Problem 1

We wish to show that if $E_{\phi} = E_{\phi'}$, then $E_{\neg\phi} = E_{\neg\phi'}$. We assume $E_{\phi} = E_{\phi'}$. By definition, $E_{\phi} := \{\psi \mid \phi \equiv \psi\}$. By reflexivity of equivalence relations, $\phi \in E_{\phi}$ and $\phi' \in E_{\phi'}$. Because $E_{\phi} = E_{\phi'}$, we know that $\phi' \in E_{\phi}$, as well. Thus, by definition of E_{ϕ} , we know that $\phi \equiv \phi'$.

By definition on page 12 of notes, $\phi \equiv \psi$ iff $T \models \phi \leftrightarrow \psi$. Thus, $T \models \phi \leftrightarrow \phi'$. By definition of \models , we see that in all models m of T, $m(\phi) = m(\phi')$. Thus, $m(\neg \phi) = \neg m(\phi) = \neg m(\phi') = m(\neg \phi')$ (by interpretation definition given on page 3 of note set 1). Thus, in all models m of T, we have $m(\neg \phi) = m(\neg \phi')$. Thus, by definition of \models , we have $T \models \neg \phi \leftrightarrow \neg \phi'$.

By definition on page 12 of notes, $\neg \phi \equiv \neg \phi'$. Assume for contradiction that $E_{\neg \phi} \neq E_{\neg \phi'}$. Then there is either some $\psi^* \in E_{\neg \phi}$ not in $E_{\neg \phi'}$, or there is some $\psi^* \in E_{\neg \phi'}$ not in $E_{\neg \phi}$. Consider the first case: $\psi^* \in E_{\neg \phi}$. By definition, $\neg \phi \equiv \psi^*$. By symmetry and transitivity of equivalence relations, we have $\neg \phi' \equiv \psi^*$, and so $\psi^* \in E_{\neg \phi'}$, by definition. Consider the second case: $\psi^* \in E_{\neg \phi'}$. Then $\psi^* \equiv \neg \phi'$, and by symmetry and transitivity of equivalence relations, $\psi^* \equiv \neg \phi$, and so by symmetry and definition, $\psi^* \in E_{\neg \phi}$.

Thus, we see that $\psi^* \in E_{\neg\phi} \implies \psi^* \in E_{\neg\phi'}$, and $\psi^* \in E_{\neg\phi'} \implies \psi^* \in E_{\neg\phi}$ Our assumption (for contradiction) is thus contradicted. Thus, $E_{\neg\phi} = E_{\neg\phi'}$.

Exercise 2. Let *T* be a theory with signature Σ , and let L(T) be its Lindenbaum algebra. Suppose $E_{\phi} \leq E_{\psi}$ where $\phi, \psi \in \text{Sent}(\Sigma)$. Then $E_{\phi} \wedge E_{\psi} = E_{\phi}$ by definition. By Fact 4.7, it follows that $E_{\phi \wedge \psi} = E_{\phi}$ so $T \vdash (\phi \wedge \psi) \leftrightarrow \phi$. In particular $T \vdash \phi \rightarrow (\phi \wedge \psi)$ so by the rule of assumptions, \rightarrow elimination, and \wedge elimination $T, \phi \vdash \psi$.

Conversely, suppose $T, \phi \vdash \psi$ where $\phi, \psi \in \text{Sent}(\Sigma)$. Then by the rule of assumptions, \land introduction and \rightarrow introduction $T \vdash \phi \rightarrow (\phi \land \psi)$. From the rule of assumptions $T, \phi \land \psi \vdash \phi \land \psi$ so by \land elimination and \rightarrow introduction we have $T \vdash (\phi \land \psi) \rightarrow \phi$. Thus $T \vdash (\phi \land \psi) \leftrightarrow \phi$ so $E_{\phi} = E_{\phi \land \psi} = E_{\phi} \land E_{\psi}$. It follows that $E_{\phi} \leq E_{\psi}$.

- 3. We first verify that $\forall \phi, \psi, \bar{f}(-E_{\phi}) = -\bar{f}(E_{\phi})$ and that $\bar{f}(E_{\phi} \cup E_{\psi}) = \bar{f}(E_{\phi}) \cup \bar{f}(E_{\psi})$.
 - We have that $\forall \phi$, $\bar{f}(-E_{\phi}) = \bar{f}(E_{\neg \phi}) = f(\neg \phi)$, and that $-\bar{f}(E_{\phi}) = -f(\phi)$. But since f is an interpretation, we have that $f(\neg \phi) = -f(\phi)$. Therefore $\bar{f}(-E_{\phi}) = -\bar{f}(E_{\phi})$, as desired.
 - We have that $\forall \phi, \psi, \ \overline{f}(E_{\phi} \cup E_{\psi}) = \overline{f}(E_{\phi \lor \psi}) = f(\phi \lor \psi)$, and that $\overline{f}(E_{\phi}) \cup \overline{f}(E_{\psi}) = f(\phi) \cup f(\psi)$. But since f is an interpretation, we have that $f(\phi \lor \psi) = f(\phi) \cup f(\psi)$. Therefore $\overline{f}(E_{\phi} \cup E_{\psi}) = \overline{f}(E_{\phi}) \cup \overline{f}(E_{\psi})$, as desired.

But since $\forall \phi, \psi, \bar{f}(-E_{\phi}) = -\bar{f}(E_{\phi})$ and $\bar{f}(E_{\phi} \cup E_{\psi}) = \bar{f}(E_{\phi}) \cup \bar{f}(E_{\psi})$, we have that, by problem 1 of homework 6, \bar{f} must be a Boolean homomorphism.

Exercise 4. Let *B* be a Boolean algebra with T_B the theory described in Proposition 4.10. The signature Σ_B of T_B is *B* viewed as a set. We have a conservative interpretation $e_B: T_B \to B$ sending every propositional constant $p \in \Sigma_B$ to $p \in B$. Suppose $\phi \in \text{Sent}(\Sigma_B)$. Then $e_B(\phi)$ is some element *p* in the Boolean algebra *B*. But then *p* is an element of Σ_B because $B = \Sigma_B$ as sets. Certainly $e_B(p) = p$ by the definition of e_B so $e_B(\phi) = e_B(p)$. Because e_B is a conservative interpretation, we know by Lemma 4.1 that $T_B \vdash p \leftrightarrow \phi$