Completeness

Name:

March 8, 2013

In what follows, we work with a fragment of first-order logic where the only connectives are \land and \neg and the only quantifier is \exists . This restriction is made only for convenience: every theorem we prove for this fragment of first-order logic also holds for full first-order logic. The reason that this claim is true is because full-first order logic is reducible — in a precise sense — to this fragment.

For convenience, we introduce a new 0-place predicate symbol (i.e. a sentence) \bot . For this new sentence \bot , we add new derivation rules and new clauses to our definition of an L structure.

introduction	elimination
 $\frac{\Gamma \Rightarrow \phi, \ \Delta \Rightarrow \neg \phi}{\Gamma \cup \Delta \Rightarrow \bot}$	$\frac{\Gamma \cup \{\phi\} \Rightarrow \bot}{\Gamma \Rightarrow \neg \phi}$

For any L structure M, we require that $\perp^M = \emptyset$. In other words, \perp is false in every structure.

Definition. Let L be a first-order language and let T be a set of sentences in L. We say that (L,T) has the C properties just in case:

- C1. For every closed term t of L, $t = t \in T$;
- C2. For any closed terms t and t' of L, if $\phi(t) \in T$ and $t = t' \in T$ then $\phi(t') \in T$;
- C3. If $\phi \land \psi \in T$ then $\phi \in T$ and $\psi \in T$;
- C4. If $\phi \in T$ and $\psi \in T$ then $\phi \wedge \psi \in T$;
- C5. If $\phi(t) \in T$, where t is a closed term, then $\exists x \phi(x) \in T$;

C6. If $\exists x \phi(x) \in T$ then $\phi(t) \in T$ for some closed term t of L;

C7. If $\phi \in T$ then $\neg \phi \notin T$;

C8. If $\phi \notin T$ then $\neg \phi \in T$.

Definition. Let T be a set of sentences. We say that T is *consistent* just in case $T \not\Rightarrow \bot$. Recall that, by the definition of \Rightarrow , $T \Rightarrow \phi$ if and only if $F \Rightarrow \phi$ for some finite subset F of ϕ . Hence $T \not\Rightarrow \bot$ if and only if there is no finite subset $F \subseteq T$ such that $F \Rightarrow \bot$.

Lemma 1. If T is consistent and satisfies C8, then T satisfies all of the C properties except possibly C6.

Exercise 1. Prove this lemma.

Lemma 2. If T is a consistent set of sentences, then T is contained in a set T^+ that is consistent and such that either $\phi \in T^+$ or $\neg \phi \in T^+$ for every sentence ϕ .

Exercise 2. Prove this lemma.

Lemma 3. Suppose that T is a consistent set of sentences in the language L. Then there is a language $L^w \supseteq L$ and a consistent set $T^w \supseteq T$ of sentences in L^w such that if $\exists x \phi(x) \in T$ then $\phi(c) \in T^w$ for some constant symbol c of L^w .

Exercise 3. Prove this lemma.

Exercise 4. Show that $T \not\Rightarrow \phi$ if and only if $T \cup \{\neg \phi\}$ is consistent.

Exercise 5. Show that $T \not\models \phi$ if and only if $T \cup \{\neg \phi\}$ is satisfiable.

Theorem 4 (Completeness). If $T \models \phi$ then $T \Rightarrow \phi$.

Exercise 6. Explain how completeness can be proved from the Lemmas in this handout, combined with the results from the Compactness handout. Hint: It is enough to show that if T is consistent then T is satisfiable.