PHI 312 : pset 3

1. Let Σ and Σ' be propositional signatures, and let T and T' be theories in the respective signatures. Let $f: T \to T'$ be a translation, and let $f^* : \operatorname{Mod}(T') \to \operatorname{Mod}(T)$ be the function given by

$$f^*(v)(\phi) = v(f(\phi)),$$

for all $v \in Mod(T')$, and $\phi \in Sent(\Sigma)$. We say that f is essentially surjective just in case for each sentence ψ of Σ' , there is a sentence ϕ of Σ such that $T' \vdash \psi \leftrightarrow f(\phi)$.

- (a) Show that if f is essentially surjective, then f^* is injective.
- (b) Show that if f is (one half of) a homotopy equivalence, then f is essentially surjective.
- 2. Let $\Sigma = \{p\}$, and define a relation R on $Sent(\Sigma)$ as follows:

$$R(\phi, \psi)$$
 iff $\vdash \phi \leftrightarrow \psi$.

- (a) Show that R is an equivalence relation.
- (b) Show that R has exactly four equivalence classes. [Hint: two sentences are equivalent iff they have the same truth table.]
- (c) Let X be the set of equivalence classes of $\mathsf{Sent}(\Sigma)$ under the relation R, and let $q:\mathsf{Sent}(\Sigma) \to X$ be the quotient function. Show that for any valuation v of Σ , there is a unique function $\overline{v}: X \to \{0, 1\}$ that makes the following diagram commute:

$$\begin{array}{c} \mathsf{Sent}(\Sigma) \xrightarrow{v} \{0,1\} \\ q \\ \chi \\ X \end{array}$$

3. Extra credit: Show that the pullback of a monomorphism is a monomorphism. i.e. suppose that the following diagram is a pullback and that m is monic.

$$\begin{array}{ccc} A & \xrightarrow{g} & B \\ k & & \downarrow^m \\ X & \xrightarrow{f} & Y \end{array}$$

Show that k is also monic.