PHI 312: pset 8

- 1. Let B be a Boolean algebra, and let a be a nonzero element of B that has no atoms below it. i.e. there is no atom $b \in B$ such that $b \le a$. Show that there are infinitely many distinct ultrafilters on B containing a.
 - [Hint: Show that the algebra B is infinite; in particular, there is an infinite sequence $a > a_1 > a_2 > \cdots$. Then consider the filters $\uparrow (a_{i-1} \land \neg a_i)$, where $\uparrow (x)$ denotes the set $\{y \in B \mid x \leq y\}$.]
- 2. Let N be a countably infinite set. We say that $E \subseteq N$ is **cofinite** just in case $N \setminus E$ is finite. Let \mathscr{F} be the family of all cofinite subsets of N. We call \mathscr{F} the **cofinite filter** on N.
 - (a) Show that \mathscr{F} is a filter on the Boolean algebra $\mathscr{P}N$ of all subsets of N.
 - (b) Show that if $E \subseteq N$ is infinite, then E is compatible with \mathscr{F} in the sense that $E \cap X$ is nonempty for each $X \in \mathscr{F}$.
 - (c) Show that there are infinitely many distinct ultrafilters containing \mathscr{F} .