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Problem 1. Let Σ be a propositional signature, and let X be the set of valuations of Σ.
Then there is no surjection f : Σ→ X.

It suffices to show that, for an arbitrary function f : Σ → X, f is not surjective, i.e.,
that there is a valuation v ∈ X which is not in the range of f . Our method of proof will be
similar to that of Cantor’s proof (see course website for a handout with this proof). That
is, let us define this v as follows: for any propositional constant p ∈ Σ,

v(p) =

{
1 if f(p)(p) = 0

0 if f(p)(p) = 1.

Then v is guaranteed to differ with f(p) in at least one value, namely p ∈ Σ. Since functions
(and hence valuations) are individuated by their values, v is distinct from every f(p), and
so isn’t in the range of f , as we wanted.

Problem 2. Let X be a set, and let a ∈ X. If X is uncountably infinite then so is X \{a}.

We proceed by contradiction, i.e., assume that X \ {a} is not uncountably infinite. Then
it is countable, i.e., there is an injective and surjective function f : X \ {a} → ω. Now, as
Prof. Halvorson alluded to in lecture, the set of natural numbers is equinumerous to the set
of natural numbers minus one element, i.e., ω ≈ ω \ {0}. For we can “shift all elements in ω
to the right ” by means of the following injective and surjective function k : ω → ω \ {0}:

k(n) = n+ 1.

It follows that X \ {a} is equinumerous to ω \ {0} (to see this: compose f with k. The
resulting function k ◦ f : X \ {a} → ω \ {0} is injective and surjective). So now, consider
the following function h : X → ω, defined, for any x ∈ X, as

h(x) =

{
(k ◦ f)(x) if x ∈ X \ {a}.
0 if x = a.

Since k ◦ f is injective and surjective, so is h. Hence X ≈ ω. But this contradicts our
assumption that X is countably infinite, and we are done.

(Intuitively: if X \ {a} were countably infinite, we could fit it into ω \ {0} but then there’s
no reason we couldn’t fit X into ω, since we can just assign a to 0).

Problem 3. Let Σ be a countably infinite propositional signature. Let X is the set of
valuations of Σ; Cφ ⊆ X is the set of valuations v such that v(φ) = 1.
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i We want to show that (i) if θ � φ then Cθ ⊆ Cφ and (ii) if Cθ ⊆ Cφ then θ � φ. (i)
Suppose θ � φ, and given an arbitrary v ∈ Cθ. By definition of Cθ, v(θ) = 1. But by
definition of semantic entailment, v(φ) = 1. So v ∈ Cφ. (ii) Suppose Cθ ⊆ Cφ, and
given a valuation v ∈ X such that v(θ) = 1. Then v ∈ Cθ, and so v ∈ Cφ. Hence
v(φ) = 1. By definition of semantic entailment, θ � φ, as we wanted.

ii We want to show that Cp and C¬p are uncountably infinite. Since Σ is countably infi-
nite and the set of natural numbers is equinumerous to itself plus an extra element, we
can write Σ as {p, p0, p1, p2, . . .} (effectively, we are just “pulling p to the front” if it’s
not already there, and assigning natural numbers to all other propositional constants).
It suffices to show that if f : ω → Cp and g : ω → C¬p, then neither f or g are surjec-
tive. That is, it suffices to construct v0 ∈ X and v1 ∈ X which are not in the range of
f and g, respectively. As before, we use the method of proof which Cantor used: we
want to make sure that v0 and v1 disagree with all f(n) and g(n), respectively, in at
least one value.

Define v0 as, v(p) = 1 (we have to add this condition, since v ∈ Cp) and, for any
other pi ∈ Σ,

v0(pi) =

{
1 if f(i)(pi) = 0

0 if f(i)(pi) = 1

Note that v0 disagrees with all f(n) on at least one value, namely, on pn. So v0 is not
in the range of f , and we are done: Cp is uncountably infinite. Using an analogous
argument, the following definition of v1 yields that C¬p is uncountably infinite: v0(p) =
1, and for any other pi,

v1(pi) =

{
1 if g(i)(pi) = 0

0 if g(i)(pi) = 1

iii Suppose that θ is the sentence γ1 ∧ · · · ∧ γn, where each γi is either a propositional
constant or a negated propositional constant, and no propositional constant appears
twice in θ. We want to show that Cθ is uncountably infinite. This proof is very similar
to the last one. Let p1, p2, . . . , pn be the n distinct propositional constants appearing
in θ (negated or not). Since Σ is countably infinite and the set of natural numbers
is equinumerous to itself plus n extra elements (since n is finite), we can write Σ as
{p0, p1, p2, . . . , pn, q0, q1, q2, . . .} (effectively, we are just “pulling the pi to the front” if
they’re not already there, and assigning natural numbers to all other propositional
constants).

(Here’s a proof that ω is equinumerous to itself plus a finite number a0, a1, a2 . . . , an
of elements. Consider the following injective and surjective function h : ω → ω ∪
{a0, a1, . . . , an}: h(ai) = i, and h(i) = i+ n.)

Now, as before, it suffices to show that if f : ω → Cφ then f is not surjective. That
is, it suffices to construct v ∈ X which is not in the range of f . So define v in the
following way: v(pi) = f(0)(pi) (so that v agrees with all f(n) on the values they
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assign to p0, p1, p2, . . . , pn: this is required for v ∈ Cφ) and, for any other propositional
constant qi:

v(qi) =

{
1 if f(i)(qi) = 0

0 if f(i)(qi) = 1

Once again, this guarantees that v disagrees with all f(n) in at least one value, namely,
on the value f(n)(qn). Thus Cφ is uncountably infinite.

iv For any sentence φ, we want to show that either Cφ is empty or uncountably infinite.
We have that either (i) φ is inconsistent (i.e., φ ` ⊥) or (ii) φ is inconsistent (i.e.,
φ 0 ⊥). (i) If φ is inconsistent, then φ ` p∧¬p, for some propositional constant p. By
soundness, φ � p ∧ ¬p. So, by problem 3a, Cφ ⊆ Cp∧¬p. But there are no valuations
which make p ∧ ¬p true. Hence Cp∧¬p is the empty set. So Cφ is empty too, and we
are done.

(ii) So suppose that φ is consistent. By the hint, there is a sentence θ such that
θ � φ, and where θ is of the form γ1 ∧ · · · ∧ γn for each γi either a propositional
constant or a negated propositional constant, and no propositional constant appears
twice. Then by problem 3a, Cθ ⊆ Cφ. But by problem 3c Cθ is uncountably infinite.
Hence Cφ is also uncountably infinite, as we wanted.
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