PHI 312: pset 5

1. Suppose that X and Y are sets, and that $f: X \rightarrow Y$ is an injection. Show that if X is non-empty (i.e. has at least one element), then there is a function $g: Y \rightarrow X$ such that $g f=1_{X}$.
2. Show that the function g in the previous problem is a surjection.
3. Let $\Sigma=\left\{q_{0}, q_{1}, \ldots\right\}$, and let T be the theory in Σ with axioms $q_{i} \rightarrow \neg q_{j}$, for all i, j such that $i \neq j$. Let $\Sigma^{\prime}=\left\{p_{0}, p_{1}, \ldots\right\}$, and let T^{\prime} be the theory with axioms $p_{0} \rightarrow p_{i}$, for $i=0,1,2, \ldots$.
(a) How many models does T have? How many models does T^{\prime} have?
(b) Show that there is no essentially surjective translation $f: T \rightarrow T^{\prime}$.
