Intermediate Logic: Precept 5

Definition. Let graph $(f)=\{\langle x, y\rangle \in X \times Y \mid f(x)=y\}$.
Definition. Suppose that $f: X \rightarrow Y$, and that $A \subseteq X$. Then we let $f(A)=$ $\{y \in Y \mid \exists x \in A \cdot f(x)=y\}$. This definition is tantamount to the following biconditional:

$$
y \in f(A) \quad \text { iff } \quad \exists x(x \in A \wedge f(x)=y)
$$

Definition. If $B \subseteq Y$, then we let $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$. This definition is tantamount to the following biconditional:

$$
x \in f^{-1}(B) \quad \text { iff } \quad f(x) \in B
$$

Exercises

1. Show that $\operatorname{graph}(f)$ is (isomorphic to) the pullback of the diagonal δ_{Y} : $Y \rightarrow Y \times Y$ along the function $f \times 1_{Y}: X \times Y \rightarrow Y \times Y$.
2. Let R be a relation on $X \times Y$. Consider the image $\pi_{1}(R)$ of R under the projection $\pi_{1}: X \times Y \rightarrow Y$. Draw a picture, and explain the intuitive meaning of $\pi_{1}(R)$.
3. Show that f^{-1} is order preserving: if $A \subseteq B$ then $f^{-1}(A) \subseteq f^{-1}(B)$.
4. Show that $f\left(f^{-1}(B)\right) \subseteq B$.
5. Show that it is not always the case that $B \subseteq f\left(f^{-1}(B)\right)$. [Hint: Choose a function f that is not surjective.]
6. Show that if f is surjective, then $f\left(f^{-1}(B)\right)=B$.
7. Is it the case that $f(A \cap B)=f(A) \cap f(B)$?
8. Is it the case that $f(A \cup B)=f(A) \cup f(B)$?
