and arrows. That is, for any object X of C, 1C(X) = X. And
for any arrow f of C, 1C(f) = f .

Definition. Let F : C → D and G : C → D be functors. A natural trans-
formation η : F ⇒ G consists of a family {ηX : F (X) → G(X) | X ∈ C0} of
arrows in D, such that for any arrow f : X → Y in C, the following diagram
commutes:

F (X) F (Y )

G(X) G(Y )

F (f)

ηX ηY

G(f)

Definition. A natural transformation η : F ⇒ G is said to be a natural
isomorphism just in case each arrow ηX : F (X) → G(X) is an isomorphism.
In this case, we write F ∼= G.

Definition. Let F : C → D and G : D → C be functors. We say that F and
G are a categorical equivalence just in case GF ∼= 1C and FG ∼= 1D.

4 Propositional theories are Boolean algebras

In this section, we show that there is a one-to-one correspondence between
theories (in propositional logic) and Boolean algebras. We first need some pre-
liminaries.

Definition. Let Σ be a propositional signature (i.e. a set), let B be a Boolean
algebra, and let f : Σ→ B be an arbitrary function. [Here we use ∩,∪ and − for
the Boolean operations, in order to avoid confusion with the logical connectives
∧,∨ and ¬.] Then f naturally extends to a map f : Sent(Σ)→ B as follows:

1. f(φ ∧ ψ) = f(φ) ∩ f(ψ);

2. f(φ ∨ ψ) = f(φ) ∪ f(ψ);

3. f(¬φ) = −f(φ).

Now let T be a theory in Σ. We say that f is an interpretation of T in B just
in case: for all sentences φ, if T ` φ then f(φ) = 1.

Definition. Let f : T → B be an interpretation. We say that:
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1. f is conservative just in case: for all sentences φ, if f(φ) = 1 then T ` φ.

2. f surjective just in case: for each a ∈ B, there is a φ ∈ Sent(Σ) such
that f(φ) = a.

Lemma 4.1. Let f : T → B be an interpretation. Then the following are
equivalent:

1. f is conservative.

2. For any φ, ψ ∈ Sent(Σ), if f(φ) = f(ψ) then T ` φ↔ ψ.

Proof. Note first that f(φ) = f(ψ) if and only if f(φ ↔ ψ) = 1. Suppose
then that f is conservative. If f(φ) = f(ψ) then f(φ ↔ ψ) = 1, and hence
T ` φ ↔ ψ. Suppose now that (2) holds. If f(φ) = 1, then f(φ) = f(φ ∨ ¬φ),
and hence T ` (φ ∨ ¬φ)↔ φ. Therefore T ` φ, and f is conservative.

Lemma 4.2. If f : T → B is an interpretation, and g : B → A is a homomor-
phism, then g ◦ f is an interpretation.

Proof. This is almost obvious.

Lemma 4.3. If f : T → B is an interpretation, and g : T ′ → T is a translation,
then f ◦ g : T ′ → B is an interpretation.

Proof. This is almost obvious.

Lemma 4.4. Suppose that T is a theory, and e : T → B is a surjective in-
terpretation. If f, g : B ⇒ A are homomorphisms such that fe = ge, then
f = g.

Proof. Suppose that fe = ge, and let a ∈ B. Since e is surjective, there is a
φ ∈ Sent(Σ) such that e(φ) = a. Thus, f(a) = fe(φ) = ge(φ) = g(a). Since a
was arbitrary, f = g.

Let T ′ and T be theories, and let f, g : T ′ ⇒ T be translations. Recall
that we defined identity between translations as follows: f = g if and only if
T ` f(φ)↔ g(φ) for all φ ∈ Sent(Σ′).

Lemma 4.5. Suppose that m : T → B is a conservative interpretation. If
f, g : T ′ ⇒ T are translations such that mf = mg, then f = g.

Proof. Let φ ∈ Sent(Σ′), where Σ′ is the signature of T ′. Then mf(φ) = mg(φ).
Since m is conservative, T ` f(φ) ↔ g(φ). Since this holds for all sentences, it
follows that f = g.

Proposition 4.6. For each theory T , there is a Boolean algebra L(T ), and a
conservative, surjective interpretation iT : T → L(T ) such that for any Boolean
algebra B, and interpretation f : T → B, there is a unique homomorphism
f : L(T )→ B such that fiT = f .
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T L(T )

B

iT

f
f

We define an equivalence relation ≡ on the sentences of Σ:

φ ≡ ψ iff T � φ↔ ψ,

and we let

Eφ := {ψ | φ ≡ ψ}.

Finally, let

L(T ) := {Eφ | φ ∈ Sent(Σ)}.

We now equip L(T ) with the structure of a Boolean algebra. To this end, we
need the following facts, which correspond to easy proofs in propositional logic.

Fact 4.7. If Eφ = Eφ′ and Eψ = Eψ′ , then:

1. Eφ∧ψ = Eφ′∧ψ′ ;

2. Eφ∨ψ = Eφ′∨ψ′ ;

3. E¬φ = E¬φ′ .

We then define a unary operation − on L(T ) by:

−Eφ := E¬φ,

and we define two binary operations on L(T ) by:

Eφ ∩ Eψ := Eφ∧ψ, Eφ ∪ Eψ := Eφ∨ψ.

Finally, let φ be an arbitrary Σ sentence, and let 0 = Eφ∧¬φ and 1 = Eφ∨¬φ.
The proof that 〈L(T ),∩,∪,−, 0, 1〉 is a Boolean algebra requires a series of
straightforward verifications. For example, let’s show that 1 ∩ Eψ = Eψ, for
all sentences ψ. Recall that 1 = Eφ∨¬φ for some arbitrarily chosen sentence φ.
Thus,

1 ∩ Eψ = Eφ∨¬φ ∩ Eψ = E(φ∨¬φ)∧ψ.

Moreover, T ` ψ ↔ ((φ∨¬φ)∧ψ), from which it follows that E(φ∨¬φ)∧ψ = Eψ.
Therefore, 1 ∩ Eψ = Eψ.

Consider now the function iT : Σ → L(T ) given by iT (φ) = Eφ, and its
natural extension to Sent(Σ). A quick inductive argument, using the definition
of the Boolean operations on L(T ), shows that iT (φ) = Eφ for all φ ∈ Sent(Σ).
The following shows that iT is a conservative interpretation of T in L(T ).

12



Proposition 4.8. T ` φ if and only if iT (φ) = 1.

Proof. T ` φ iff T ` (ψ ∨ ¬ψ)↔ φ iff iT (φ) = Eφ = Eψ∨¬ψ = 1.

Since iT (φ) = Eφ, the interpretation iT is also surjective.

Proposition 4.9. Let B be a Boolean algebra, and let f : T → B be an in-
terpretation. Then there is a unique homomorphism f : L(T ) → B such that
fiT = f .

Proof. If Eφ = Eψ, then T ` φ↔ ψ, and so f(φ) = f(ψ). Thus, we may define

f̂(Eφ) = f(φ). It is straightforward to verify that f̂ is a Boolean homomorphism,
and it is clearly unique.

Definition. The Boolean algebra L(T ) is called the Lindenbaum algebra of
T .

Proposition 4.10. Let B be a Boolean algebra. There is a theory TB and a
conservative, surjective interpretation eB : TB → B such that for any theory T ,
and interpretation f : T → B, there is a unique interpretation f : T → TB such
that eBf = f .

TB B

T

eB

f
f

Proof. Let ΣB = B be a signature. (Recall that a propositional signature is
just a set, where each element represents an elementary proposition.) We define
eB : ΣB → B as the identity, and use the symbol eB also for its extension to
Sent(ΣB). We define a theory TB on ΣB by: TB ` φ if and only if eB(φ) = 1.
Thus, eB : TB → B is automatically a conservative interpretation of TB in B.

Now let T be some theory in signature Σ, and let f : T → B be an interpre-
tation. Since ΣB = B, f automatically gives rise to a reconstrual f : Σ→ ΣB ,
which we will rename f for clarity. And since eB is just the identity on B = ΣB ,
we have f = eBf .

Finally, to see that f : T → TB is a translation, suppose that T ` φ. Since
f is an interpretation of TB , f(φ) = 1, which means that eB(f(φ)) = 1. Since
eB is conservative, TB ` f(φ). Therefore, f is a translation.

We have shown that each propositional theory T corresponds to a Boolean
algebra L(T ), and each Boolean algebra B corresponds to a propositional theory
TB . We will now show that these correspondences are functorial. First we
show that a morphism f : B → A in Bool naturally gives rise to a morphism
T (f) : TB → TA in Th. Indeed, consider the following diagram:

TB TA

B A

eB

T (f)

eA

f

13



Since feB is an interpretation of TB in A, Prop. 4.10 entails that there is a
unique translation T (f) : TB → TA such that eAT (f) = feB . The uniqueness
clause also entails that T commutes with composition of morphisms, and maps
identity morphisms to identity morphisms. Thus, T : Bool→ Th is a functor.

Let’s consider this translation T (f) : TB → TA more concretely. First of all,
recall that translations from TB to TA are actually equivalence classes of maps
from ΣB to Sent(ΣA). Thus, there’s no sense to the question, “which function is
T (f)?” However, there’s a natural choice of a representative function. Indeed,
consider f itself as a function from ΣB = B to ΣA = A. Then, for x ∈ ΣB = B,
we have

(eA ◦ T (f))(x) = eA(f(x)) = f(x) = f(eB(x)),

since eA is the identity on ΣA, and eB is the identity on ΣB . In other words, T (f)
is the equivalence class of f itself. [But recall that translations, while initially
defined on the signature ΣB , extend naturally to all elements of Sent(ΣB). From
this point of view, T (f) has a larger domain than f .]

A similar construction can be used to define the functor L : Th → Bool.
In particular, let f : T → T ′ be a morphism in Th, and consider the following
diagram:

T T ′

L(T ) L(T ′)

iT

f

iT ′

L(f)

Since iT ′f is an interpretation of T in L(T ′), Prop. 4.6 entails that there is a
unique homomorphism L(f) : L(T )→ L(T ′) such that L(f)iT = iT ′f .

More explicitly,

L(f)(Eφ) = L(f)(iT (φ)) = iT ′f(φ) = Ef(φ).

Recall, however, that identity of arrows in Th is not identity of the corre-
sponding functions, in the set-theoretic sense. Rather, f ' g just in case
T ′ ` f(φ) ↔ g(φ), for all φ ∈ Sent(Σ). Thus, we must verify that if f ' g
in Th, then L(f) = L(g). Indeed, since iT ′ is an interpretation of T ′, we have
iT ′(f(φ)) = iT ′(g(φ)); and since the diagram above commutes, L(f) ◦ iT =
L(g) ◦ iT . Since iT is surjective, L(f) = L(g). Thus, f ' g only if L(f) = L(g).
Finally, the uniqueness clause in Prop. 4.6 entails that L commutes with com-
position, and maps identities to identities. Therefore, L : Th → Bool is a
functor.

We will soon show that the functor L : Th → Bool is an equivalence
of categories, from which it follows that L preserves all categorically-definable
properties. For example, a translation f : T → T ′ is monic if and only if
L(f) : L(T ) → L(T ′) is monic, etc.. However, it may be illuminating to prove
some such facts directly.
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Proposition 4.11. Let f : T → T ′ be a translation. Then f is conservative if
and only if L(f) is injective.

Proof. Suppose first that f is conservative. Let Eφ, Eψ ∈ L(T ) such that
L(f)(Eφ) = L(f)(Eψ). Using the definition of L(f), we have Ef(φ) = Ef(ψ),
which means that T ′ ` f(φ)↔ f(ψ). Since f is conservative, T ` φ↔ ψ, from
which Eφ = Eψ. Therefore, L(f) is injective.

Suppose now that L(f) is injective. Let φ be a Σ sentence such that
T ′ ` f(φ). Since f(>) = >, we have T ′ ` f(>) ↔ f(φ), which means that
L(f)(E>) = L(f)(Eφ). Since L(f) is injective, E> = Eφ, from which T ` φ.
Therefore, f is conservative.

Proposition 4.12. For any Boolean algebra B, there is a natural isomorphism
ηB : B → L(TB).

Proof. Let eB : TB → B be the interpretation from Prop. 4.10, and let iTB
:

TB → L(TB) be the interpretation from Prop. 4.6. Consider the following
diagram:

TB L(TB)

B

iTB

eB
ηB

By Prop. 4.6, there is a unique homomorphism ηB : L(TB) → B such that
eB = ηBiTB

. Since eB is the identity on ΣB ,

ηB(Ex) = ηBiTB
(x) = eB(x) = x,

for any x ∈ B. Thus, if ηB has an inverse, it must be given by the map x 7→ Ex.
We claim that this map is a Boolean homomorphism. To see this, recall that
ΣB = B. Moreover, for x, y ∈ B, the Boolean meet x ∩ y is again an element
of B, hence an element of the signature ΣB . By the defintion of TB , we have
TB ` (x ∩ y) ↔ (x ∧ y), where the ∧ symbol on the right is conjunction in
Sent(ΣB). Thus,

Ex∩y = Ex∧y = Ex ∩ Ey.

A similar argument shows that E−x = −Ex. Therefore, x 7→ Ex is a Boolean
homomorphism, and ηB is an isomorphism.

It remains to show that ηB is natural in B. Consider the following diagram:

TB TA

B A

L(TB) L(TA)

Tf

eB

iTB

eA

iTA

f

ηB

LT (f)

ηA
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The top square commutes by the definition of the functor T . The triangles on
the left and right commute by the definition of η. And the outmost square
commutes by the definition of the functor L. Thus we have

f ◦ ηB ◦ iTB
= f ◦ eB
= eA ◦ Tf
= ηA ◦ iTA

◦ Tf
= ηA ◦ LT (f) ◦ iTB

.

Since iTB
is surjective, it follows that f ◦ ηB = ηA ◦ LT (f), and therefore η is a

natural transformation.

Discussion. Consider the algebra L(TB), which we have just proved is iso-
morphic to B. This result is hardly surprising. For any x, y ∈ ΣB , we have
TB ` x ↔ y if and only if x = eB(x) = eB(y) = y. Thus, the equivalence class
Ex contains x and no other element from ΣB . [That’s why ηB(Ex) = x makes
sense.] We also know that for every φ ∈ Sent(ΣB), there is an x ∈ ΣB = B such
that TB ` x↔ φ. In particular, TB ` eB(φ)↔ φ. Thus, Eφ = Ex, and there is
a natural bijection between elements of L(TB) and elements of B.

Proposition 4.13. For any theory T , there is a natural isomorphism εT : T →
TL(T ).

Proof. Consider the following diagram:

TL(T ) L(T )

T

eL(T )

εT
iT

By Prop. 4.10, there is a unique interpretation εT : T → TL(T ) such that
eL(T )εT = iT . We claim that εT is an isomorphism. To see that εT is conserva-
tive, suppose that TL(T ) ` εT (φ). Since eL(T ) is an interpretation, eL(T )εT (φ) =
1 and hence iT (φ) = 1. Since iT is conservative, T ` φ. Therefore εT is conser-
vative.

To see that εT is essentially surjective, suppose that ψ ∈ Sent(ΣL(T )). Since
iT is surjective, there is a φ ∈ Sent(Σ) such that iT (φ) = eL(T )(ψ). Thus,
eL(T )(εT (φ)) = eL(T )(ψ). Since eL(T ) is conservative, TL(T ) ` εT (φ) ↔ ψ.
Therefore, εT is essentially surjective.

It remains to show that εT is natural in T . Consider the following diagram:

T T ′

TL(T ) TL(T ′)

L(T ) L(T ′)

εT

f

iT

εT ′

iT ′TL(f)

eL(T ) eL(T ′)

L(f)
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The triangles on the left and the right commute by the definition of ε. The top
square commutes by the definition of L, and the bottom square commutes by
the definition of T . Thus, we have

eL(T ′) ◦ εT ′ ◦ f = iT ′ ◦ f
= L(f) ◦ iT
= L(f) ◦ eL(T ) ◦ εT
= eL(T ′) ◦ TL(f) ◦ εT .

Since eL(T ′) is conservative, εT ′ ◦ f = TL(f) ◦ εT . Therefore εT is natural in
T .

Discussion. Recall that εT doesn’t denote a unique function; it denotes an
equivalence class of functions. One representative of this equivalence class is the
function εT : Σ → ΣL(T ) given by εT (p) = Ep. In this case, a straightforward
inductive argument shows that TL(T ) ` Eφ ↔ εT (φ), for all φ ∈ Sent(Σ).

We know that εT has an inverse, which itself is an equivalence class of
functions from ΣL(T ) to Sent(Σ). We can define a representative f of this
equivalence class by choosing, for each E ∈ ΣL(T ) = L(T ), some φ ∈ E, and
setting f(E) = φ. Another straightforward argument shows that if we made a
different set of choices, the resulting function f ′ would be equivalent to f , i.e.
it would correspond to the same translation from TL(T ) to T .

Based on these definitions, fεT (p) = f(Ep) is some φ ∈ Ep, i.e. some φ such
that T ` p↔ φ. Thus, fεT ∼= 1T . Similarly, f(Eφ) = ψ, for some ψ ∈ Eφ, and
hence εT ...

Since there are natural isomorphisms ε : 1Th ⇒ TL and η : 1Bool ⇒ LT , we
have the following result:

Lindenbaum Theorem

The categories Th and Bool are equivalent.

5 Boolean algebras again

The Lindenbaum Theorem would deliver everything we wanted — if we had
a perfectly clear understanding of the category Bool. However, there remain
questions about Bool. For example, are all epimorphisms in Bool surjections?
In order to shed even more light on Bool, and hence on Th, we will show that
Bool is dual to a certain category of topological spaces. This famous result
is called the Stone Duality Theorem. But in order to prove it, we need to
collect a few more facts about Boolean algebras.
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Definition. Let B be a Boolean algebra. A subset F ⊆ B is said to be a filter
just in case:

1. If a, b ∈ F then a ∧ b ∈ F ;

2. If a ∈ F and a ≤ b then b ∈ F .

If, in addition, F 6= B, then we say that F is a proper filter. We say that F
is an ultrafilter just in case F is maximal among proper filters, i.e. if F ⊆ F ′

where F ′ is a proper filter, then F = F ′.

Discussion. Consider the Boolean algebra B as a theory. Then a filter F ⊆ B
can be thought of as supplying an update of information. The first condition
says that if we learn a and b, then we’ve learned a∧b. The second condition says
that if we learn a, and a ≤ b, then we’ve learned b. In particular, an ultrafilter
supplies maximal information.

Exercise. Let F be a filter. Show that F is proper if and only if 0 6∈ F .

Definition. Let F ⊆ B be a filter, and a ∈ B. We say that a is compatible
with F just in case a ∧ x 6= 0 for all x ∈ F .

Lemma 5.1. Let F ⊆ B be a proper filter, and let a ∈ B. Then either a or ¬a
is compatible with F .

Proof. Suppose for reductio ad absurdum that neither a nor ¬a is compatible
with F . That is, there is an x ∈ F such that x ∧ a = 0, and there is a y ∈ F
such that y ∧ ¬a = 0. Then

x ∧ y = (x ∧ y) ∧ (a ∨ ¬a) = (x ∧ y ∧ a) ∨ (x ∧ y ∧ ¬a) = 0.

Since x, y ∈ F , it follows that 0 = x∧ y ∈ F , contradicting the assumption that
F is proper. Therefore either a or ¬a is compatible with F .

Proposition 5.2. Let F be a proper filter on B. Then the following are equiv-
alent:

1. F is an ultrafilter.

2. For all a ∈ B, either a ∈ F or ¬a ∈ F .

3. For all a, b ∈ B, if a ∨ b ∈ F then either a ∈ F or b ∈ F .

Proof. (1⇒ 2) Suppose that F is an ultrafilter. By Lemma 5.1, either a or ¬a
is compatible with F . Suppose first that a is compatible with F . Then the set

F ′ = {y : x ∧ a ≤ y, some x ∈ F},

is a proper filter that contains F and a. Since F is an ultrafilter, F ′ = F , and
hence a ∈ F . By symmetry, if ¬a is compatible with F , then ¬a ∈ F .
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(2⇒ 3) Suppose that a ∨ b ∈ F . By 2, either a ∈ F or ¬a ∈ F . If ¬a ∈ F ,
then ¬a ∧ (a ∨ b) ∈ F . But ¬a ∧ (a ∨ b) ≤ b, and so b ∈ F .

(3⇒ 1) Suppose that F ′ is a filter that contains F , and let a ∈ F ′−F . Since
a ∨ ¬a = 1 ∈ F , it follows from (3) that ¬a ∈ F . But then 0 = a ∧ ¬a ∈ F ′,
that is F ′ = B. Therefore F is an ultrafilter.

Proposition 5.3. There is a bijective correspondence between ultrafilters in
B and homomorphisms from B into 2. In particular, for any homomorphism
f : B → 2, the subset f−1(1) is an ultrafilter in B.

Proof. Let U be an ultrafilter on B. Define f : B → 2 by setting f(a) = 1 iff
a ∈ U . Then

f(a ∧ b) = 1 iff a ∧ b ∈ U
iff a ∈ U and b ∈ U
iff f(a) = 1 and f(b) = 1.

Furthermore,

f(¬a) = 1 iff ¬a ∈ U
iff a 6∈ U
iff f(a) = 0.

Therefore f is a homomorphism.
Now suppose that f : B → 2 is a homomorphism, and let U = f−1(1). Since

f(a) = 1 and f(b) = 1 only if f(a ∧ b) = 1, it follows that U is closed under
conjunction. Since a ≤ b only if f(a) ≤ f(b), it follows that U is closed under
implication. Finally, since f(a) = 0 iff f(¬a) = 1, it follows that a 6∈ U iff
¬a ∈ U .

Definition. For a, b ∈ B, define

a→ b := ¬a ∨ b,

and define

a↔ b := (a→ b) ∧ (b→ a).

It’s straightforward to check that→ behaves like the conditional from propo-
sitional logic. The next lemma gives a Boolean algebra version of modus ponens.

Lemma 5.4. Let F be a filter. If a→ b ∈ F and a ∈ F then b ∈ F .

Proof. Suppose that ¬a ∨ b = a→ b ∈ F and a ∈ F . We then compute:

b = b ∨ 0 = b ∨ (a ∧ ¬a) = (a ∨ b) ∧ (¬a ∨ b).

Since a ∈ F and a ≤ a ∨ b, we have a ∨ b ∈ F . Since F is a filter, b ∈ F .
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Exercises:

1. Let B be a Boolean algebra, and let a, b, c ∈ B. Show that the following
hold:

(a) (a→ b) = 1 iff a ≤ b
(b) (a ∧ b) ≤ c iff a ≤ (b→ c)

(c) a ∧ (a→ b) ≤ b
(d) (a↔ b) = (b↔ a)

(e) (a↔ a) = 1

(f) (a↔ 1) = a

2. Let PN be the powerset of the natural numbers, and let U be an ultra-
filter on PN . Show that if U contains a finite set F , then U contains a
singleton set.

Definition. Let B be a Boolean algebra, and let R be an equivalence relation
on the underlying set of B. We say that R is a congruence just in case R is
compatible with the operations on B in the following sense: if aRa′ and bRb′

then (a ∧ b)R(a′ ∧ b′), and (a ∨ b)R(a′ ∨ b′), and (¬a)R(¬a′).

In a category C with limits (products, equalizers, pullbacks, etc.), it’s pos-
sible to formula the notion of an equivalence relation in C. Thus, in Bool,
an equivalence relation R on B is a subalgebra R of B × B that satisfies the
appropriate analogues of reflexivity, symmetry, and transitivity. Since R is a
subalgebra of B ×B, it follows in particular that if 〈a, b〉 ∈ R, and 〈a′, b′〉 ∈ R,
then 〈a ∧ a′, b ∧ b′〉 ∈ R. Continuing this reasoning, it’s not difficult to see
that congruences, as defined above, are precisely the equivalence relations in
the category Bool of Boolean algebras. Thus, in the remainder of this chapter,
when we speak of an equivalence relation on a Boolean algebra B, we mean an
equivalence relation in Bool, in other words, a congruence. (To be clear, not
every equivalence relation on the set B is an equivalence relation on the Boolean
algebra B.)

Now suppose that C is a category in which equivalence relations are defin-
able, and let p0, p1 : R ⇒ B be an equivalence relation. [Here p0 and p1 are
the projections of R, considered as a subobject of B × B.] Then we can ask:
do these two maps p0 and p1 have a coequalizer? That is, is there an object
B/R, and a map q : B → B/R, with the relevant universal property? In the
case of Bool, a coequalizer can be constructed directly. We merely note that
the Boolean operations on B can be used to induce Boolean operations on the
set B/R of equivalence classes.

Definition (Quotient algebra). Suppose that R is an equivalence relation on B.
For each a ∈ B, let Ea denote its equivalence class, and let B/R = {Ea | a ∈ B}.
We then define Ea ∧Eb = Ea∧b, and similarly for Ea ∨Eb and ¬Ea. Since R is
a congruence (i.e. an equivalence relation on Bool), these operations are well-
defined. It then follows immediately that B/R is a Boolean algebra, and the
quotient map q : B → B/R is a surjective Boolean homomorphism.
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Lemma 5.5. Let R ⊆ B × B be an equivalence relation. Then q : B → B/R
is the coequalizer of the projection maps p0 : R → B and p1 : R → B. In
particular, q is a regular epimorphism.

Proof. It is obvious that qp0 = qp1. Now suppose that A is another Boolean
algebra and f : B → A such that fp0 = fp1. Define g : B/R → A by setting
g(Ex) = f(x). Since fp0 = fp1, g is well-defined. Furthermore,

g(Ex ∧ Ey) = g(Ex∧y) = f(x ∧ y) = f(x) ∧ f(y) = g(Ex) ∧ g(Ey).

Similarly, g(¬Ex) = ¬g(Ex). Therefore g is a Boolean homomorphism. Since q
is an epimorphism, g is the unique homomorphism such that gq = f . Therefore,
q : B → B/R is the coequalizer of p0 and p1.

The category Bool has further useful structure: there is a one-to-one corre-
spondence between equivalence relations and filters.

Lemma 5.6. Suppose that R ⊆ B×B is an equivalence relation. Let F = {a ∈
B | aR1}. Then F is a filter, and R = {〈a, b〉 ∈ B ×B | a↔ b ∈ F}.

Proof. Suppose that a, b ∈ F . That is, aR1 and bR1. Since R is a congruence,
(a∧ b)R(1∧ 1) and therefore (a∧ b)R1. That is, a∧ b ∈ F . Now suppose that x
is an arbitrary element of B such that a ≤ x. That is, x ∨ a = x. Since R is a
congruence, (x ∨ a)R(x ∨ 1) and so (x ∨ a)R1, from which it follows that xR1.
Therefore x ∈ F , and F is a filter.

Now suppose that aRb. Since R is reflexive, (a∨¬a)R1, and thus (b∨¬a)R1.
Similarly (a ∨ ¬b)R1, and therefore (a↔ b)R1. That is, a↔ b ∈ F .

Lemma 5.7. Suppose that F is a filter on B. Let R = {〈a, b〉 ∈ B × B | a ↔
b ∈ F}. Then R is an equivalence relation, and F = {a ∈ B | aR1}.

Proof. Showing thatR is an equivalence relation requires several straightforward
verifications. For example, a↔ a = 1, and 1 ∈ F , therefore aRa. We leave the
remaining verifications to the reader.

Now suppose that a ∈ F . Since a = (a ↔ 1), it follows that a ↔ 1 ∈ F ,
which means that aR1.

Definition (Quotient algebra). Let F be a filter on B. Given the correspon-
dence between filters and equivalence relations, we write B/F for the corre-
sponding algebra of equivalence classes.

Proposition 5.8. Let F be a proper filter on B. Then B/F is a two-element
Boolean algebra if and only if F is an ultrafilter.

Proof. Suppose first that B/F ∼= 2. That is, for any a ∈ B, either a ↔ 1 ∈ F
or a ↔ 0 ∈ F . But a ↔ 1 = a and a ↔ 0 = ¬a. Therefore, either a ∈ F or
¬a ∈ F , and F is an ultrafilter.

Suppose now that F is an ultrafilter. Then for any a ∈ B, either a ∈ F
or ¬a ∈ F . In the former case, a ↔ 1 ∈ F . In the latter case, a ↔ 0 ∈ F .
Therefore, B/F ∼= 2.
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Exercise. (This exercise presupposes knowledge of measure theory.) Let Σ be
the Boolean algebra of Borel subsets of [0, 1], and let µ be Lebesgue measure on
[0, 1]. Let F = {S ∈ Σ | µ(S) = 1}.

1. Show that F is a filter.

2. Describe the equivalence relation on Σ corresponding to F .

According to our motivating analogy, a Boolean algebra B is like a theory,
and a homorphism φ : B → 2 is like a model of this theory. We say that
the algebra B is syntactically consistent just in case 0 6= 1. (In fact, we
defined Boolean algebras so as to require syntactic consistency.) We say that
the algebra B is semantically consistent just in case there is a homomorphism
φ : B → 2. Then semantic consistency clearly implies syntactic consistency. But
does syntactic consistency imply semantic consistency?

It’s at this point that we have to invoke a powerful theorem — or, perhaps
more accurately, a powerful set-theoretic axiom. In short, if we use the axiom of
choice, or some equivalent such as Zorn’s lemma, then we can prove that every
syntactically consistent Boolean algebra is semantically consistent. However,
we do not actually need the full power of the Axiom of Choice. As set-theorists
know, the Boolean ultrafilter axiom (“UF” for short) is strictly weaker than the
axiom of choice.2

Proposition 5.9. The following are equivalent:

1. Boolean ultrafilter axiom (UF) For any Boolean algebra B, there is a
homomorphism f : B → 2.

2. For any Boolean algebra B, and proper filter F ⊆ B, there is a homomor-
phism f : B → 2 such that f(a) = 1 when a ∈ F .

3. For any Boolean algebra B, if a, b ∈ B such that a 6= b, then there is a
homomorphism f : B → 2 such that f(a) 6= f(b).

4. For any Boolean algebra B, if φ(a) = 1 for all φ : B → 2, then a = 1.

5. For any two Boolean algebras A,B, and homomorphisms f, g : A⇒ B, if
φf = φg for all φ : B → 2, then f = g.

Proof. (1 ⇒ 2) Suppose that F is a proper filter in B. Then there is a homo-
morphism q : B → B/F such that q(a) = 1 for all a ∈ F . By UF, there is a
homomorphism φ : B/F → 2. Therefore, φ ◦ q : B → 2 is a homomorphism
such that (φ ◦ q)(a) = 1 for all a ∈ F .

(1 ⇒ 3) Suppose that a, b ∈ B with a 6= b. Then either ¬a ∧ b 6= 0 or
a∧¬b 6= 0. Without loss of generality, we assume that ¬a∧ b 6= 0. In this case,

2Algebraists often invoke an equivalent axiom called the Boolean Prime Ideal Theorem
(BPI). It’s often called a “Theorem” because it can be proven from the Axiom of Choice, or
equivalently, Zorn’s Lemma. But BPI can also be taken as an axiom, in which case it’s strictly
weaker than AC.
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the filter F generated by ¬a ∧ b is proper. By UF, there is a homomorphism
φ : B → 2 such that φ(x) = 1 when x ∈ F . In particular, φ(¬a ∧ b) = 1. But
then φ(a) = 0 and φ(b) = 1.

(2 ⇒ 4) Suppose that φ(a) = 1 for all φ : B → 2. Now let F be the filter
generated by ¬a. If F is proper, then by (2), there is a φ : B → 2 such that
φ(¬a) = 1, a contradiction. Thus, F = B, which implies that ¬a = 0 and a = 1.

(4 ⇒ 5) Let f, g : A → B be homomorphisms, and suppose that for all
φ : B → 2, φf = φg. That is, for each a ∈ A, φ(f(a)) = φ(g(a)). But then
φ(f(a) ↔ g(a)) = 1 for all φ : B → 2. By (4), f(a) ↔ g(a) = 1, and therefore
f(a) = g(a).

(5⇒ 3) Let B be a Boolean algebra, and a, b ∈ B. Suppose that φ(a) = φ(b)
for all φ : B → 2. Let F be the four element Boolean algebra, with generator
p. Then there is a homomorphism â : F → B such that â(p) = a, and a

homomorphism b̂ : F → B such that b̂(p) = b. Thus, φâ = φb̂ for all φ : B → 2.

By (5), â = b̂, and therefore a = b.

(3 ⇒ 1) Let B be an arbitrary Boolean algebra. Since 0 6= 1, (3) implies
that there is a homomorphism φ : B → 2.

We are finally in a position to prove the completeness of the propositional
calculus. The following result assumes the Boolean ultrafilter axiom (UF).

Completeness Theorem

If T � φ then T ` φ.

Proof. Suppose that T 6` φ. Then in the Lindenbaum algebra L(T ), we have
Eφ 6= 1. In this case, there is a homomorphism h : L(T ) → 2 such that
h(Eφ) = 0. Hence, h ◦ iT is a model of T such that (h ◦ iT )(φ) = h(Eφ) = 0.
Therefore, T 6� φ.

Exercise. Let PN be the powerset of the natural numbers. We say that a
subset E of N is cofinite just in case N\E is finite. Let F ⊆ PN be the set
of cofinite subsets of N .

1. Show that F is a filter.

2. Show that there are infinitely many ultrafilters containing F .
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6 Stone spaces

Philosophers like to talk about the, “space of possible worlds.” Logicians and
mathematicians like to talk about, “sets of models.” Physicists like to talk
about, “models of a theory.” It’s all pretty much the same thing, at least from
an abstract point of view. But if we’re going to undertake an exact study of the
space of possible worlds, then we need to make a proposal about what structure
this space carries. But what do I mean by “structure”? Isn’t the space of
possible worlds just a bare set? Let me explain a couple of reasons why we
might want to think of the space of possible worlds as a structured set, and in
particular, as a topological space.

Suppose that there are infinitely many possible worlds, which we represent
by elements of a set X. As philosophers are wont to do, we then represent
propositions by subsets of X. But should we think that all 2|X| subsets of X
correspond to genuine propositions? What would warrant such a claim?

There is another reason to worry about this approach. For a person with
training in set theory, it is not difficult to build a collection C1, C2, . . . of subsets
of X with the following features: (i) each Ci is non-empty, (ii) Ci+1 ⊆ Ci
for all i, and (iii)

⋂
i Ci is empty. Intuitively speaking, {Ci | i ∈ N} is a

family of propositions that are individually consistent (since non-empty), that
are becoming more and more specific, and yet there is no world in X that makes
all Ci true. Why not? It seems that X is missing some worlds! Indeed, here’s
a description of a new world w that does not belong to X: for each proposition
φ, let φ be true in w if and only if φ∩Ci is nonempty for all i. It’s not difficult
to see that w is in fact a truth valuation on the set of all propositions, i.e. it is a
possible world. But w is not represented by a point in X. What we have here is
a mismatch between the set X of worlds, and the set of propositions describing
these worlds.

The idea behind logical topology is that not all subsets of X correspond to
propositions. A designation of a topology on X is tantamount to saying which
subsets of X correspond to propositions. However, the original motivation for
the study of topology comes from geometry (and analysis), not from logic. Recall
high school mathematics, where you learned that a continuous function is one
where you don’t have to lift your pencil from the paper in order to draw the
graph. If your high school class was really good, or if you studied calculus in
college, then you will have learned that there is a more rigorous definition of a
continuous function — a definition involving epsilons and deltas. In the early
20th century, it was realized that the essence of continuity is even more abstract
than epsilons and deltas would suggest: all we need is a notion of nearness of
points, which we can capture in terms of a notion of a neighborhood of a point.
The idea then is that a function f : X → Y is continuous at a point x just in
case for any neighborhood V of f(x), there is some neighborhood U of x such
that f(U) ⊆ V . Intuitively speaking, f preserves closeness of points.

Notice, however, that if X is an arbitrary set, then it’s not obvious what
“closeness” means. To be able to talk about closeness of points in X, we need
specify which subsets of X count as the neighborhoods of points. Thus, a
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topology on X is a set of subsets of X that satisfies certain conditions.

Definition. A topological space is a set X and a family F of subsets of X
satisfying the following conditions:

1. ∅ ∈ F and X ∈ F ;

2. If U, V ∈ F then U ∩ V ∈ F ;

3. If F0 is a subfamily of F , then
⋃
U∈F0

U ∈ F .

The sets in F are called open subsets of the space (X,F ). If p ∈ U with U
an open subset, we say that U is a neighborhood of p.

There are many familiar examples of topological spaces. In many cases,
however, we only know the open sets indirectly, by means of certain nice open
sets. For example, in the case of the real numbers, not every open subset is an
interval. However, every open subset is a union of intervals. In that case, we
call the open intervals in R a basis for the topology.

Proposition 6.1. Let B be a family of subsets of X with the property that if
U, V ∈ B then U ∩ V ∈ B. Then there is a unique smallest topology F on X
containing B.

Proof. Let F be the collection obtained by taking all unions of sets in B,
and then taking finite intersections of the resulting collection. Clearly F is a
topology on X, and any topology on X containing B also contains F .

Definition. If B is a family of subsets of X that is closed under intersection,
and if F is the topology generated by B, then we say that B is a basis for F .

Proposition 6.2. Let (X,F ) be a topological space. Let F0 be a subfamily
of F with the following properties: (1) F0 is closed under finite intersections,
and (2) for each x ∈ X and U ∈ F0 with x ∈ U , there is a V ∈ F0 such that
x ∈ V ⊆ U . Then F0 is a basis for the topology F .

Proof. We need only show that each U ∈ F is a union of elements in F0. And
that follows immediately from the fact that if x ∈ U , then there is V ∈ F0 with
x ∈ V ⊆ U .

Definition. Let X be a topological space. A subset C of X is called closed
just in case C = X\U for some open subset U of X. The intersection of closed
sets is closed. Hence, for each subset E of X, there is a unique smallest closed
set E containing E, namely the intersection of all closed supersets of E. We
call E the closure of E.

Proposition 6.3. Let p ∈ X and let S ⊆ X. Then p ∈ S if and only if every
open neighborhood U of p has nonempty intersection with S.

Proof. Exercise.
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Definition. Let S be a subset of X. We say that S is dense in X just in case
S = X.

Definition. Let E ⊆ X. We say that p is a limit point of E just in case for
each open neighborhood U of p, U ∩ E contains some point besides p. We let
E′ denote the set of all limit points of E.

Lemma 6.4. E′ ⊆ E.

Proof. Let p ∈ E′, and let C be a closed set containing E. If p ∈ X\C, then p
is contained in an open set that has empty intersection with E. Thus, p ∈ C.
Since C was an arbitrary closed superset of E, it follows that p ∈ E.

Proposition 6.5. E = E ∪ E′

Proof. The previous lemma gives E′ ⊆ E. Thus, E ∪ E′ ⊆ E.
Suppose now that p 6∈ E and p 6∈ E′. Then there is an open neighborhood

U of p such that U ∩ E is empty. Then E ⊆ X\U , and since X\U is closed,
E ⊆ X\U . Therefore p 6∈ E.

Definition. A topological space X is said to be:

• T1 or Frechet just in case all singleton subsets are closed.

• T2 or Hausdorff just in case for any x, y ∈ X if x 6= y then there are
disjoint open neighborhoods of x and y.

• T3 or regular just in case for each x ∈ X, and for each closed C ⊆ X
such that x 6∈ C, there are open neighborhoods U of x, and V of C, such
that U ∩ V = ∅.

• T4 or normal just in case any two disjoint closed subsets of X can be
separated by disjoint open sets.

Clearly we have the implications

(T1 + T4)⇒ (T1 + T3)⇒ T2 ⇒ T1

A discrete space satisfies all of the separation axioms. A non-trivial indiscrete
space satisfies none of the separation axioms. A useful heuristic here is that the
stronger the separation axiom, the closer the space is to discrete. In this book,
most of the spaces we consider are very close to discrete in a precise sense we
will describe below.

Exercises.

1. Show that X is regular iff for each x ∈ X and open neighborhood U of x,
there is an open neighborhood V of x such that V ⊆ U .

2. Show that if E ⊆ F then E ⊆ F .
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3. Show that E = E.

4. Show that the intersection of two topologies is a topology.

5. Show that the infinite distributive law holds:

U ∩

(⋃
i∈I

Vi

)
=
⋃
i∈I

(U ∩ Vi).

6. Show that a space X is Hausdorff if and only if the diagonal ∆ = {〈x, x〉 :
x ∈ X} is closed in the product topology on X ×X. [Oops: you cannot
solve this exercise until you know what the product topology is!]

Definition. Let S ⊆ X. A family C of open subsets of X is said to cover S
just in case S ⊆

⋃
U∈C U . We say that S is compact just in case for every open

cover C of S, there is a finite subcollection C0 of C that also covers S. We say
that the space X is compact just in case it’s compact as a subset of itself.

Definition. A collection C of subsets of X is said to satisfy the finite intersec-
tion property if for every finite subcollection C1, . . . , Cn of C , the intersection
C1 ∩ · · · ∩ Cn is nonempty.

Discussion. Suppose that X is the space of possible worlds, so that we can think
of subsets of X as propositions. If A ∩B is nonempty, then the propositions A
and B are consistent, i.e. there is a world in which they are both true. Thus, a
collection C of propositions has the finite intersection property just in case it is
finitely consistent.

Recall that compactness of propositional logic states that if a set C of propo-
sitions is finitely consistent, then C is consistent. The terminology here is no
accident; a topological space is compact just in case finite consistency entails
consistency.

Proposition 6.6. A space X is compact if and only if for every collection C
of closed subsets of X, if C satisfies the finite intersection property, then

⋂
C

is nonempty.

Proof. (⇒) Assume first that X is compact, and let C be a family of closed
subsets of X. We will show that if C satisfies the finite intersection property,
then the intersection of all sets in C is nonempty. Assume the negation of
the consequent, i.e. that

⋂
C∈C C is empty. Let C ′ = {C ′ : C ∈ C }, where

C ′ = X\C is the complement of C in X. [Warning: this notation can be
confusing. Previously I used E′ to denote the set of limit points of E. This C ′

has nothing to do with limit points.] Each C ′ is open, and( ⋃
C∈C

C ′

)′
=

⋂
C∈C

C,
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which is empty. It follows then that C ′ is an open cover of X. Since X is
compact, there is a finite subcover C ′0 of C ′. If we let C0 be the complements of
sets in C ′0, then C0 is a finite collection of sets in C whose intersection is empty.
Therefore C does not satisfy the finite intersection property.

(⇐) Assume now that X is not compact. In particular, suppose that U is
an open cover with no finite subcover. Let C = {X\U | U ∈ U }. For any finite
subcollection X\U1, . . . , X\Un of C , we have

U1 ∪ · · · ∪ Un 6= X,

and hence

(X\U1) ∩ · · · ∩ (X\Un) 6= ∅.

Thus, C has the fip. Nonetheless, since U covers X, the intersection of all sets
in C is empty.

Proposition 6.7. In a compact space, closed subsets are compact.

Proof. Let C be an open cover of S, and consider the cover C ′ = C ∪ {X\S}
of X. Since X is compact, there is a finite subcover C0 of C ′. Removing X\S
from C0 gives a finite subcover of the original cover C of S.

Proposition 6.8. Suppose that X is compact, and let U be an open set in X.
Let {Fi}i∈I be a family of closed subsets of X such that

⋂
i∈I Fi ⊆ U . Then

there is a finite subset J of I such that
⋂
i∈J Fi ⊆ U .

Proof. Let C = X\U , which is closed. Thus, the hypotheses of the proposition
say that the family C := {C} ∪ {Fi : i ∈ I} has empty intersection. Since X is
compact, C also fails to have the finite intersection property. That is, there are
i1, . . . , ik ∈ I such that C∩Fi1 ∩· · ·∩Fik = ∅. Therefore Fi1 ∩· · ·∩Fik ⊆ U .

Proposition 6.9. If X is compact Hausdorff, then X is regular.

Proof. Let x ∈ X, and let C ⊆ X be closed. For each y ∈ C, let Uy be an open
neighborhood of x, and Vy an open neighborhood of y such that Uy ∩ Vy = ∅.
The Vy form an open cover of C. Since C is closed and X is compact, C is
compact. Hence there is a finite subcollection Vy1 , . . . , Vyn that cover C. But
then U = ∩ni=1Uyi is an open neighborhood of x, and V = ∪ni=1Vyi is an open
neighborhood of C, such that U ∩ V = ∅. Therefore X is regular.

Proposition 6.10. In Hausdorff spaces, compact subsets are closed.

Proof. Let p be a point of X that is not in K. Since X is Hausdorff, for each
x ∈ K, there are open neighborhoods Ux of x and Vx of p such that Ux∩Vx = ∅.
The family {Ux : x ∈ K} covers K. Since K is compact, it is covered by a finite
subcollection Ux1 , . . . , Uxn . But then ∩ni=1Vxi is an open neighborhood of p that
is disjoint from K. It follows that X −K is open, and K is closed.
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Definition. Let X,Y be topological spaces. A function f : X → Y is said to
be continuous just in case for each open subset U of Y , f−1(U) is an open
subset of X.

Example. Let f : R → R be the function that is constantly zero on (−∞, 0),
and 1 on [0,∞). Then f is not continuous: f−1( 1

2 ,
3
2 ) = [0,∞), which is not

open.

In the exercises, you will show that a function f is continuous if and only
if f−1(C) is closed whenever C is closed. Thus, in particular, if C is a clopen
subset of Y , then f−1(C) is a clopen subset of X.

Proposition 6.11. Let Top consist of the class of topological spaces and con-

tinuous maps between them. For X
f→ Y

g→ Z, define g◦f to be the composition
of g and f . Then Top is a category.

Proof. It needs to be confirmed that if f and g are continuous, then g ◦ f is
continuous. We leave this to the exercises. Since composition is associative,
Top is a category.

Proposition 6.12. Suppose that f : X → Y is continuous. If K is compact in
X, then f(K) is compact in Y .

Proof. Let G be a collection of open subsets of Y that covers f(K). Let

G ′ = {f−1(U) : U ∈ G }.

When G ′ is an open cover of K. Since K is compact, G ′ has a finite subcover
f−1(U1), . . . , f−1(Un). But then U1, . . . , Un is a finite subcover of G .

We remind the reader of the category theoretic definitions:

• f is a monomorphism just in case fh = fk implies h = k.

• f is an epimorphism just in case hf = kf implies h = k.

• f is an isomorphism just in case there is a g : Y → X such that gf = 1X
and fg = 1Y .

For historical reasons, isomorphisms in Top are usually called homeomor-
phisms. It is easy to show that a continuous map f : X → Y is monic if
and only if f is injective. It is also true that f : X → Y is epi if and only if
f is surjective (but the proof is somewhat subtle). In contrast, a continuous
bijection is not necessarily an isomorphism in Top. For example, if we let X be
a two element set with the discrete topology, and Y be a two element set with
the indiscrete topology, then any bijection f : X → Y is continuous, but is not
an isomorphism.

Exercise.

1. Show that if f and g are continuous, then g ◦ f is continuous.
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2. Suppose that f : X → Y is a surjection. Show that if E is dense in X,
then f(E) is dense in Y .

3. Show that f : X → Y is continuous if and only if f−1(C) is closed when-
ever C is closed.

4. Let Y be a Hausdorff space, and let f, g : X → Y be continuous. Show
that if f and g agree on a dense subset S of X, then f = g.

Exercise. Show that f−1(V ) ⊆ U if and only if V ⊆ Y \f(X\U).

Definition. A continuous mapping f : X → Y is said to be closed just in case
for every closed set C ⊆ X the image f(C) is closed in Y . Similarly, f : X → Y
is said to be open just in case for every open set U ⊆ X, the image f(U) is
open in Y .

Proposition 6.13. Let f : X → Y be continuous. Then the following are
equivalent.

1. f is closed.

2. For every open set U ⊆ X, the set {y ∈ Y | f−1{y} ⊆ U} is open.

3. For every y ∈ Y , and every neighborhood U of f−1{y}, there is a neigh-
borhood V of y such that f−1(V ) ⊆ U .

Proof. (2⇔ 3) The equivalence of (2) and (3) is straightforward, and we leave
its proof as an exercise.

(3⇒ 1) Suppose that f satisfies condition (3), and let C be a closed subset of
X. To show that f(C) closed, assume that y ∈ Y \f(C). Then f−1{y} ⊆ X\C.
Since X\C is open, there is a neighborhood V of y such that f−1(V ) ⊆ U .
Then

V ⊆ Y \f(X\U) = Y \f(C).

Since y was an arbitrary element of Y \f(C), it follows that Y \f(C) is open,
and f(C) is closed.

(1⇒ 3) Suppose that f is closed. Let y ∈ Y , and let U be a neighborhood of
f−1{y}. Then X\U is closed, and f(X\U) is also closed. Let V = Y \f(X\U).
Then V is an open neighborhood of y and f−1(V ) ⊆ U .

Proposition 6.14. Suppose that X and Y are compact Hausdorff. If f : X →
Y is continuous, then f is a closed map.

Proof. Let B be a closed subset of X. By Proposition 6.7, B is compact. By
Proposition 6.12, f(B) is compact. And by Proposition 6.10, f(B) is closed.
Therefore, f is a closed map.
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Proposition 6.15. Suppose that X and Y are compact Hausdorff. If f : X →
Y is a continuous bijection, then f is an isomorphism.

Proof. Let f : X → Y be a continuous bijection. Thus, there is function
g : Y → X such that gf = 1X and fg = 1Y . We will show that g is continuous.
By Proposition 6.14, f is closed. Moreover, for any closed subset B of X,
we have g−1(B) = f(B). Thus, g−1 preserves closed subsets, and hence g is
continuous.

Definition. A topological space X is said to be totally separated if for any
x, y ∈ X, if x 6= y then there is a closed and open (clopen) subset of X containing
x but not y.

Definition. We say that X is a Stone space if X is compact and totally
separated. We let Stone denote the full subcategory of Top consisting of Stone
spaces. To say that Stone is a full subcategory means that the arrows between
two Stone spaces X and Y are just the arrows between X and Y considered as
topological spaces, i.e. continuous functions.

Note. Let E be a clopen subset of X. Then there is a continuous function
f : X → {0, 1} such that f(x) = 1 for x ∈ E, and f(x) = 0 for x ∈ X\E. Here
we are considering {0, 1} with the discrete topology.

Proposition 6.16. Let X and Y be Stone spaces. If f : X → Y is an epimor-
phism, then f is surjective.

Proof. Suppose that f is not surjective. Since X is compact, the image f(X) is
compact in Y , hence closed. Since f is not surjective, there is a y ∈ Y \f(X).
Since Y is a regular space, there is a clopen neighborhood U of y such that
U ∩ f(X) = ∅. Define g : Y → {0, 1} to be constantly 0. Define h : Y → {0, 1}
to be 1 on U , and 0 on Y \U . Then g ◦ f = h ◦ f , but g 6= h. Therefore f is not
an epimorphism.

Proposition 6.17. Let X and Y be Stone spaces. If f : X → Y is both a
monomorphism and an epimorphism, then f is an isomorphism.

Proof. By Proposition 6.16, f is surjective. Therefore, f is a continuous bijec-
tion. By Proposition 6.15, f is an isomorphism.

7 Stone duality

In this section we show that the category Bool is dual to a certain category
of topological spaces, namely the category Stone of Stone spaces. To say that
categories are “dual” means that the first is equivalent to the mirror image of
the second.

Definition. We say that categories C and D are dual just in case there are
contravariant functors F : C → D and G : D → C such that GF ∼= 1C and
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FG ∼= 1D. To see that this definition makes sense, note that if F and G are
contravariant functors, then GF and FG are covariant functors. If C and D
are dual, we write C ∼= Dop, to indicate that C is equivalent to the opposite
category of D, i.e. the category that has the same objects as D, but arrows
running in the opposite direction.

The functor from Bool to Stone

We now define a contravariant functor S : Bool→ Stone. For reasons that will
become clear later, the functor S is sometimes called the semantic functor.

Consider the set hom(B, 2) of 2-valued homomorphisms of the Boolean al-
gebra B. For each a ∈ B, define

Ca = {φ ∈ hom(B, 2) | φ(a) = 1}.

Clearly, the family {Ca | a ∈ B} forms a basis for a topology on hom(B, 2). We
let S(B) denote the resulting topological space. Note that S(B) has a basis of
clopen sets. Thus, if S(B) is compact, then S(B) is a Stone space.

Lemma 7.1. If B is a Boolean algebra, then S(B) is a Stone space.

Proof. Let B = {Ca | a ∈ B} denote the chosen basis for the topology on S(B).
To show that S(B) is compact, it will suffice to show that for any subfamily C
of B, if C has the finite intersection property, then

⋂
C is nonempty. Now let

F be the set of b ∈ B such that

Ca1 ∩ · · · ∩ Can ⊆ Cb,

for some Ca1 , . . . , Can ∈ C . Since C has the finite intersection property, F is
a filter in B. Thus, UF entails that F is contained in an ultrafilter U . This
ultrafilter U corresponds to a φ : B → 2, and we have φ(a) = 1 whenever
Ca ∈ C . In other words, φ ∈ Ca, whenever Ca ∈ C . Therefore,

⋂
C is

nonempty, and S(B) is compact.

Let f : A → B be a homomorphism, and let S(f) : S(B) → S(A) be given
by S(f) = hom(f, 2); that is,

S(f)(φ) = φ ◦ f, ∀φ ∈ S(B).

We claim now that S(f) is a continuous map. Indeed, for any basic open subset
Ca of S(A), we have

S(f)−1(Ca) = {φ ∈ S(B) | φ(f(a)) = 1} = Cf(a). (1)

It is straightforward to verify that S(1A) = 1S(A), and that S(g ◦ f) = S(f) ◦
S(f). Therefore, S : Bool→ Stone is a contravariant functor.
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The functor from Stone to Bool

Let X be a Stone space. Then the set K(X) of clopen subsets of X is a Boolean
algebra, and is a basis for the topology on X. We now show that K is the
object part of a contravariant functor K : Stone→ Bool. For reasons that will
become clear later, K is sometimes called the syntactic functor.

Indeed, if X,Y are Stone spaces, and f : X → Y is continuous, then for each
clopen subset U of Y , f−1(U) is a clopen subset of X. Moreover, f−1 preserves
union, intersection, and complement of subsets; thus f−1 : K(Y )→ K(X) is a
Boolean homomorphism. We define the mapping K on arrows by K(f) = f−1.
Obviously, K(1X) = 1K(X), and K(g ◦ f) = K(f) ◦ K(g). Therefore K is a
contravariant functor.

Now we will show that KS is naturally isomorphic to the identity on Bool,
and SK is naturally isomorphic to the identity on Stone. For each Boolean
algebra B, define ηB : B → KS(B) by

ηB(a) = Ca = {φ ∈ S(B) | φ(a) = 1}.

Lemma 7.2. The map ηB : B → KS(B) is an isomorphism of Boolean alge-
bras.

Proof. We first verify that a 7→ Ca is a Boolean homomorphism. For a, b ∈ B,
we have

Ca∧b = {φ | φ(a ∧ b) = 1}
= {φ | φ(a) = 1 and φ(b) = 1}
= Ca ∧ Cb.

A similar calculation shows that C¬a = X\Ca. Therefore, a 7→ Ca is a Boolean
homomorphism.

To show that a 7→ Ca is injective, it will suffice to show that Ca = ∅ only if
a = 0. In other words, it will suffice to show that for each a ∈ B, if a 6= 0 then
there is some φ : B → 2 such that φ(a) = 1. Thus, the result follows from UF.

Finally, to see that ηB is surjective, let U be a clopen subset of S(B). Since
U is open, U =

⋃
a∈I Ca, for some subset I of B. Since U is closed in the

compact space G(B), it follows that U is compact. Thus, there is a finite subset
F of B such that U =

⋃
a∈F Ca. And since a 7→ Ca is a Boolean homomorphism,⋃

a∈F Ca = Cb, where b =
∨
a∈F a. Therefore, ηB is surjective.

Lemma 7.3. The family of maps {ηA : A→ KS(A)} is natural in A.

Proof. Suppose that A and B are Boolean algebras, and that f : A → B is a
Boolean homomorphism. Consider the following diagram:

A B

KS(A) KS(B)

ηA

f

ηB

KS(f)
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For a ∈ A, we have ηB(f(a)) = Cf(a), and ηA(a) = Ca. Furthermore,

KS(f)(Ca) = S(f)−1(Ca) = Cf(a),

by Eqn. 1. Therefore, the diagram commutes, and η is a natural transformation.

Now we define a natural isomorphism θ : 1S ⇒ SK. For a Stone space X,
K(X) is the Boolean algebra of clopen subsets of X, and SK(X) is the Stone

space of K(X). For each point φ ∈ X, let φ̂ : K(X)→ 2 be defined by

φ̂(C) =

{
1 φ ∈ C,
0 φ 6∈ C.

It’s straightforward to verify that φ̂ is a Boolean homomorphism. We define
θX : X → SK(X) by θX(φ) = φ̂.

Lemma 7.4. The map θX : X → SK(X) is a homeomorphism of Stone spaces.

Proof. It will suffice to show that θX is bijective and continuous. (Do you
remember why? Hint: Stone spaces are compact Hausdorff.) To see that θX is
injective, suppose that φ and ψ are distinct elements of X. Since X is a Stone
space, there is a clopen set U of X such that φ ∈ U and ψ 6∈ U . But then φ̂ 6= ψ̂.
Thus, θX is injective.

To see that θX is surjective, let h : K(X)→ 2 be a Boolean homomorphism.
Let

C = {C ∈ K(X) | h(C) = 1}.

In particular X ∈ C ; and since h is a homomorphism, C has the finite intersec-
tion property. Since X is compact,

⋂
C is nonempty. Let φ be a point in

⋂
C .

Then for any C ∈ K(X), if h(C) = 1, then C ∈ C and φ ∈ C, from which it

follows that φ̂(C) = 1. Similarly, if h(C) = 0 then X\C ∈ C , and φ̂(C) = 0.

Thus, θX(φ) = φ̂ = h, and θX is surjective.
To see that θX is continuous, note that each basic open subset of SK(X) is

of the form

Ĉ = {h : K(X)→ 2 | h(C) = 1},

for some C ∈ K(X). Moreover, for any φ ∈ X, we have φ̂ ∈ Ĉ iff φ̂(C) = 1 iff
φ ∈ C. Therefore,

θ−1X (Ĉ) = {φ ∈ X | φ̂(C) = 1} = C.

Therefore, θX is continuous.

Lemma 7.5. The family of maps {θX : X → SK(X)} is natural in X.
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Proof. Let X,Y be Stone spaces, and let f : X → Y be continuous. Consider
the diagram:

X Y

SK(X) SK(Y )

f

θX θY

SK(f)

For arbitrary φ ∈ X, we have (θY ◦ f)(φ) = f̂(φ). Furthermore,

SK(f) = hom(K(f), 2) = hom(f−1, 2)

In other words, for a homomorphism h : K(X)→ 2, we have

SK(f)(h) = h ◦ f−1.

In particular, SK(f)(φ̂) = φ̂ ◦ f−1. For any C ∈ K(Y ), we have

(φ̂ ◦ f−1)(C) =

{
1 f(φ) ∈ C,
0 f(φ) 6∈ C.

That is, φ̂ ◦ f−1 = f̂(φ). Therefore, the diagram commutes, and θ is a natural
isomorphism.

This completes the proof that K and S are quasi-inverse, and yields the
famous theorem:

Stone Duality Theorem

The categories Stone and Bool are dual to each other. In particular, any
Boolean algebra B is isomorphic to the field of clopen subsets of its state
space S(B).

Proposition 7.6. Let A ⊆ B, and a ∈ B. Then the following are equivalent:

1. For any states f and g of B, if f |A = g|A then f(a) = g(a).

2. If h is a state of A, then any two extensions of h to B agree on a.

3. a ∈ A.

Proof. Since every state of A can be extended to a state of B, (1) and (2) are
obviously equivalent. Furthermore, (3) obviously implies (1). Thus, we only
need to show that (1) implies (3).
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Let m : A→ B be the inclusion of A in B, and let s : S(B)→ S(A) be the
corresponding surjection of states. We need to show that Ca = s−1(U) for some
clopen subset U of S(A).

By (1), for any x ∈ S(A), either s−1{x} ⊆ Ca or s−1{x} ⊆ C¬a. By
Proposition 6.14, s is a closed map. Since Ca is open, Proposition 6.13 entails
that the sets

U = {x ∈ S(B) | s−1{x} ⊆ Ca}, and V = {x ∈ S(B) | s−1{x} ⊆ C¬a},

are open. Since U = S(A)\V , it follows that U is clopen. Finally, it’s clear that
s−1(U) = Ca.

Proposition 7.7. In Bool, epimorphisms are surjective.

Proof. Suppose that f : A → B is not surjective. Then f(A) is a proper
subalgebra of B. By Proposition 7.6, there are states g, h of B such that g 6= h,
but g|f(A) = h|f(A). In other words, g ◦ f = h ◦ f , and f is not an epimorphism.

8 Discussion

Combining the previous two theorems, we have the following equivalences:

Th ∼= Bool ∼= Stoneop.

We will now exploit these equivalences to explore the structure of the category
of theories.

Further reading

The most in-depth book on Stone duality is Johnstone, Stone Spaces. More
rudimentary treatments can be found in Halmos, Logic as Algebra, and in Cori
and Lascar, Mathematical Logic.

Category theory

1. F. Borceux. Handbook of Categorical Algebra, Vol I.

2. S. Mac Lane. Categories for the Working Mathematician.

3. J. van Oosten. Basic Category Theory. http://www.staff.science.uu.
nl/~ooste110/syllabi/catsmoeder.pdf
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Boolean algebras

1. S. Koppelberg, “General theory of Boolean algebras” J.D. Monk (ed.)
R. Bonnet (ed.), Handbook of Boolean algebras, volume 3, North-Holland
(1989)

2. S. Givant and P. Halmos. Introduction to Boolean Algebras.

3. R. Sikorski. Boolean algebras.

4. Bell and Slomson.

5. Jech. Set Theory.

6. W. Just and M. Weese. Discovering Modern Set Theory, Vol II. (Chapter
25)

7. P. Dwinger. Introduction to Boolean Algebras.

Topology

There are many excellent textbooks on point-set topology. We recommend
especially the following:

1. R. Engelking. General Topology.

2. S. Willard. General Topology.

Stone spaces are treated, albeit briefly, in Bell and Machover, A Course in
Mathematical Logic. Proper maps are treated in Bourbaki, General Topology,
and in Escardó, “Intersections of compactly many open sets are open.” Profinite
spaces are treated in Ribes and Zallesski, Profinite Groups.
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