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1 A Common Framework for Classical and Quan-
tum Theories

The mathematical formalisms for classical and quantum physics look nothing
alike. This is surely one reason why physics students find it difficult to learn
quantum mechanics. It is surely also one of the reasons why QM fascinates
philosophers — because its formalism seems to resist comparison with the
formalism of classical physics.

Our goal: We want to overcome this situation of apparent Kuhnian in-
commensurability. We want to find a common playing field in which we
can discuss both sorts of theory. We want to find a formalism that encom-
passes both classical physics (particle mechanics, classical field theories) and
quantum mechanics.
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To reach our goal, we begin by describing again the prototypical formalisms
for classical and quantum mechanics. Then we will abstract away until we
find the common elements.

System Q A single particle alone in the world is described by a vector
space (Hilbert space) H, where its state at a given time t is given by a
vector x(t) ∈ H. The physical quantities (misleadingly called “observables”)
correspond to linear operators on H. Actually, we only consider those linear
operators whose expectation values:

〈x,Ax〉

are real numbers, for each x ∈ H. Such linear operators are called self-
adjoint.

System C A single particle alone in the world is described by a “phase
space” R6, where its state at a given time t is given by a pair (q(t),p(t)) ∈
R6, its position and momentum. Here position and momentum are the basic
physical quantities, and other physical quantities are functions of position
and momentum. What sort of mathematical object represents position,
momentum, and the other physical quantities? Position and momentum are
coordinates, but coordinates are just functions from phase space into real
numbers, and so functions of position and momentum are also just functions
from phase space into real numbers.

The state spaces of system Q and system C look, at first glance, to be
similar — they are both vector spaces. But that analogy is purely superficial,
because the physical quantities do not relate in the same way to the structure
of the state space.

We will look elsewhere for our analogy — to the physical quantities. The
physical quantities of System Q have the following structure:

• We can add two linear operators. If A and B are linear operators on
H, then we can set (A+B)v = Av +Bv (using the addition operation
on H) to define another linear operator. We can also multiply a linear
operator by a complex number: (cA)v = c(Av). Plus there is a zero
linear operator, namely the operator that maps each vector to the zero
vector. The overall result is that the set of linear operators on a vector
space is itself a vector space!

• The composition of two linear operators

x 7−→ Bv 7−→ A(Bv),
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has the characteristics of a multiplication operation. i.e. we define
an operation • by (A • B)v = A(Bv). There is also an operator
I (that maps each vector to itself) that serves as a two-sided mul-
tiplicative identity. (But note that this multiplication operation is
not commutative, i.e. in some cases A • B 6= B • A.) Furthermore,
multiplication “plays nicely” with the vector space structure on the
set of linear operators; e.g. A • (B + C) = (A • B) + (A • C) and
c(A •B) = (cA) •B = A • (cB).

• There is a unary operation on linear operators called “taking the ad-
joint.” We denote the adjoint of A by A∗, and it can be checked that
this operation is conjugate linear and reverses multiplication. The
physical quantities are represented by self-adjoint operators, i.e. those
operators satisfying A = A∗.

The physical quantities of System C have the following structure:

• We can add two functions. If f and g are functions on Rn then we can
set (f + g)(x) = f(x) + g(x), and for a ∈ R, (af)(x) = a(f(x)). The
function that is constantly zero also serves as a zero element for this
vector space over R.

Now there is a basic disanalogy here that we need to work around.
While the linear operators on H are a complex vector space, the func-
tions on Rn are a real vector space. It turns out that this disanalogy is
superficial, and we can use a formal trick to avoid it. Look at a larger
class of functions: the complex-valued functions on Rn. Now we have
a complex vector space. But we still say that the physical quantities
are those complex-valued functions that just happen always to have
values in the real numbers (i.e. the imaginary part is zero). So, this is
just like the quantum case: The physical quantities are embedded in
slightly larger space, the “complexification” of the original space.

• Functions can be multiplied “pointwise”. That is, we define a function
f • g by (f • g)(x) = f(x)g(x). (This multiplication operation is
commutative, i.e. f • g = g • f , because multiplication of complex
numbers is commutative.) There is a multiplicative identity, namely
the function that is constantly 1. The multiplication operation also
plays nicely with the vector space structure on the set of functions.

• For each complex-valued function f , there is another function f∗ de-
fined by f∗(x) = f(x). That is, the value of f∗ at x is the complex
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conjugate of the value of f at x. This unary operation f 7→ f∗ is
conjugate linear and reverses multiplication. The physical quantities
are represented by self-adjoint functions, i.e. those functions satisfying
f = f∗.

1.1 ∗-algebras

So now let’s summarize the common structure of the space A of physical
quantities:

• A is a vector space over the complex numbers.

• A has a multiplication operation that plays nicely with the vector
space structure. A also has a multiplicative identity (we henceforth
designate this identity by I). In this case, the mathematicians tell us
to say that A is an algebra over C.

• There is a unary operation ∗ on A that is conjugate linear:

(cA + B)∗ = cA∗ + B∗,

and antimultiplicative:

(AB)∗ = B∗A∗.

An algebra over C with such an operation is called a ∗-algebra.

Note. For historical reasons, the elements of a ∗-algebra are called “opera-
tors.” This does not mean that they actually operate on anything. e.g. in
the case of System C, the elements of A are functions, not operators! This
potentially confusing terminology persists only because there is a deep the-
orem — called the Gelfand-Naimark-Segal representation theorem — that
shows that a ∗-algebra can always be embedded into the set of linear op-
erators on some vector space. (The branch of mathematics that studies
∗-algebras is called operator algebras.)

Note. The CBH paper talks about C∗-algebras rather than ∗-algebras. A
C∗-algebra is a ∗-algebra plus something more: a norm (a special function
that gives a notion of distance between operators) that plays nicely with
the algebraic structure. But we need to specify a norm only in the case
where the algebra A is infinite dimensional (as a vector space). In the
finite dimensional case, the elements of A can be represented as matrices of
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complex numbers, and there is only one possible notion of distance between
the operators, namely the notion we get by looking at the complex number
distance between matrix entries. (More precisely, there is a unique norm —
up to equivalence — on A relative to which addition and scalar multiplication
are continuous.)

Just in case you aren’t yet motivated to study ∗-algebras, we discuss one
more case.

Claim. Every classical probability space corresponds to a ∗-algebra (and so
the theory of ∗-algebras generalizes classical probability theory).

Definition. A classical probability space is a triple 〈X, Σ, µ〉 where X is a
set, Σ is a Boolean σ-algebra of subsets of X, and µ is a probability measure
on Σ. The “events” are the elements of Σ, and the probability of an event
S ∈ Σ is given by µ(S).

Proof. Let (X, Σ, µ) be a classical probability space. The construction of
the corresponding ∗-algebra is straightforward. Let A consist of all complex-
valued functions on X that are measurable relative to Σ. That is, for each
open subset U of complex numbers, we require that f−1(U) ∈ Σ. By using
the pointwise definitions of addition, scalar multiplication, multiplication,
and ∗, it is easy to verify that A is a ∗-algebra. The “events” from the
classical probability space now correspond to operators in A. In particular,
S ∈ Σ corresponds to the characteristic function eS of S:

eS(x) =
{

1 x ∈ S,
0 x 6∈ S.

Note that eS • eS = eS and (eS)∗ = eS . That is, eS behaves just like a
projection operator.

1.2 States

We have found a common framework in the structure of the physical quan-
tities. But now we need to find a place for the states. Let’s recall the role
of the states relative to the quantities in the two different sorts of theories.

System Q Let A denote the algebra of linear operators on a vector space
H. A state is a unit-length vector v, which assigns some complex number
〈v,Av〉 to each A ∈ A. If A represents a physical quantity, i.e. A = A∗, then
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〈v,Av〉 is a real number. So, a state assigns a real number (the “expectation
value”) to each physical quantity. Moreover, this assignment of real numbers
is linear:

〈v, (A + B)v〉 = 〈v,Av〉+ 〈v,Bv〉,

by the very definition of the + operation on A. So, a state is a linear mapping
from A into C, and it assigns real numbers to the self-adjoint elements of A.
Furthermore,

〈v,A∗Av〉 = 〈Av,Av〉 = ‖Av‖2 ≥ 0.

So, this linear mapping always assigns operators of the form A∗A a positive
real number. (Naturally enough, such linear mappings are called “positive.”)
Finally, 〈v, Iv〉 = ‖v‖2 = 1. So, a state is a positive linear functional on A

that assigns 1 to I.

System C Let A denote the algebra of complex-valued functions on phase
space X. A state is a point in X. A point x ∈ X is not a linear mapping
on A, but it is naturally related to one — define a complex-valued function
x̂ on A by

x̂(f) = f(x), (f ∈ A),

and check that it is linear (i.e. it is a linear functional on A). Moreover, we
have x̂(f∗f) = f(x)f(x) = |f(x)|2 ≥ 0. That is, the linear functional x̂ is
positive. And of course x̂(I) = 1, where I is the function on X that takes
the value 1 everywhere.

Classical Probability Theory Let 〈X, Σ〉 be a classical probability space,
and let A be the ∗-algebra of complex-valued measurable functions. What
now is a state? A state is a probability measure on 〈X, Σ〉. But each prob-
ability measure ρ on 〈X, Σ〉 gives rise to a mapping from A into C, namely

f 7−→
∫

X
f dρ.

That is, we integrate f by the measure ρ. (The integral of a complex-valued
function is just the complex number obtained by integrating its real and
imaginary parts separately and putting them back together again.) This
assignment of complex numbers is linear, is positive, and assigns 1 to the
identity function (since ρ is a probability measure).

Abstracting away from these cases, we settle on the following definition.
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Definition. If A is a ∗-algebra, then a state (or expectation functional) on
A is a linear functional ω such that:

• ω is positive, i.e. ω(A∗A) ≥ 0 for all A ∈ A;

• ω(I) = 1.

1.3 Composition of systems

In both the classical and the quantum settings, we must be able to repre-
sent the composite of two systems. Here we show that the two notions of
composition correspond to a common notion in the framework of ∗-algebras.

System Q Given two state spaces H1 and H2, we construct the composite
system as the tensor product H1 ⊗H2. Now the physical quantities of the
composite system are linear operators on H1⊗H2. But it turns out that the
∗-algebra of linear operators on H1⊗H2 is a tensor product of the ∗-algebras
of linear operators on the individual vector spaces. To be more precise, let
A denote the ∗-algebra of linear operators on H1, and let B denote the ∗-
algebra of linear operators on H2. Then the mapping A 7→ A ⊗ I gives an
embedding of A into L(H1 ⊗ H2), and similarly the mapping B 7→ I ⊗ B
gives an embedding of B into L(H1⊗H2). Furthermore, the set of elements
of the form A⊗B spans L(H1⊗H2). That is, every element of L(H1⊗H2)
can be written in the form

(A1 ⊗B1) + · · ·+ (An ⊗Bn),

with Ai ∈ A and Bi ∈ B.

System C Let X and Y be two classical phase spaces. The phase space of
the composite system is the Cartesian product of the two sets X ×Y . That
is, we just take the set of ordered pairs (x, y), where x is a state of the first
system and y is a state of the second system. Thus, the physical quantities
of the composite system are functions on X × Y .

Let A denote the ∗-algebra of functions on X, and let B denote the ∗-
algebra of functions on Y . Then a wonderful thing happens: the ∗-algebra
of functions on X × Y is naturally isomorphic to the tensor product A⊗B

of A and B. This is easy to check in simple cases. For example, if X and Y
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are finite sets, then obviously each complex-valued function on X × Y is a
sum of functions of the form

(x, y) 7−→ fi(x)gi(y).

In the general case, some delicacies are involved — we have to require that
X and Y are compact Hausdorff spaces, and we have to restrict to those
functions on X, Y , and X × Y that are continuous and bounded. (But
this is no real restriction, because each phase space you can imagine can
be embedded into a compact Hausdorff space. The embedding operation is
called a “compactification” of the space.)

Classical Probability Theory The previously discussed case also cov-
ers classical probability theory. If we have two classical probability spaces
〈X1,Σ1〉 and 〈X2,Σ2〉, then the product probability space is 〈X1 ×X2,Σ〉,
where Σ is the smallest Boolean σ-algebra that contains all sets of the form
S1 × S2 with Si ∈ Σi. Then the ∗-algebra constructed from 〈X1 × X2,Σ〉
will just be the tensor product of the ∗-algebras constructed from 〈X1,Σ1〉
and 〈X2,Σ2〉.

Definition. Let ϕ be a mapping from a ∗-algebra A to another ∗-algebra
B. Then ϕ is said to be a homomorphism if ϕ is linear, multiplicative, and
ϕ(A∗) = (ϕ(A))∗ for all A ∈ A. If, additionally, ϕ is one-to-one and onto,
then ϕ is said to be a isomorphism.

2 Distinguishing between Classical and Quantum

When does a ∗-algebra describe a classical system, and when does a ∗-algebra
describe a quantum system?

The first question has a nice crisp answer.

Definition. A ∗-algebra A is said to be abelian just in case AB = BA for
all A,B ∈ A.

Theorem 1 (Gelfand representation). A finite-dimensional ∗-algebra
A is abelian iff A is isomorphic to the ∗-algebra C(X) of complex-valued
functions on a finite set X.

Sketch of proof. The key here is identifying the set X. Let X be the set
of pure states on A, where a pure state is one that cannot be written as a
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mixture of any two distinct states. The set X must be finite, because A is
a finite-dimensional vector space, and the dual vector space (i.e. the linear
functionals on A) has the same dimension as A. Furthermore, each A ∈ A

corresponds to a complex-valued function on X, namely the function that
takes the value ω(A) at the point ω ∈ X. The remainder of the proof is
straightforward.

For the fully general case, we have additional complications, and so are
forced to talk about C∗-algebras.

Theorem 2 (Gelfand representation). A C∗-algebra A is abelian iff A is
isomorphic to the C∗-algebra C(X) of continuous complex-valued functions
on a compact Hausdorff space X.

Sketch of proof. As above. But putting a topology on X is tricky. See a
standard textbook for details.

So, the above result tells us that the phase space picture — i.e. functions
on a set X — is equivalent to having an abelian ∗-algebra. So, a classical
system is one where the physical quantities are commutative.1

The second question is harder to answer. But we are going to stipulate
that (quantum = not-classical). In other words, (quantum = nonabelian
algebra of observables). However, there is no analogue here of the Gelfand
representation. It is not true that each nonabelian ∗-algebra corresponds to
the ∗-algebra of linear operators on some vector space.

We now have to do some work in order to define the distance between two
states on a ∗-algebra. We will only consider the case of a finite-dimensional
∗-algebra. For the general case, we would need to talk about C∗-algebras.

Definition. For each A ∈ A we write A ≥ 0 just in case A = B∗B for some
B ∈ A. We write A ≥ B just in case A−B ≥ 0.

Definition. Let ω be a linear functional on A. Then we set

‖ω‖ = sup{ |ω(A)| : −I ≤ A ≤ I }.
1This oversimplifies issues. Having a commutative algebra of observables is at best a

necessary condition on being “classical.” For example, it is plausible to say that Bohmian
mechanics has a commutative algebra of observables (viz. just the functions of the position
observable), but is not a classical theory.
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When A is finite dimensional, ‖ω‖ < ∞ (as can be seen by checking the
values of ω on a basis for A). The norm ‖·‖ gives us a notion of the distance
between two states: if ω and ρ are states, then ω − ρ is a linear functional,
and we define ‖ω − ρ‖ to be the “distance” between ω and ρ. (One can
verify that d(ω, ρ) = ‖ω − ρ‖ is a metric on the state space of A.)

We now define the “transition probability” between two states of a ∗-algebra.

Recall that the transition probability between two vectors v, w is given
|〈v, w〉|2. We need to translate this into a purely algebraic notion. We
have the following result.

Proposition 3. Let A be the ∗-algebra of linear operators on a finite di-
mensional vector space V . For unit vectors x, y ∈ V , let ωx, ωy denote the
corresponding states of A. Then we have

|〈x, y〉|2 = 1− 1
4
‖ωx − ωy‖2.

Proof. Why spoil your fun?

Definition. If ω and ρ are states of ∗-algebra, then we define their transition
probability by

p(ω/ρ) = 1− 1
4
‖ω − ρ‖2.

Note. The transition probability takes values in [0, 1], is symmetric, and
equals 1 iff ω = ρ.

Definition. We say that ω and ρ are orthogonal just in case p(ω/ρ) = 0,
which is equivalent to ‖ω − ρ‖ = 2.

Theorem 4. Let A be a ∗-algebra. Then the following are equivalent.

1. A is nonabelian.

2. A has non-uniquely decomposable mixtures.

3. There are states ω, ρ of A such that 0 < p(ω/ρ) < 1.

Sketch of proof. The proof of (1) ⇒ (2) is in the CBH paper. The proof of
(2) ⇒ (1) follows from the Gelfand representation in conjunction with the
fact that the states on C(X) are in one-to-one correspondence with measures
on X. Also, the set of measures on X is a “simplex”: each measure on X
gives a unique weighting to the points in X, which are the pure states of
C(X). The proof that (1) ⇔ (3) is also discussed in the CBH paper.
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