Precept 5 Exercises
(1)

$$
\begin{aligned}
\operatorname{graph}(f) & =\{\langle x, y\rangle \in X x y \mid f(x)=y\} \\
& =\{\langle x, y\rangle \in X \times Y \mid\langle f(x), y\rangle=\langle y, y\rangle\} \\
& =\left\{\langle x, y\rangle \in X \times Y \mid(f x 1 y)\langle x, y\rangle=\delta_{y}(y)\right\}
\end{aligned}
$$

Given $f \times 1 y$ and δy, the set

$$
\left(x_{x} y\right)_{x_{y}} y=\left\{\left\langle\left\langle x, y_{1}\right\rangle, y_{2}\right\rangle \mid(f \times 2 y)\left\langle x, y_{1}\right\rangle=\delta_{y}\left(y_{2}\right)\right\}
$$

is by definition the pullback of $f x<y$ and Ky (see pill discussion of fibered product).
But we can see this set corresponds exactly to graph (f).
(Note: in order for $\left(f \times L_{y}\right)\left\langle x, y_{1}\right\rangle=\delta_{y}\left(y_{2}\right)$, we must have $y_{1}=y_{2}$.)
(2) $R \subseteq X \times Y$

"the shadow on y carted by R "
$A \subseteq B$ and
(3) Suppose ${ }^{v} x \in f^{-1}(A)$. Then $f(x) \in A$.

Since $A \subseteq B, f(x) \in B$. Thus $x \in f^{-1}(B)$.
So $f^{-1}(A) \subseteq f^{-1}(B)$.
(4)

$$
\begin{aligned}
f\left(f^{-1}(B)\right) & =\left\{y \in Y \mid \exists z \in f^{-1}(B), f(z)=y\right\} \\
& =\{y \in Y \mid \exists z \cdot(f(z) \in B \wedge f(z)=y)\} \\
& =\{y \in Y \mid \exists z \cdot(y=f(z) \in B)\} \\
& \subseteq\{y \in Y \mid y \in B\}=B
\end{aligned}
$$

Thus $f\left(f^{-1}(B)\right) \leq B$.
see next page \longrightarrow

Phil 312: Intermediate Logic.

Alejandro Naranjo Sandoval, ans@princeton.edu
Marx Hall, 227

Exercise 5. It is not always the case that $B \subseteq f\left(f^{-1}(B)\right)$.
Proof. Consider the function f from the real numbers to the real numbers defined by $f(x)=$ x^{2} (note that this function isn't onto: no real number multiplied by itself gives you a negative real number), and the subset $B=\{-1,1\}$ of the real numbers. Then note that $f^{-1}(B)=$ $\{-1,1\}$ (recall that, by definition, $f^{-1}(B)=\{x \in \operatorname{domf} \mid f(x) \in B\}$, and only $f(-1)$ and $f(1)$ are in $B)$. But then $f(f-1(B))=\{1\}$, since the square of -1 and 1 is just 1 . Hence we have that

$$
B \nsubseteq f\left(f^{-1}(B)\right)
$$

as we wanted.

Exercise 6. If f is surjective, then $f\left(f^{-1}(B)\right)=B$.
Proof. Let f be surjective. Since by problem 4 we have that $f\left(f^{-1}(B)\right) \subseteq B$, it suffices to show that $B \subseteq f\left(f^{-1}(B)\right)$. So given an element b in B. Recall that B is a subset of the codomain of f. So b is in the codomain of f. Since f is surjective, there is an a in the domain of f such that $f(a)=b$. This means, by the definition of the preimage of a set, that $a \in f^{-1}(\{b\})$. So applying f to a gives you b, i.e., by the definition of the image of a set, $b \in f\left(f^{-1}(\{b\})\right)$.

Now, by problem $3, f^{-1}$ is order preserving. In particular, since $\{b\} \subseteq B$, then $f^{-1}(\{b\}) \subseteq$ $f^{-1}(B)$. We also have that images are order preserving, i.e., that if $X \subseteq Y$ then $f(X) \subseteq f(Y)$ (quick proof: let $y \in f(X)$. So there is $x \in X$ such that $f(x)=y$. But $X \subseteq Y$, so $x \in Y$. Hence $y \in f(Y)$, as we wanted). So $f\left(f^{-1}(\{b\})\right) \subseteq f\left(f^{-1}(B)\right)$. Hence $b \in f\left(f^{-1}(B)\right)$, and we are done.

Exercise 7. It is not always the case that $f(A \cap B)=f(A) \cap f(B)$.
Proof. For consider the function $f:\{0,1\} \rightarrow\{0\}$, and consider the sets $A=\{0\}$ and $B=\{1\}$. Then note $A \cap B=\emptyset$. But $f(A)=\{0\}$ and $f(B)=\{0\}$, so $f(A) \cap f(B)=\{0\}$. Hence $f(A \cap B) \neq f(A) \cap f(B)$.

Exercise 8. It is always the case that $f(A \cup B)=f(A) \cup f(B)$.
Proof. First we show that $f(A \cup B) \subseteq f(A) \cup f(B)$. Given $y \in f(A \cup B)$. By definition of an image, there is an $x \in A \cup B$ such that $f(x)=y$. So either $x \in A$ or $x \in B$. If $x \in A$, then $y \in f(A)$, since $f(x)=y$. So $y \in f(A) \cup f(B)$. An analogous argument holds if $x \in B$. So we are done.

Now we show that $f(A) \cup f(B) \subseteq f(A \cup B)$. Given $y \in f(A) \cup f(B)$. Then either $y \in f(A)$ or $y \in f(B)$. If $y \in f(A)$, then there is an $x \in A$ such that $f(x)=y$. But by $A \subseteq A \cup B$ we have $x \in A \cup B$. So $y \in f(A \cup B)$. An analogous argument holds if $y \in f(B)$. So we are done.

