Intermediate Logic: Precept 5

Definition. Let graph $(f) = \{ \langle x, y \rangle \in X \times Y \mid f(x) = y \}.$

Definition. Suppose that $f : X \to Y$, and that $A \subseteq X$. Then we let $f(A) = \{y \in Y \mid \exists x \in A. f(x) = y\}$. This definition is tantamount to the following biconditional:

$$y \in f(A)$$
 iff $\exists x (x \in A \land f(x) = y)$

Definition. If $B \subseteq Y$, then we let $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$. This definition is tantamount to the following biconditional:

$$x \in f^{-1}(B)$$
 iff $f(x) \in B$

Exercises

- 1. Show that graph(f) is (isomorphic to) the pullback of the diagonal δ_Y : $Y \to Y \times Y$ along the function $f \times 1_Y : X \times Y \to Y \times Y$.
- 2. Let R be a relation on $X \times Y$. Consider the image $\pi_1(R)$ of R under the projection $\pi_1 : X \times Y \to Y$. Draw a picture, and explain the intuitive meaning of $\pi_1(R)$.
- 3. Show that f^{-1} is order preserving: if $A \subseteq B$ then $f^{-1}(A) \subseteq f^{-1}(B)$.
- 4. Show that $f(f^{-1}(B)) \subseteq B$.
- 5. Show that it is not always the case that $B \subseteq f(f^{-1}(B))$. [Hint: Choose a function f that is not surjective.]
- 6. Show that if f is surjective, then $f(f^{-1}(B)) = B$.
- 7. Is it the case that $f(A \cap B) = f(A) \cap f(B)$?
- 8. Is it the case that $f(A \cup B) = f(A) \cup f(B)$?