Alex Mechan

Precept 5 Exercises

() graph
$$(f) = \{ 2x_{1}y_{7} \in XxY \mid F(x) = y \}$$

= $\{ 2x_{1}y_{7} \in XxY \mid 2f(x), y_{7} = 2y_{1}y_{7} \}$
= $\{ 2x_{1}y_{7} \in XxY \mid (f \times 2y) \mid 2x_{1}y_{7} = 5y_{1}(y) \}$

(Fiven
$$f \ge 1y$$
 and δy , the set
 $(X \ge Y) \ge Y = \{ \le \le x_{1}y_{1} \ge y_{2} \ge 1 \ (f \ge 1y) \le x_{1}y_{1} \ge 5 \le y_{1}(y_{2}) \}$
is by definition the pullback of $f \ge 4y$
and δy (see p.11 discussion of fibered product).
But we can see this set corresponds
But we can see this set corresponds
exactly to graph (f).
(Note: in order for $(f \ge 1y) \le x_{1}y_{1} \ge 5 \le (y_{2})$,
we must have $y_{1} = y_{2}$.)

$$\frac{2}{2} R \subseteq X \times Y$$

$$Y = \frac{T_{1}}{\sqrt{T_{1}(R)}} = \frac{Y}{T_{1}(R)}$$

$$\frac{T_{1}(R)}{T_{1}(R)} = \frac{1}{1000} = \frac{1}{$$

A
$$\leq B$$
 and
3 Suppose $x \in f^{-1}(A)$. Then $f(x) \in A$.
Since $A \leq B$, $f(x) \in B$. Thus $x \in f^{-1}(B)$.
So $f^{-1}(A) \leq f^{-1}(B)$.
4 $f(f^{-1}(B)) = \{y \in Y \mid \exists z \in f^{-1}(B), f(z) = y \}$
 $= \{y \in Y \mid \exists z . (f(z) \in B \land f(z) = y)\}$
 $f(z) = \{y \in Y \mid \exists z . (y = f(z) \in B)\}$
 $f(z) = \{y \in Y \mid \exists z . (y = f(z) \in B)\}$
 $f(z) = \{y \in Y \mid \exists z . (y = f(z) \in B)\}$
 $f(z) = \{y \in Y \mid \exists z . (y = f(z) \in B)\}$

Thus $f(f^{-1}(B)) \leq B$.

see next page

Phil 312: Intermediate Logic.

Alejandro Naranjo Sandoval, ans@princeton.edu Marx Hall, 227

Exercise 5. It is not always the case that $B \subseteq f(f^{-1}(B))$.

Proof. Consider the function f from the real numbers to the real numbers defined by $f(x) = x^2$ (note that this function isn't onto: no real number multiplied by itself gives you a negative real number), and the subset $B = \{-1, 1\}$ of the real numbers. Then note that $f^{-1}(B) = \{-1, 1\}$ (recall that, by definition, $f^{-1}(B) = \{x \in domf \mid f(x) \in B\}$, and only f(-1) and f(1) are in B). But then $f(f-1(B)) = \{1\}$, since the square of -1 and 1 is just 1. Hence we have that

$$B \not\subseteq f(f^{-1}(B)),$$

as we wanted.

Exercise 6. If f is surjective, then $f(f^{-1}(B)) = B$.

Proof. Let f be surjective. Since by problem 4 we have that $f(f^{-1}(B)) \subseteq B$, it suffices to show that $B \subseteq f(f^{-1}(B))$. So given an element b in B. Recall that B is a subset of the codomain of f. So b is in the codomain of f. Since f is surjective, there is an a in the domain of f such that f(a) = b. This means, by the definition of the preimage of a set, that $a \in f^{-1}(\{b\})$. So applying f to a gives you b, i.e., by the definition of the image of a set, $b \in f(f^{-1}(\{b\}))$.

Now, by problem 3, f^{-1} is order preserving. In particular, since $\{b\} \subseteq B$, then $f^{-1}(\{b\}) \subseteq f^{-1}(B)$. We also have that images are order preserving, i.e., that if $X \subseteq Y$ then $f(X) \subseteq f(Y)$ (quick proof: let $y \in f(X)$. So there is $x \in X$ such that f(x) = y. But $X \subseteq Y$, so $x \in Y$. Hence $y \in f(Y)$, as we wanted). So $f(f^{-1}(\{b\})) \subseteq f(f^{-1}(B))$. Hence $b \in f(f^{-1}(B))$, and we are done.

Exercise 7. It is not always the case that $f(A \cap B) = f(A) \cap f(B)$.

Proof. For consider the function $f : \{0,1\} \to \{0\}$, and consider the sets $A = \{0\}$ and $B = \{1\}$. Then note $A \cap B = \emptyset$. But $f(A) = \{0\}$ and $f(B) = \{0\}$, so $f(A) \cap f(B) = \{0\}$. Hence $f(A \cap B) \neq f(A) \cap f(B)$.

Exercise 8. It is always the case that $f(A \cup B) = f(A) \cup f(B)$.

Proof. First we show that $f(A \cup B) \subseteq f(A) \cup f(B)$. Given $y \in f(A \cup B)$. By definition of an image, there is an $x \in A \cup B$ such that f(x) = y. So either $x \in A$ or $x \in B$. If $x \in A$, then $y \in f(A)$, since f(x) = y. So $y \in f(A) \cup f(B)$. An analogous argument holds if $x \in B$. So we are done.

Now we show that $f(A) \cup f(B) \subseteq f(A \cup B)$. Given $y \in f(A) \cup f(B)$. Then either $y \in f(A)$ or $y \in f(B)$. If $y \in f(A)$, then there is an $x \in A$ such that f(x) = y. But by $A \subseteq A \cup B$ we have $x \in A \cup B$. So $y \in f(A \cup B)$. An analogous argument holds if $y \in f(B)$. So we are done.