Phil 312: Solutions to PS4.

Alejandro Naranjo Sandoval, ans@princeton.edu
1879 Hall, 227

Problem 1. Let Σ be a propositional signature, and let X be the set of valuations of Σ. Then there is no surjection $f: \Sigma \rightarrow X$.

It suffices to show that, for an arbitrary function $f: \Sigma \rightarrow X, f$ is not surjective, i.e., that there is a valuation $v \in X$ which is not in the range of f. Our method of proof will be similar to that of Cantor's proof (see course website for a handout with this proof). That is, let us define this v as follows: for any propositional constant $p \in \Sigma$,

$$
v(p)= \begin{cases}1 & \text { if } f(p)(p)=0 \\ 0 & \text { if } f(p)(p)=1\end{cases}
$$

Then v is guaranteed to differ with $f(p)$ in at least one value, namely $p \in \Sigma$. Since functions (and hence valuations) are individuated by their values, v is distinct from every $f(p)$, and so isn't in the range of f, as we wanted.

Problem 2. Let X be a set, and let $a \in X$. If X is uncountably infinite then so is $X \backslash\{a\}$.
We proceed by contradiction, i.e., assume that $X \backslash\{a\}$ is not uncountably infinite. Then it is countable, i.e., there is an injective and surjective function $f: X \backslash\{a\} \rightarrow \omega$. Now, as Prof. Halvorson alluded to in lecture, the set of natural numbers is equinumerous to the set of natural numbers minus one element, i.e., $\omega \approx \omega \backslash\{0\}$. For we can "shift all elements in ω to the right " by means of the following injective and surjective function $k: \omega \rightarrow \omega \backslash\{0\}$:

$$
k(n)=n+1
$$

It follows that $X \backslash\{a\}$ is equinumerous to $\omega \backslash\{0\}$ (to see this: compose f with k. The resulting function $k \circ f: X \backslash\{a\} \rightarrow \omega \backslash\{0\}$ is injective and surjective). So now, consider the following function $h: X \rightarrow \omega$, defined, for any $x \in X$, as

$$
h(x)= \begin{cases}(k \circ f)(x) & \text { if } x \in X \backslash\{a\} . \\ 0 & \text { if } x=a\end{cases}
$$

Since $k \circ f$ is injective and surjective, so is h. Hence $X \approx \omega$. But this contradicts our assumption that X is countably infinite, and we are done.
(Intuitively: if $X \backslash\{a\}$ were countably infinite, we could fit it into $\omega \backslash\{0\}$ but then there's no reason we couldn't fit X into ω, since we can just assign a to 0).

Problem 3. Let Σ be a countably infinite propositional signature. Let X is the set of valuations of $\Sigma ; C_{\phi} \subseteq X$ is the set of valuations v such that $v(\phi)=1$.
i We want to show that (i) if $\theta \vDash \phi$ then $C_{\theta} \subseteq C_{\phi}$ and (ii) if $C_{\theta} \subseteq C_{\phi}$ then $\theta \vDash \phi$. (i) Suppose $\theta \vDash \phi$, and given an arbitrary $v \in C_{\theta}$. By definition of $C_{\theta}, v(\theta)=1$. But by definition of semantic entailment, $v(\phi)=1$. So $v \in C_{\phi}$. (ii) Suppose $C_{\theta} \subseteq C_{\phi}$, and given a valuation $v \in X$ such that $v(\theta)=1$. Then $v \in C_{\theta}$, and so $v \in C_{\phi}$. Hence $v(\phi)=1$. By definition of semantic entailment, $\theta \vDash \phi$, as we wanted.
ii We want to show that C_{p} and $C_{\neg p}$ are uncountably infinite. Since Σ is countably infinite and the set of natural numbers is equinumerous to itself plus an extra element, we can write Σ as $\left\{p, p_{0}, p_{1}, p_{2}, \ldots\right\}$ (effectively, we are just "pulling p to the front" if it's not already there, and assigning natural numbers to all other propositional constants). It suffices to show that if $f: \omega \rightarrow C_{p}$ and $g: \omega \rightarrow C_{\neg p}$, then neither f or g are surjective. That is, it suffices to construct $v_{0} \in X$ and $v_{1} \in X$ which are not in the range of f and g, respectively. As before, we use the method of proof which Cantor used: we want to make sure that v_{0} and v_{1} disagree with all $f(n)$ and $g(n)$, respectively, in at least one value.

Define v_{0} as, $v(p)=1$ (we have to add this condition, since $v \in C_{p}$) and, for any other $p_{i} \in \Sigma$,

$$
v_{0}\left(p_{i}\right)= \begin{cases}1 & \text { if } f(i)\left(p_{i}\right)=0 \\ 0 & \text { if } f(i)\left(p_{i}\right)=1\end{cases}
$$

Note that v_{0} disagrees with all $f(n)$ on at least one value, namely, on p_{n}. So v_{0} is not in the range of f, and we are done: C_{p} is uncountably infinite. Using an analogous argument, the following definition of v_{1} yields that $C_{\neg p}$ is uncountably infinite: $v_{0}(p)=$ 1 , and for any other p_{i},

$$
v_{1}\left(p_{i}\right)= \begin{cases}1 & \text { if } g(i)\left(p_{i}\right)=0 \\ 0 & \text { if } g(i)\left(p_{i}\right)=1\end{cases}
$$

iii Suppose that θ is the sentence $\gamma_{1} \wedge \cdots \wedge \gamma_{n}$, where each γ_{i} is either a propositional constant or a negated propositional constant, and no propositional constant appears twice in θ. We want to show that C_{θ} is uncountably infinite. This proof is very similar to the last one. Let $p_{1}, p_{2}, \ldots, p_{n}$ be the n distinct propositional constants appearing in θ (negated or not). Since Σ is countably infinite and the set of natural numbers is equinumerous to itself plus n extra elements (since n is finite), we can write Σ as $\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{n}, q_{0}, q_{1}, q_{2}, \ldots\right\}$ (effectively, we are just "pulling the p_{i} to the front" if they're not already there, and assigning natural numbers to all other propositional constants).
(Here's a proof that ω is equinumerous to itself plus a finite number $a_{0}, a_{1}, a_{2} \ldots, a_{n}$ of elements. Consider the following injective and surjective function $h: \omega \rightarrow \omega \cup$ $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}: h\left(a_{i}\right)=i$, and $h(i)=i+n$.)

Now, as before, it suffices to show that if $f: \omega \rightarrow C_{\phi}$ then f is not surjective. That is, it suffices to construct $v \in X$ which is not in the range of f. So define v in the following way: $v\left(p_{i}\right)=f(0)\left(p_{i}\right)$ (so that v agrees with all $f(n)$ on the values they
assign to $p_{0}, p_{1}, p_{2}, \ldots, p_{n}$: this is required for $v \in C_{\phi}$) and, for any other propositional constant q_{i} :

$$
v\left(q_{i}\right)= \begin{cases}1 & \text { if } f(i)\left(q_{i}\right)=0 \\ 0 & \text { if } f(i)\left(q_{i}\right)=1\end{cases}
$$

Once again, this guarantees that v disagrees with all $f(n)$ in at least one value, namely, on the value $f(n)\left(q_{n}\right)$. Thus C_{ϕ} is uncountably infinite.
iv For any sentence ϕ, we want to show that either C_{ϕ} is empty or uncountably infinite. We have that either (i) ϕ is inconsistent (i.e., $\phi \vdash \perp$) or (ii) ϕ is inconsistent (i.e., $\phi \nvdash \perp$). (i) If ϕ is inconsistent, then $\phi \vdash p \wedge \neg p$, for some propositional constant p. By soundness, $\phi \vDash p \wedge \neg p$. So, by problem 3a, $C_{\phi} \subseteq C_{p \wedge \neg p}$. But there are no valuations which make $p \wedge \neg p$ true. Hence $C_{p \wedge \neg p}$ is the empty set. So C_{ϕ} is empty too, and we are done.
(ii) So suppose that ϕ is consistent. By the hint, there is a sentence θ such that $\theta \vDash \phi$, and where θ is of the form $\gamma_{1} \wedge \cdots \wedge \gamma_{n}$ for each γ_{i} either a propositional constant or a negated propositional constant, and no propositional constant appears twice. Then by problem 3a, $C_{\theta} \subseteq C_{\phi}$. But by problem 3c C_{θ} is uncountably infinite. Hence C_{ϕ} is also uncountably infinite, as we wanted.

