PHI 312 : pset 4

- 1. Let Σ be a propositional signature, and let X be the set of valuations of Σ . Show that there is no surjection $f: \Sigma \to X$.
- 2. Let X be a set, and let $a \in X$. Show that if X is uncountably infinite, then $X \setminus \{a\}$ is also uncountably infinite.
- 3. Let Σ be a countably infinite propositional signature, and let X be the set of valuations of Σ . For any sentence ϕ of Σ , let $C_{\phi} \subseteq X$ be the subset of valuations on which ϕ is true.
 - (a) Show that for any sentences θ and ϕ , $\theta \vDash \phi$ if and only if $C_{\theta} \subseteq C_{\phi}$.
 - (b) Let p be a propositional constant. Show that both C_p and $C_{\neg p}$ are uncountably infinite.
 - (c) Suppose that $\theta = \gamma_1 \wedge \cdots \wedge \gamma_n$, where each γ_i is either a propositional constant or a negated propositional constant. Show that if no propositional constant occurs twice in θ , then C_{θ} is uncountably infinite.
 - (d) Now let ϕ be an arbitrary sentence. Show that C_{ϕ} is either empty or uncountably infinite. [Hint: if ϕ is consistent, then there is some θ as above such that $\theta \models \phi$.]