PHI 312: pset 5

1. Let A and B be Boolean algebras. Let $f: A \rightarrow B$ be a function such that $f(a \vee b)=f(a) \vee f(b)$, and $f(\neg a)=\neg f(a)$. Show that f is a homomorphism.
2. An element $a \in B$ is said to be an atom if $a \neq 0$, and for all $x \in B$, if $x \neq 0$ and $x \leq a$, then $x=a$. If a is an atom, define $f: B \rightarrow\{0,1\}$ by $f(x)=1$ iff $a \leq x$. Show that f is a homomorphism.
3. Please solve one of the following two problems:
(a) Show that there is no Boolean algebra with exactly three elements.
(b) Show that if A and B are Boolean algebras with exactly four elements, then there are exactly two isomorphisms $f: A \rightarrow B$ and $g: A \rightarrow B$.
