PHI 312 : pset 5

- 1. Let A and B be Boolean algebras. Let $f : A \to B$ be a function such that $f(a \lor b) = f(a) \lor f(b)$, and $f(\neg a) = \neg f(a)$. Show that f is a homomorphism.
- 2. An element $a \in B$ is said to be an **atom** if $a \neq 0$, and for all $x \in B$, if $x \neq 0$ and $x \leq a$, then x = a. If a is an atom, define $f : B \to \{0, 1\}$ by f(x) = 1 iff $a \leq x$. Show that f is a homomorphism.
- 3. Please solve **one** of the following two problems:
 - (a) Show that there is no Boolean algebra with exactly three elements.
 - (b) Show that if A and B are Boolean algebras with exactly four elements, then there are exactly two isomorphisms $f : A \to B$ and $g : A \to B$.