PHI 312 : pset 2

- 1. Let $f : X \to Y$ and $g : Y \to Z$ be functions. Show that if $g \circ f$ is a monomorphism, then f is a monomorphism. [You shouldn't have to mention elements of the sets.]
- 2. Let $f: X \to Y$ be a function, and let $\delta_Y: Y \to Y \times Y$ be the diagonal map. Show that $\delta_Y \circ f = \langle f, f \rangle$. [Again, you shouldn't have to mention elements of the sets.]
- 3. Show that if $f: X \to Y$ is surjective, then f is an epimorphism.
- 4. Show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. [Use the definitions of \cap and \cup in terms of "and" and "or".]