Problem Set 6: Solutions

Compiled by Alejandro Naranjo Sandoval

Problem 1

- 1. We assume that $f : A \to B$ is a function such that (1) $f(a \lor b) = f(a) \lor f(b)$ and (2) $f(\neg a) = \neg f(a)$. To show that f is a homomorphism, we also need to show that f(0) = 0, f(1) = 1, and $f(a \land b) = f(a) \land f(b)$.
 - We show f(1) = 1:

$$f(1) = f(a \lor \neg a)$$
(Excluded Middle)

$$= f(a) \lor f(\neg a)$$
(Assumption 1)

$$= f(a) \lor \neg f(a)$$
(Assumption 2)

$$= 1$$
(Excluded Middle)

• We show f(0) = 0:

$$f(0) = f(\neg 1)$$
(Proposition 2.8)

$$= \neg f(1)$$
(Assumption 2)

$$= \neg 1$$
(Previous Result)

$$= 0$$
(Proposition 2.8)

• We show $f(a \wedge b) = f(a) \wedge f(b)$:

$$f(a \wedge b) = f(\neg \neg (a \wedge b))$$
(Proposition 2.10)

$$= f(\neg (\neg a \vee \neg b))$$
(De Morgan's Law)

$$= \neg f(\neg a \vee \neg b)$$
(Assumption 2)

$$= \neg (f(\neg a) \vee f(\neg b))$$
(Assumption 1)

$$= \neg f(\neg a) \wedge \neg f(\neg b)$$
(De Morgan's Law)

$$= \neg \neg f(a) \wedge \neg \neg f(b)$$
(Assumption 2 twice)

$$= f(a) \wedge f(b)$$
(Proposition 2.10 twice)

Problem 2

Let us show that for all $x, y \in B$, that $x < y \Leftrightarrow x \land \neg y = 0$.

(⇒)

$$\begin{aligned} x \wedge \neg y &= 0 \lor (x \wedge \neg y) & \text{(bottom)} \\ &= (x \wedge \neg x) \lor (x \wedge \neg y) & \text{(excluded middle)} \\ &= x \wedge (\neg x \lor \neg y) & \text{(distributive)} \\ &= x \wedge \neg (x \wedge y) & \text{(De Morgan)} \\ &= x \wedge \neg x & (x \leq y) \\ &= 0 & \text{(excluded middle)} \end{aligned}$$

(⇔)

$x = x \land (y \lor \neg y)$	(top, excluded middle)
$= (x \land y) \lor (x \land \neg y)$) (distributive)
$= (x \land y) \lor 0$	$(x \land \neg y = 0)$
$= x \wedge y$	(bottom)
$x \leq y$	(def.)

If f(x) = 1, then $a \le x$, so $a \land \neg x = 0 \ne a$, so $a \le \neg x$, so $f(\neg x) = 0$. If f(x) = 0, then $a \le x$, so $a \land \neg x \ne 0$. Let $a \land \neg x = b$, where $0 \ne b$. Then $b \land a = (\neg x \land a) \land a = \neg x \land a = b$, so $b \le a$. So then because a is an atom and $b \ne 0$, then b = a. Thus, $a \land \neg x = a$, and $a \le \neg x$. This means $f(\neg x) = 1$.

Combining the above two cases, we have $f(\neg x) = \neg f(x)$.

Let us now show that $f(x \lor y) = f(x) \lor f(y)$.

If f(x) = 0 and f(y) = 0, then by the negation property of f just proven, $f(\neg x) = 1$ and $f(\neg y) = 1$. So $a \le \neg x$ and $a \le \neg y$. By Proposition 2.2 in the notes, $a \le \neg x \land \neg y$, so $f(\neg x \land \neg y) = 1$. By the negation property of $f, f(x \lor y) = f(\neg(\neg x \land \neg y)) = 0$. So $f(x \lor y) = 0 = 0 \lor 0 = f(x) \lor f(y)$. The other case is where at least one of f(x) and f(y) is 1. Without loss of generality, take f(x) = 1. So $a \le x$. But also, by absorption, $x \land (x \lor y) = x$, so $x \le x \lor y$. So by transitivity, $a \le x \lor y$. So $f(x \lor y) =$ $1 = 1 \lor 0 = 1 \lor 1 = f(x) \lor f(y)$.

So in all cases, $f(x \lor y) = f(x) \lor f(y)$ and $f(\neg x) = \neg f(x)$. So by the result of problem 1, f(0) = 0, f(1) = 1, and $f(x \land y) = f(x) \land f(y)$. So f is a homomorphism.

Problem 3a

Show that there is no Boolean algebra with exactly three elements.

Suppose there is a Boolean algebra $B = \{0, 1, a\}$ such that $a \neq 0$ and $a \neq 1$. By the definition of a Boolean algebra, it must be the case that $\neg a \in B$. There are three cases: (1) $\neg a = a$, (2) $\neg a = 0$, and (3) $\neg a = 1$. We need to show that each case results in a contradiction, thereby showing that B does not exist. We will assume $\neg 0 = 1$.

1.	• $\neg a = a$	
	• $\neg a \lor a = a \lor a$	$\lor a$ on both sides
	• $1 = a \lor a$	Excluded Middle
	• 1 = a	Idempotence
2.	• $\neg a = 0$	
	• $\neg \neg a = \neg 0$	\neg on both sides
	• <i>a</i> = 1	$\neg \neg a = a, \neg 0 = 1$
3.	• $\neg a = 1$	
	• $\neg \neg a = \neg 1$	\neg on both sides
	• $a = 0$	$\neg \neg a = a, \neg 1 = 0$

These all contradict the requirements that $a \neq 0$ and $a \neq 1$. Hence, there is no Boolean algebra with three elements.

Problem 3b

Suppose A and B are two Boolean algebras with four elements. So let us write $A = \{0, a, \neg a, 1\}$ and $B = \{0, b, \neg b, 1\}$. Now, let $f : A \to B$ be an isomorphism from A to B. In particular, since f is a homomorphism, f(0) = 0 and f(1) = 1. Note too that since f is a homomorphism then $f(\neg a) = \neg f(a)$. So to fully determine f one needs only to specify f(a). Note that neither f(a) = 0 nor f(a) = 1: for either case would mean that f is not surjective (and so not an isomorphism). So either f(a) = b or $f(a) = \neg b$. Both choices lead to isomorphisms. So we have two isomorphisms between A and B, as we wanted.