The Craig Interpolation Theorem

Hans Halvorson

May 1, 2013

This week we will pick up a couple of topics from the more advanced reaches of logic. The topics we will deal with have to do with whether a theory T has the resources to define a certain concept.

For example, we saw last week that $\operatorname{Th}(\mathbb{N})$ cannot define its own truth predicate. That is, there is no formula $\phi(x)$ of L^* such that $\mathbb{N} \models \phi(\lceil \psi \rceil)$ if and only if $\mathbb{N} \models \psi$.

Theorem 1 (Craig Interpolation). If $\phi \models \psi$, then there is a formula θ such that:

- 1. All non-logical symbols in θ occur in ϕ or ψ ;
- 2. $\phi \models \theta$ and $\theta \models \psi$.

Proof. Suppose that there is no such θ . We will show then that $\{\phi, \neg \psi\}$ is consistent. We will do so by using the concept of inseparable theories. Given theories T_1 in L_1 and T_2 in L_2 , we say that T_1 and T_2 are separable just in case there is a sentence θ of $L_1 \cap L_2$ such that $T_1 \models \theta$ and $T_2 \models \neg \theta$. If there is no such sentence, then we say that T_1 and T_2 are inseparable.

Let L_1 consist of all non-logical vocabulary in ϕ , let L_2 consist of all non-logical vocabulary in ψ . Let $L = L_1 \cup L_2$ and let $L_0 = L_1 \cap L_2$. Let C be a countably infinite set of constant symbols that do not occur in ϕ or ψ , and let $L'_i = L_i \cup C$.

We claim first that $\{\phi\}$ and $\{\neg\psi\}$ are inseparable as theories in L'_1 and L'_2 . Suppose for reductio ad absurdum that $\phi \models \theta(c)$ and $\psi \models \neg \theta(c)$. Since c doesn't occur in ϕ , $\phi \models \forall x \theta(x)$, and $\psi \models \neg \forall x \theta(x)$. But $\forall x \theta(x)$ is a sentence in L_0 , and we supposed already that there is no such sentence. Therefore $\{\phi\}$ and $\{\neg\psi\}$ are inseparable.

Let $\phi_0, \phi_1, \phi_2, \ldots$ be an enumeration of the sentences in L'_1 , and let $\psi_0, \psi_1, \psi_2, \ldots$ be an enumeration of the sentences in L'_2 . We inductively build two families T_i and U_i of theories that have the following features:

- 1. $T_0 = {\phi}, U_0 = {\neg \psi}.$
- 2. If $T_m \cup \{\phi_m\}$ and U_m are inseparable, then $\phi_m \in T_{m+1}$.
- 3. If $U_m \cup \{\psi_m\}$ and T_{m+1} are inseparable, then $\psi_m \in U_{m+1}$.
- 4. If $\phi_m = \exists x \sigma(x)$, and $\phi_m \in T_{m+1}$, then $\sigma(c) \in T_{m+1}$ for a new constant symbol c.
- 5. If $\psi_m = \exists x \sigma(x)$, and $\psi_m \in U_{m+1}$, then $\sigma(c)$ in U_{m+1} for a new constant symbol d.

Let $T_{\omega} = \bigcup_{i \leq \omega} T_i$ and let $U_{\omega} = \bigcup_{i \leq \omega} U_i$. Then the compactness theorem entails that T_{ω} and U_{ω} are inseparable. We claim now that T_{ω} is a maximally consistent theory in L'_1 , U_{ω} is a maximally consistent theory in L'_2 , and $T_{\omega} \cap U_{\omega}$ is a maximally consistent theory in L'_0 . (In fact, we show that these theories have the "C properties" in their respective languages.)

We first show that T_{ω} is maximally consistent. First, T_{ω} is clearly consistent, for if it weren't, then it would imply a contradiction, and so would be separable from U_{ω} . To show that T_{ω} is maximal consistent, we need to show that for every sentence ϕ_m of L'_1 , either $\phi_m \in T_{\omega}$ or $\neg \phi_m \in T_{\omega}$. Suppose for reductio ad absurdum that neither ϕ_m nor $\neg \phi_m$ is in T_{ω} . Note that $\neg \phi_m = \phi_n$ for some n. We assume without loss of generality that n > m. Since ϕ_m is not in T_{ω} , it follows that $T_{\omega} \cup \{\phi_m\}$ and U_{ω} are separated by some θ in L'_0 . That is,

$$T_{\omega} \models \phi_m \to \theta, \qquad U_{\omega} \models \neg \theta.$$

Similarly, $T_{\omega} \cup \{\phi_n\}$ and U_{ω} are separated by some θ' in L'_0 . That is,

$$T_{\omega} \models \phi_n \to \theta', \qquad U_{\omega} \models \neg \theta'.$$

Since $\phi_m \vee \phi_n$ is a tautology, $T_{\omega} \models \theta \vee \theta'$, and $U_{\omega} \models \neg(\theta \vee \theta')$. Thus, T_{ω} and U_{ω} are separable, a contradiction. Thus, T_{ω} is maximal consistent. An analogous argument shows that U_{ω} is maximal consistent.

Now we observe that $T_{\omega} \cap U_{\omega}$ is maximal consistent in L'_0 . Given any formula σ of L'_0 , either $T_{\omega} \models \sigma$ or $T_{\omega} \models \neg \sigma$, and similarly for U_{ω} . But since T_{ω} and U_{ω} are inseparable, they agree on σ , i.e. either both imply σ , or both imply $\neg \sigma$. Thus, $T_{\omega} \cap U_{\omega} \models \sigma$ or $T_{\omega} \cap U_{\omega} \models \neg \sigma$. Therefore $T_{\omega} \cap U_{\omega}$ is maximal consistent.

Now we show that $T_{\omega} \cup U_{\omega}$ is satisfiable, i.e. we produce a model. First, using the Henkin construction, T_{ω} has a model M whose domain consists of equivalence classes of constant symbols in C. Similarly, U_{ω} has a model N whose domain consists of equivalence classes of constant symbols in C.

We claim now that there is an isomorphism $j: N|_{L'_0} \to M|_{L'_0}$. Indeed, both $N|_{L'_0}$ and $M|_{L'_0}$ are models of $T_{\omega} \cap U_{\omega}$, which is maximal consistent in L'_0 .

Now the isomorphism j induces a model of T_{ω} on M. Most importantly, this model agrees with M on what it assigns to elements of L'_0 . So, putting the pieces together, we have a model M of $T_{\omega} \cup U_{\omega}$. Since $\phi \in T_{\omega}$ and $\neg \psi \in U_{\omega}$, it follows that $\phi \not\models \psi$.