Pset 5 solutions

Alexander Meehan

November 14, 2016

1. We know that f is injective, i.e. $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$. We want to show that there is a function $g: Y \rightarrow X$ such that $g f=1_{X}$. First, fix some $c \in X$ (since X is non-empty we know such an element exists). Next, note that if $y \in f(X)$, then there is an $x_{y} \in X$ such that $f\left(x_{y}\right)=y$. Since f is injective, x_{y} is the unique element of X that satisfies this criterion. So we define

$$
g(y)=\left\{\begin{array}{l}
x_{y} \text { if } y \in f(X) \\
c \text { otherwise }
\end{array}\right.
$$

Note that $(g f)(x)=g(f(x))=x$ for all $x \in X$, so $g f=1_{X}$ as desired.
2. By problem 1 , there is an $f: X \rightarrow Y$ such that $g f=1_{X}$. Thus g is split epi. So g is epi by the lemma proved in class. So g is surjective, since epi implies surjective (by proposition 2.7 in the notes).
3. (a) For the models of T we have: the valuation v^{*} which assigns 0 to all the propositional constants, plus the valuations that assign 1 to exactly one propositional constant. (Note that if a valuation assigns 1 to two or more propositional constants, it cannot assign 1 to all the axioms.) We can specify a function $f: \operatorname{Mod}(T) \rightarrow \mathbb{N}$:

$$
f(v)=\left\{\begin{array}{l}
0 \text { if } v=v^{*} \\
i+1 \text { if } v\left(p_{i}\right)=1
\end{array}\right.
$$

This is a bijection. (Surjection is obvious. For injection, note that if $f\left(v_{1}\right)=f\left(v_{2}\right)=i+1$ then $v_{1}\left(p_{i}\right)=v_{2}\left(p_{i}\right)=1$, but we have already shown there is a single valuation that assigns p_{i} to 1 , namely the valuation that assigns all the other proposition constants 0.) So $\operatorname{Mod}(T)$ is countably infinite.
For T^{\prime} we have the unique model v^{*} which assigns p_{0} the value 1 (recall the hint for problem 2 in pset 1), and any valuation which assigns p_{0} the value 0 . Using the notation of pset $4, \operatorname{Mod}\left(T^{\prime}\right)=\left\{v^{*}\right\} \cup$ $C_{\neg p_{0}}$. Recall, using problem 3(b) of pset 4 , that $C_{\neg p_{0}}$ is uncountably infinite. So, since $\operatorname{Mod}\left(T^{\prime}\right) \supseteq C_{\neg p_{0}}, \operatorname{Mod}\left(T^{\prime}\right)$ is uncountably infinite.
(b) Suppose toward contradiction that f is essentially surjective. By problem 1(a) on pset $3, f^{*}: \operatorname{Mod}\left(T^{\prime}\right) \rightarrow \operatorname{Mod}(T)$ is injective. This entails that $\left|\operatorname{Mod}\left(T^{\prime}\right)\right| \leq|\operatorname{Mod}(T)|$. But, by part (a) of this problem, $\operatorname{Mod}(T)$ is countable and $\operatorname{Mod}\left(T^{\prime}\right)$ is uncountable, so $\left|\operatorname{Mod}\left(T^{\prime}\right)\right|>$ $|\operatorname{Mod}(T)|$, a contradiction.

