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Abstract

The bootstrap is a convenient tool for calculating standard errors of the parameter

estimates of complicated econometric models. Unfortunately, the fact that these models

are complicated often makes the bootstrap extremely slow or even practically infeasible.

This paper proposes an alternative to the bootstrap that relies only on the estimation

of one-dimensional parameters. We introduce the idea in the context of M- and GMM-

estimators. A modification of the approach can be used to estimate the variance of

two-step estimators.
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1 Introduction

The bootstrap is often used for estimating standard errors in applied work. This is true even

when an analytical expression exists for a consistent estimator of the asymptotic variance.

The bootstrap is convenient from a programming point of view because it relies on the same

estimation procedure that delivers the point estimates. Moreover, for estimators that are

based on non–smooth objective functions or on discontinuous moment conditions, direct

estimation of the matrices that enter the asymptotic variance typically forces the researcher

to make choices regarding tuning parameters such as bandwidths or the number of nearest

neighbors. The bootstrap avoids this. Likewise, estimation of the asymptotic variance of

two-step estimators requires calculation of the derivative of the estimating equation in the

second step with respect to the first step parameters. This calculation can also be avoided

by the bootstrap.

Unfortunately, the bootstrap can be computationally burdensome if the estimator is com-

plex. For example, in many structural econometric models, it can take hours to get a single

bootstrap draw of the estimator. This is especially problematic because the calculations in

Andrews and Buchinsky (2001) suggest that the number of bootstrap replications used in

many empirical economics papers is too small for accurate inference. This paper will demon-

strate that in many cases it is possible to use the bootstrap distribution of much simpler

alternative estimators to back out a bootstrap–like estimator of the asymptotic variance of

the estimator of interest. The need for faster alternatives to the standard bootstrap also

motivated the papers by, for example, Davidson and MacKinnon (1999), Andrews (2002),

Heagerty and Lumley (2000), Hong and Scaillet (2006), Kline and Santos (2012) and Arm-

strong, Bertanha, and Hong (2014). Unfortunately, their approaches assume that one can

easily estimate the “Hessian” in the sandwich form of the asymptotic variance of the estima-

tor. In practice, this can be difficult for estimators defined by optimization of non-smooth

objective functions or by discontinuous moment conditions. It can also be cumbersome to

derive explicit expressions for the “Hessian” in smooth problems. The main motivation for

this paper is the difficulty of obtaining an estimator of the “Hessian”. Part of the contribu-

tion of Chernozhukov and Hong (2003) is also to provide an alternative way to do inference

2



without estimating asymptotic variances from their analytical expressions. However, Ko-

rmiltsina and Nekipelov (2012) point out that the method proposed by Chernozhukov and

Hong (2003) can be problematic in practice.

In this paper, we propose a method for estimating the asymptotic variance of a k-

dimensional estimator by a bootstrap method that requires estimation of k2 one-dimensional

parameters in each bootstrap replication. For estimators that are based on non–smooth or

discontinuous objective functions, this will lead to substantial reductions in computing times

as well as in the probability of locating local extrema of the objective function. The con-

tribution of the paper is the convenience of the approach. We do not claim that any of

the superior higher order asymptotic properties of the bootstrap or of the k-step bootstrap

carries over to our proposed approach. However, these properties are not usually the main

motivation for the bootstrap in applied economics.

We first introduce our approach in the context of an extremum estimator (Section 2.1).

We consider a set of simple infeasible one-dimensional estimators related to the estimator of

interest, and we show how their asymptotic covariance matrix can be used to back out the

asymptotic variance of the estimator of the parameter of interest. Mimicking Hahn (1996),

we show that the bootstrap can be used to estimate the joint asymptotic distribution of those

one-dimensional estimators. This suggests a computationally simple method for estimating

the variance of the estimator of the parameter-vector of interest. We then demonstrate in

Section 2.2 that this insight carries over to GMM estimators.

Section 3 shows that an alternative, and even simpler approach can be applied to method

of moments estimators. In Section 4, we discuss why, in general, the number of directional

estimators must be of order O (k2), and we discuss how this can be significantly reduced

when the estimation problem has a particular structure.

It turns out that our procedure is not necessarily convenient for two-step estimators.

In Section 5, we therefore propose a modified version specifically tailored for this scenario.

While our method can be used to estimate the full joint asymptotic variance of the estimators

in the two steps, we focus on estimation of the correction to the variance of the second step

estimator which is needed to account for the estimation error in the first step. We also

discuss how our procedure simplifies when the first step or the second step estimator is
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computationally simple.

We illustrate our approach by Monte Carlo studies in Section 6. The basic ideas intro-

duced in Section 2 are illustrated in a linear regression model estimated by OLS and in a

dynamic Roy Model estimated by indirect inference. The motivation for the OLS example is

that it is well understood and that its simplicity implies that the asymptotics often provide a

good approximation in small samples. This allows us to focus on the marginal contribution

of this paper rather than on issues about whether the asymptotic approximation is useful

in the first place. Of course, the linear regression model does not provide an example of

a case in which one would actually need to use our version of the bootstrap. We therefore

also consider indirect inference estimation of a structural econometric model (a dynamic Roy

Model). This provides an example of the kind of model where we think the approach will be

useful in current empirical research. Finally, we illustrate the extensions discussed in Section

5 by applying our approach to a two-step estimator of a sample selection model inspired by

Helpman, Melitz, and Rubinstein (2008) (see Section 6.3).

We emphasize that the contribution of this paper is the computational convenience of

the approach. We are not advocating the approach in situations in which it is easy to use

the bootstrap. That is why we use the term “poor (wo)man’s bootstrap.” We are also not

implying that higher order refinements are undesirable when they are practical.

2 Basic Idea

2.1 M–estimators

We first consider an extremum estimator of a k-dimensional parameter θ based on a random

sample {zi},

θ̂ = arg min
τ
Qn (τ) = arg min

τ

n∑
i=1

q (zi, τ) .

Subject to the usual regularity conditions, this will have asymptotic variance of the form

Avar
(
θ̂
)

= H−1V H−1,

where V and H are both symmetric and positive definite. When q is a smooth function of τ ,

V is the variance of the derivative of q with respect to τ and H is the expected value of the
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second derivative of q, but the setup also applies to many non-smooth objective functions

such as in Powell (1984).

While it is in principle possible to estimate V and H directly, many empirical researchers

estimate Avar
(
θ̂
)

by the bootstrap. That is especially true if the model is complicated,

but unfortunately, that is also the situation in which the bootstrap can be time–consuming

or even infeasible. The point of this paper is to demonstrate that one can use the bootstrap

variance of much simpler estimators to estimate Avar
(
θ̂
)

.

The basic idea pursued here is to back out the elements of H and V from the covariance

matrix of a number of infeasible one–dimensional estimators of the type

â (δ) = arg min
a
Qn (θ + δa) (1)

where δ is a fixed k-dimensional vector.

The (nonparametric) bootstrap equivalent of (1) is

arg min
a

n∑
i=1

q
(
zbi , θ̂ + δa

)
(2)

where
{
zbi
}

is the bootstrap sample. This is a one-dimensional minimization problem, so

for complicated objective functions, it will be much easier to solve than the minimization

problem that defines θ̂ and its bootstrap equivalent. Our approach will therefore be to

estimate the joint asymptotic variance of â (δ) for a number of directions, δ, and then use

that asymptotic variance estimate to back out estimates of H and V (except for a scale

normalization). In Appendix 1, we mimic the arguments in Hahn (1996) and note that the

joint bootstrap distribution of the estimators â (δ) for different directions, δ, can be used

to estimate the joint asymptotic distribution of â (δ). Although convergence in distribution

does not guarantee convergence of moments, this can be used to estimate the variance of the

asymptotic distribution of â (δ) (by using robust covariance estimators). Since the mapping

(discussed below) from this variance to H and V is continuous, this implies the consistency

of our proposed method.

It is easiest to illustrate why our approach works by considering a case where θ is two–

dimensional. We first note that the estimation problem remains unchanged if q is scaled by a

positive constant c, but in that case H would be scaled by c and V by c2. There is therefore
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no loss of generality in assuming v11 = 1. In other words, the symmetric matrices H and V

depend on five unknown quantities. Now consider two vectors δ1 and δ2 and the associated

estimators â (δ1) and â (δ2). Under the conditions that yield asymptotic normality of the

original estimator θ̂, the infeasible estimators â (δ1) and â (δ2) will be jointly asymptotically

normal with variance

Ωδ1,δ2 = Avar

 â (δ1)

â (δ2)

 (3)

=

 (δ′1Hδ1)
−1
δ′1V δ1 (δ′1Hδ1)

−1
(δ′1Hδ1)

−1
δ′1V δ2 (δ′2Hδ2)

−1

(δ′1Hδ1)
−1
δ′1V δ2 (δ′2Hδ2)

−1
(δ′2Hδ2)

−1
δ′2V δ2 (δ′2Hδ2)

−1

 .

It will be useful to explicitly write the (j, `)th elements of H and V as hj` and vj`,

respectively. In the following, we use ej to denote a vector that has 1 in its j’th element and

zeros elsewhere. With δ1 = e1 and δ2 = e2, we have

Ωe1,e2 =

 h−2
11 h−1

11 v12h
−1
22

h−1
11 v12h

−1
22 h−2

22 v22

 .

The matrix Ωe1,e2 is clearly informative about some of the elements of (h11, h12, h22, v12, v22),

but since it is a symmetric 2-by-2 matrix, it can not provide enough information to identify

all five elements. On the other hand, it turns out that the joint covariance that considers

the estimators in two additional directions does identify all five elements. This is a special

case of the following theorem:

Theorem 1 Let δ1, δ2, δ3, and δ4 be nonproportional 2-by-1 vectors, and let H and V be

symmetric 2-by-2 matrices. Assume that H is positive, definite and that v11 = 1. Then

knowledge of
(
δ′jHδj

)−1
δ′jV δ` (δ′`Hδ`)

−1
for all combinations of δj and δ` identifies H and

V .

Proof. See Appendix 2.

Theorem 1 leaves many degrees of freedom with regard to the choice of directions, δ. In

order to treat all coordinates symmetrically, we focus on directions of the form ej, ej + e`

and ej − e`. We then have:
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Corollary 2 Let H and V be symmetric k-by-k matrices. Assume that H is positive definite

that v11 = 1 and that vjj > 0 for j > 1. Then knowledge of
(
δ′jHδj

)−1
δ′jV δ` (δ′`Hδ`)

−1
for

all combinations of δj and δ` of the form ej, ej + e` (l < j) or ej − e` (l < j) identifies H

and V .

Proof. For each j and `, Theorem 1 identifies v``
vjj

,
vj`
vj

, and all the elements of H scaled by√
v``
vjj

. These can then be linked together by the fact that v11 is normalized to 1.

One can characterize the information about V and H contained in the covariance matrix

of the estimators (â (δ1) , · · · , â (δm)) as a solution to a set of nonlinear equations.

Specifically, define

D =
(
δ1 δ2 · · · δm

)
and C =


δ1 0 · · · 0

0 δ2 · · · 0
...

...
. . .

...

0 0 · · · δm

 . (4)

The covariance matrix for the m one-dimensional estimators is then

Ω = (C ′ (I ⊗H)C)
−1

(D′V D) (C ′ (I ⊗H)C)
−1

which implies that

(C ′ (I ⊗H)C) Ω (C ′ (I ⊗H)C) = (D′V D) .

These need to be solved for the symmetric and positive definite matrices V and H. Corollary

2 above shows that this has a unique solution (except for scale) as long as D contains all

vectors of the from ej, ej + e` and ej − e`.

In practice, one would first estimate the parameter θ. Using B bootstrap samples,{
zbi
}n
i=1

, one would then obtain B draws of the vectors (â (δ1) , · · · , â (δm)). Let Ω̂ denote

n times a robust estimate of their variance matrix. There are then many ways to turn the

identification strategy above into estimation of H and V . One is to pick a set of δ–vectors

and estimate the covariance matrix of the associated estimators. Denote this estimator by

Ω̂. The matrices V and H can then be estimated by solving the nonlinear least squares

problem

min
V,H

∑
j`

({
(C ′ (I ⊗H)C) Ω̂ (C ′ (I ⊗H)C)− (D′V D)

}
j`

)2

(5)

where D and C are defined in (4), v11 = 1, and V and H are positive definite matrices.
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2.2 GMM

We now consider variance estimation for GMM estimators. The starting point is a set of

moment conditions

E [f (zi, θ)] = 0

where zi is “data for observation i”and it is assumed that this defines a unique θ. The GMM

estimator for θ is

θ̂ = arg min
τ

(
1

n

n∑
i=1

f (zi, τ)

)′
Wn

(
1

n

n∑
i=1

f (zi, τ)

)
where Wn is a symmetric, positive definite matrix. Subject to weak regularity conditions

(see Hansen (1982) or Newey and McFadden (1994)) the asymptotic variance of the GMM

estimator has the form

Σ = (Γ′WΓ)
−1

Γ′WSWΓ (Γ′WΓ)
−1

(6)

where W is the probability limit of Wn, S = V [f (zi, θ)] and Γ = ∂
∂θ′
E [f (zi, θ)]. Hahn

(1996) showed that the limiting distribution of the GMM estimator can be estimated by the

bootstrap.

Now let δ be some fixed vector and consider the problem of estimating a scalar parameter,

α, from

E [f (zi, θ + αδ)] = 0

by

â (δ) = arg min
a

(
1

n

n∑
i=1

f (zi, θ + aδ)

)′
Wn

(
1

n

n∑
i=1

f (zi, θ + aδ)

)
.

The asymptotic variance of two such estimators corresponding to different δ would be

Ωδ1,δ2 = Avar

 â (δ1)

â (δ2)

 = (7)

 (δ′1Γ′WΓδ1)
−1
δ′1Γ′WSWΓδ1 (δ′1Γ′WΓδ1)

−1
(δ′1Γ′WΓδ1)

−1
δ′1Γ′WSWΓδ2 (δ′2Γ′WΓδ2)

−1

(δ′1Γ′WΓδ1)
−1
δ′1Γ′WSWΓδ2 (δ′2Γ′WΓδ2)

−1
(δ′2Γ′WΓδ2)

−1
δ′2Γ′WSWΓδ2 (δ′2Γ′WΓδ2)

−1

 .

Of course, (7) has exactly the same structure as (3) and we can therefore back out the

matrices Γ′WΓ and Γ′WSWΓ (up to scale) in exactly the same way that we backed out H

and V above.
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The validity of the bootstrap as a way to approximate the distribution of â (δ) in this

GMM setting is discussed in Appendix 1. The result stated there is a minor modification of

the result in Hahn (1996).

3 Method of Moments

A key advantage of the approach developed in Section 2 is that the proposed bootstrap

procedure is based on a minimization problem that uses the same objective function as

the original estimator. In this section, we discuss modifications of the proposed bootstrap

procedure to just identified methods of moments estimators. It is, of course, possible to

think of this case as a special case of generalized method of moments. Since the GMM

weighting matrix play no role for the asymptotic distribution in the just identified case, (6)

becomes Σ = (Γ′Γ)−1 Γ′SΓ (Γ′Γ)−1 and the approach in Section 2 can be used to recover Γ′Γ

and Γ′SΓ. Here we will introduce an alternative bootstrap approach which can be used to

estimate Γ and S directly. In doing this, we implicitly assume that all elements of Γ are

nonzero.

The just identified method of moments estimators is defined by1

1

n

n∑
i=1

f
(
zi, θ̂

)
≈ 0

and, using the notation from Section 2.2, the asymptotic variance is Σ = (Γ−1)S (Γ−1)
′
.

This is very similar to the expression for the asymptotic variance of the extremum estimator

in Section 2.1. The difference is that the Γ matrix is typically only symmetric if the moment

condition corresponds to the first-order condition for an optimization problem.

We start by noting that there is no loss of generality in normalizing the diagonal elements

of Γ, γpp, to 1 since the scale of f does not matter (at least asymptotically). Now consider

the infeasible one-dimensional estimator, âp`, that solves the p’th moment with respect to

the `’th element of the parameter, holding the other elements of θ fixed at the true value:

1

n

n∑
i=1

fp (zi, θ0 + âp`e`) ≈ 0.

1The “≈” notation is used as a reminder that the sample moments can be discontinuous and that it can

therefore be impossible to make them exactly zero.
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It is straightforward to show that the asymptotic covariance between two such estimators is

Acov (âp`, âjm) =
spj

γp`γjm

where spj and γjp denote the elements in S and Γ, respectively. In particular Avar (âpp) =

spp
/
γ2
pp = spp. Hence spp is identified. Since Acov (âpp, âjj) = spj

/(
γppγjj

)
= spj, spj is

identified as well. In other words, S is identified. Having already identified spj and γjj, the

remaining elements of Γ are identified from Acov (âpp, âjm) = spj
/
γppγjm = spj

/
γjm .

In practice, one would first generate B bootstrap samples,
{
zbi
}n
i=1

. For each sample, the

estimators, âp`, are calculated from

1

n

n∑
i=1

fp

(
zbi , θ̂ + âp`e`

)
≈ 0

The matrix S can then be estimated by ĉov (â11, â22, ..., âkk). The elements of Γ, γjm, can be

estimated by
ŝpj

ĉov(âpp,âjm)
for arbitrary p or by

∑k
`=1w`

ŝp`
ĉov(â``,âjm)

where the weights add up to

one,
∑k

`=1 w` = 1. The weights could be chosen on the basis of an estimate of the variance

of
(

ŝp1
ĉov(â11,âjm)

, ...,
ŝpk

ĉov(âkk,âjm)

)
.

The elements for Γ and S can also be estimated by minimizing∑
p,`,j,m

(
ĉov (âp`, âjm)− spj

γp`γjm

)2

with the normalizations, γjj = 1, spj = sjp and sjj > 0 for all j. Alternatively, it is also

possible to minimize ∑
p,`,j,m

(
ĉov (âp`, âjm) γp`γjm − spj

)2
.

To impose the restriction that S is positive semi-definite, it is convenient to normalize

the diagonal of Γ to be 1 and parameterize S as TT ′, where T is a lower triangular matrix.

4 Reducing the Number of Directional Estimators

Needless to say, choosing D to contain all vectors of the from ej, ej+e` and ej−e` will lead to

a system that is wildly overidentified. Specifically, if the dimension of the parameter vector is

k, then we will be calculating k2 one-dimensional estimators. This will lead to a covariance
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matrix with k4 + k2 unique elements. On the other hand, H and V are both symmetric

k-by-k matrices. In that sense we have k4 + k2 equations with k2 + k − 1 unknowns2.

Unfortunately, it turns out that the bulk of this overidentification is in V . To see this,

suppose that V is known and that one has bootstrapped the joint distribution of m − 1

one-dimensional estimators in directions δ` (` = 1, ...,m − 1). The variance of each of

those one-dimensional estimators is (δ′`Hδ`)
−1
δ′`V δ` (δ′`Hδ`)

−1
. As a result, we can consider

(δ′`Hδ`) known.

Now imagine that we add one more one-dimensional estimator in the direction δm. The

additional information from this will be the variance of the estimator, (δ′mHδm)
−1
δ′mV δm

(δ′mHδm)
−1

, and its covariance with each of the first m − 1 one-dimensional estimators,

(δ′`Hδ`)
−1
δ′`V δm (δ′mHδm)

−1
. Since V is known, and we already know (δ′`Hδ`), the only new

information from the m’th estimator is (δ′mHδm). In other words, each estimator gives one

scalar piece of information about H. Since H has k (k + 1) /2 elements, we need at least

that many one-directional estimators.

Of course, the analysis in the previous section requires one to consider k2 directions while

the discussion above suggests that with known V , calculation of H requires only k (k + 1) /2

one-dimensional estimators. In this sense, the approach in the previous section is wasteful,

because it calculates approximately twice as many one-dimensional estimators as necessary (if

V is known). We now demonstrate one way to reduce the number of one-dimensional estima-

tors by (essentially) a factor of two without sacrificing identification (including identification

of V ). In the previous section, we considered estimators in the directions ej (j = 1, ..., k),

ej + e` (` 6= j) and ej − e` (` 6= j). Here we consider only estimators in the directions ej

(j = 1, ..., k), ej + e` (` < j) and ej − e1 (j > 1).

We start by considering the one-dimensional estimators in the directions ej (j = 1, ..., k),

ej + e1 (j = 2..., k) and ej − e1 (j = 2..., k). There are 3k − 2 such estimators. By the

argument above, their asymptotic variance identifies all elements of the H and V matrices

of the form h11, h1j, hjj, v11, v1j and vjj (after we have normalized v11 = 1). This gives the

diagonal elements of H and V as well as their first rows (and columns). The asymptotic

correlation between â (ej) and â (e`) is vj`/
√
vjjv``. This gives the remaining elements of V .

2H and V both have
(
k2 + k

)
/2 unique elements and we impose one normalization.
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There are (k − 1) (k − 2) /2 remaining elements of H, hj` with j > ` > 1. To recover hj`,

consider the asymptotic covariance between â (e1) and â (ej + e`)

h−1
11 (v1j + v1`) (hjj + h`` + 2hj`)

−1

which yields hj`.

It is therefore possible to identify all of V and all of H with a total of (3k − 2) +

(k − 1) (k − 2) /2 = (k2 + 3k − 2) /2 one-dimensional estimators. One disadvantage of this

approach is that it treats the first element of the parameter vector differently from the others.

We will therefore not pursue it further.

As mentioned above, the bulk of the overidentification is in V . This implies that we can

recover V with much less information if H is known (or easily estimated). Specifically, the

k one-dimensional estimators in the directions ej (j = 1, ..., k) will have covariance matrix

diag
((
h−1

11 , ..., h
−1
kk

))
V diag

((
h−1

11 , ..., h
−1
kk

))
from which V can be recovered.3

4.1 Simplification When Information Equality Holds

Efficient Generalized Method of Moments estimation in Section 2.2 implies that (Γ′WΓ) =

Γ′WSWΓ and maximum likelihood estimation in Section 2.1 implies that H = V . Either

way, the asymptotic variance of the estimator reduces to4 H−1 while the asymptotic variance

of the k one-dimensional estimators in the directions e1, · · · , ek, â (e1) , · · · , â (ek), is

diag (H)−1H diag (H)−1

(see equations (3) and (7)). The asymptotic variance of â (ej) is therefore h−1
jj . In other

words, diag (H)−1 = diag (V (â (e1) , · · · , â (ek))) and hence

H = diag (V (â (e1) , · · · , â (ek)))
−1 V (â (e1) , · · · , â (ek)) diag (V (â (e1) , · · · , â (ek)))

−1 .

Therefore, it is possible to estimate the variance of the parameter of interest by bootstrapping

only k one-dimensional estimators.

3This insight can potentially be used to reduce the computational burden in (5).

4In the case of a GMM estimator, define H to equal (Γ′WΓ).
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4.2 Exploiting Specific Model Structures

It is sometimes possible to reduce the computational burden by exploiting specific properties

of the estimator of interest. For example, consider the case where a subvector can be easily

estimated if one holds the remaining parts of the parameter vector fixed. Regression models

of the type yi = β0 + xα1
i1 β1 + xα2

i2 β2 + εi is a textbook example of this; for fixed α1 and

α2, the β’s can be estimated by OLS. The same applies to regression models with Box-Cox

transformations. The model estimated in Section 6.3 is yet another example where some

parameters are easy to estimate for given values of the remaining parameters.

To explore the benefits of this situation, write θ = (α′, β′)
′
, where β can be easily esti-

mated for fixed α. In the following, we split H and V as

H =

 Hαα Hαβ

Hβα Hββ

 and V =

 Vαα Vαβ

Vβα Vββ

 .

Furthermore, we denote the j’th columns of Hαβ and Vαβ by Hαβj
and Vαβj

, respectively.

Similarly, Hβjβ`
and Vβjβ`

will denote the (j, `)’elements of Hββ and Vββ.

Let θ̃j =
(
α′, βj

)′
. The approach from Section 2.1 can be used to back out Vαα, Vαβj

,

Hαα and Hαβj
. In other words, we know all of H and V except for the off-diagonals of Hββ

and Vββ. If the dimension of α is one, this will require 3k − 2 one-dimensional estimators:

k in the directions ej (j = 1, ..., k), k − 1 in the directions ej + e1 (j > 1) and k − 1 in the

directions ej − e1.

In the process of applying the identification approach from Section 2.1, one also recovers

the correlation of β̂ (δj) and β̂ (δ`). As noted above, this correlation is Vβjβ`

/√
Vβjβj

Vβ`β`
.

As a result, we can also recover all of Vββ.

Now let β̂ be the estimator of β that fixes α. Its variance is H−1
ββ VββH

−1
ββ . So to identify

Hββ, we need to solve an equation of the form A = XVββX. Equations of this form (when

A and Vββ are known) are called Riccati equations, see also Honoré and Hu (2015). When

A and Vββ are symmetric, positive definite matrices, they have a unique symmetric positive

definite solution for X. In other words, one can back out all of Hββ. Of course, when β̂ is

easy to calculate for fixed value of α, it is also often easy to estimate Hββ and Vββ directly

without using the bootstrap. This would further reduce the computational burden.
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5 Two-Step Estimators

Many empirical applications involve a multi-step estimation procedure where each step is

computationally simple and uses the estimates from the previous steps. Heckman’s two-step

estimator is a textbook example of this. Let

di = 1 {z′iα + νi ≥ 0}

yi = di · (x′iβ + εi)

where (νi, εi) has a bivariate normal distribution. The parameter, α, can be estimated by

the probit maximum likelihood estimator, α̂MLE, in a model with di as the outcome and zi

as the explanatory variables. In a second step β is then estimated by the coefficients on xi

in the regression of yi on xi and λi =
φ(z′iα̂MLE)

1−Φ(z′iα̂MLE)
using only the sample for which di = 1.

See Heckman (1979).

Finite dimensional multi–step estimators can be thought of as GMM or method of mo-

ments estimators. As such, their asymptotic variances have a sandwich structure and the

poor (wo)man’s bootstrap approach discussed in Sections 2.2 or 3 can therefore in prin-

ciple be applied. However, the one-dimensional estimation used there does not preserve

the simplicity of the multi-step structure. For example, Heckman’s two-step estimator is

based on two simple optimization problems (probit and OLS) which deliver α̂ and β̂ sep-

arately, whereas the procedure in Section 2.2 uses a more complicated estimation problem

that involves minimization with respect to linear combinations of elements of both α and β.

Likewise, the approach in Section 3 would involve solving the OLS moment equations with

respect to elements of α. The simplicity of the multi-step procedure is lost either way. In

this section we therefore propose a version of the poor (wo)man’s bootstrap that is suitable

for multi-step estimation procedures.

To simplify the exposition, we consider a two-step estimation procedure where the esti-

mator in each step is defined by minimization problems

θ̂1 = arg min
τ1

1

n

∑
Q (zi, τ 1)

θ̂2 = arg min
τ2

1

n

∑
R
(
zi, θ̂1, τ 2

)
(8)
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with limiting first-order conditions

E [q (zi, θ1)] = 0

E [r (zi, θ1, θ2)] = 0

where θ1 and θ2 are k1 and k2-dimensional parameters of interest and q (·, ·) and r (·, ·, ·) are

smooth functions. Although our exposition requires this, the results also apply when one or

both steps involve an extremum estimator with possibly non-smooth objective function or

GMM with possibly discontinuous moment function.

Under random sampling, θ̂ =
(
θ̂
′
1, θ̂
′
2

)′
will have a limiting normal distribution with

asymptotic variance Q1 0

R1 R2

−1 V11 V12

V21 V22

 Q1 0

R1 R2

−1′ , (9)

where

 V11 V12

V21 V22

 = V

 q (zi, θ1)

r (zi, θ1, θ2)

, Q1 = E
[
∂q(zi,θ1)
∂θ1

]
, R1 = E

[
∂r(zi,θ1,θ2)

∂θ1

]
and

R2 = E
[
∂r(zi,θ1,θ2)

∂θ2

]
. Getting R1 and V12 is usually the difficult part. It is often easy to

estimate V11, V22, Q1 and R2 directly, and when that is not possible, they can be estimated

using the poor woman’s bootstrap procedure above. It follows from (9) that the asymptotic

variance of θ̂2 is

R−1
2 R1Q

−1
1 V11Q

−1
1 R′1R

−1
2 −R−1

2 V21Q
−1
1 R′1R

−1
2 −R−1

2 R1Q
−1
1 V12R

−1
2 +R−1

2 V22R
−1
2 , (10)

where the first three terms represent the correction for the fact that θ̂2 is based on an

estimator of θ1.

The matrix in (9) has the usual sandwich structure, and the poor (wo)man’s bootstrap

can therefore be used to back out all the elements of the two matrices involved. However, this

is not necessarily convenient because the poor (wo)man’s bootstrap would use the bootstrap

sample to estimate scalar a where θ = (θ′1, θ
′
2)
′

has been parameterized as θ̂ + aδ. When δ

places weight on elements from both θ1 and θ2, the estimation of a no longer benefits from

the simplicity of the two-step setup.

As noted above, the elements of Q1 and V11 can often be estimated directly and, if not,

they can be estimated by applying the poor (wo)man’s bootstrap to the first step in the
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estimation procedure alone. The matrices R2 and V22 are also often easily obtained or can

be estimated by applying the poor (wo)man’s bootstrap to the second step of the estimation

procedure holding θ̂1 fixed. For example, for Heckman’s two-step estimator, Q1 and V11

can be estimated by the scaled Hessian and score-variance for probit maximum likelihood

estimation; R2 and V22 can be estimated by the (scaled) “X ′X” and “X ′e′eX” where X is

the design matrix in the regression and is e the vector of residuals.

To estimate the elements of R1 and V12, consider the three infeasible scalar estimators

â1 (δ1) = arg min
a1

1

n

∑
Q (zi, θ1 + a1δ1)

â2 (δ1, δ2) = arg min
a2

1

n

∑
R (zi, θ1 + â1δ1, θ2 + a2δ2)

â3 (δ3) = arg min
a3

1

n

∑
R (zi, θ1, θ2 + a3δ3)

for fixed δ1, δ2 and δ3. In Online Appendix 1, we show that choosing δ1 = ej and δ2 = δ3 = em

(for j = 1, .., k1 and m = 1, ...k2) identifies all the elements of V12 and R1. This requires

calculation of k1 + k1k2 + k2 one-dimensional estimators.

While this identification argument relies on three infeasible estimators, the strategy can

be used to estimate V12 and R1 via the bootstrap. In practice, one would first estimate the

parameters θ1 and θ2. Using B bootstrap samples,
{
zbi
}n
i=1

, one would then obtain B draws

of the vector (â1 (ej) , â2 (ej, em) , â3 (em)) for j = 1, .., k1 and m = 1, ...k2, obtained from

â1 (ej) = arg min
a1

1

n

∑
Q
(
zbi , θ̂1 + a1ej

)
â2 (ej, em) = arg min

a2

1

n

∑
R
(
zbi , θ̂1 + â1jej, θ̂2 + a2em

)
â3 (em) = arg min

a3

1

n

∑
R
(
zbi , θ̂1, θ2 + a3em

)
.

These B draws can be used to estimate the variance-covariance matrix of (â1 (ej) , â2 (ej, em) ,

â3 (em)) and one can then mimic the logic in Section 2.1 to estimate V12 and R1.

Many two-step estimation problems have the feature that one of the steps is relatively

easier than the other. For example, the second step in Heckman (1979)’s two-step estimator

is a linear regression, while the first is maximum likelihood. Similarly, the second step

in Powell (1987)’s estimator of the same model also involves a linear regression while the

first step estimator is an estimator of a semiparametric discrete choice model such as Klein
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and Spady (1993). On the other hand, the first step in the estimation procedure used in

Helpman, Melitz, and Rubinstein (2008) is probit maximum likelihood estimation which is

computationally easy relative to the nonlinear least squares used in the second step. In these

situations, it may be natural to apply the one-dimensional bootstrap procedure proposed

here to the more challenging step in the estimation procedure, while re-estimating the entire

parameter vector in the easier step in each bootstrap sample. We next develop this idea for

the case where the first step estimation is easy. In Online Appendix 2, we consider the case

where the second step is relatively easy. In both cases, it turns out that the correction to the

variance for θ̂2 (the first three terms in (10)) can be calculated from the covariances between

a first step estimator and two second-step estimators: one that uses the estimated first step

parameter and one that uses the true value of the first parameter.

Consider again three estimators of the form

â1 = arg min
a1

1

n

∑
Q (zi, θ1 + a1)

â2 (δ) = arg min
a2

1

n

∑
R (zi, θ1 + â1, θ2 + a2δ)

â3 (δ) = arg min
a3

1

n

∑
R (zi, θ1, θ2 + a3δ)

but now note that â1 is a vector of the same dimension as θ1. The asymptotic variance of

(â1, â2 (δ) , â3 (δ)) is
Q1 0 0

δ′R1 δ′R2δ 0

0 0 δ′R2δ


−1

V11 V12δ V12δ

δ′V ′12 δ′V22δ δ′V22δ

δ′V ′12 δ′V22δ δ′V22δ




Q1 δ′R1 0

0 δ′R2δ 0

0 0 δ′R2δ


−1

. (11)

Multiplying (11) yields a matrix with nine blocks. The upper-middle block is − (δ′R2δ)
−1

Q−1
1 V11Q

−1
1 R′1δ +Q−1

1 V12δ (δ′R2δ)
−1

while the upper-right block is Q−1
1 V12δ (δ′R2δ)

−1
. With

R2, V11 and Q1 known and δ = ej, the latter identifies V12δ which is the j’th column of V12.

The difference between the upper-middle block and the upper-right block is − (δ′R2δ)
−1

Q−1
1 V11Q

−1
1 R′1δ. This identifies R′1δ which is the jth columns of R′1.

This approach requires calculation of only 2k2 one-dimensional estimators using the more

difficult second step objective function. Moreover, the approach gives closed form estimates

of V12 and R1.
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6 Illustrations

6.1 Linear Regression

There are no reasons to apply our approach to the estimation of standard errors in a linear

regression model. However, its familiarity makes it natural to use this model to illustrate

the numerical properties of the approach.

We consider a linear regression model,

yi = x′iβ + εi

with 10 explanatory variables generated as follows. For each observation, we first generate

a 9–dimensional normal, x̃i with means equal to 0, variances equal to 1 and all covariances

equal to 1
2
. xi1 to xi9 are then xij = 1 {x̃ij ≥ 0} for j = 1 · · · 3, xij = x̃ij + 1 for j = 4

to 6, xi7 = x̃i7, xi8 = x̃i8/2 and xi9 = 10x̃i9. Finally xi10 = 1. εi is normally distributed

conditional on xi and with variance (1 + xi1)2. We pick β =
(

1
5
, 2

5
, 3

5
, 4

5
, 1, 0, 0, 0, 0, 0

)
. This

yields an R2 of approximately 0.58. The scaling of xi8 and xi9 is meant to make the design

a little more challenging for our approach.

We perform 400 Monte Carlo replications, and in each replication, we calculate the OLS

estimator, the Eicker-Huber-White variance estimator (E), the bootstrap variance estimator

(B) and the variance estimator based on estimating V and H from (5) by nonlinear least

squares (N). The bootstraps are based on 400 bootstrap replications. Based on these, we

calculate t-statistics for testing whether the coefficients are equal to the true values for each

of the parameters. Tables 1 and 2 report the mean absolute differences in these test statistics

for sample sizes of 200 and 2,000, respectively.

Tables 1 and 2 suggest that our approach works very well when the distribution of the

estimator of interest is well approximated by its limiting distribution. Specifically, the dif-

ference between the t-statistics based on our approach and on the regular bootstrap (column

3) is smaller than the difference between the t-statistics based on the bootstrap and the

Eicker-Huber-White variance estimator (column 1).
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6.2 Structural Model

The method proposed here should be especially useful when estimating nonlinear struc-

tural models such as Lee and Wolpin (2006), Altonji, Smith, and Vidangos (2013) and

Dix-Carneiro (2014). To illustrate the usefulness of the poor (wo)man’s bootstrap in such a

situation, we consider a very simple two-period Roy model. There are two sectors, labeled

one and two. A worker is endowed with a vector of sector-specific human capital, xsi, and

sector-specific income in period one is log (wsi1) = x′siβs + εsi1, and sector-specific income in

period two is log (wsi2) = x′siβs+1 {di1 = s} γs+εsi2, where di1 is the sector chosen in period

one. We parameterize (ε1it, ε2it) to be bivariate normally distributed and i.i.d. over time.

Workers maximize discounted income. First consider time period 2. Here di2 = 1 and

wi2 = w1i2 if w1i2 > w2i2, i.e., if

x′1iβ1 + 1 {di1 = 1} γ1 + ε1i2 > x′2iβ2 + 1 {di1 = 2} γ2 + ε2i2

and di2 = 2 and wi2 = w2i2 otherwise. In time period 1, workers choose sector 1 (di1 = 1) if

w1i1 + ρE [max {w1i2, w2i2}|x1i, x2i, di1 = 1] > w2i1 + ρE [max {w1i2, w2i2}|x1i, x2i, di1 = 2]

and sector 2 otherwise. In Online Appendix 3, we demonstrate that the expected value of

the maximum of two dependent lognormally distributed random variables is

exp
(
µ1 + σ2

1

/
2
)(

1− Φ

(
µ2 − µ1 − (σ2

1 − τσ1σ2)√
σ2

2 − 2τσ1σ2 + σ2
1

))

+ exp
(
µ2 + σ2

2

/
2
)(

1− Φ

(
µ1 − µ2 − (σ2

2 − τσ1σ2)√
σ2

2 − 2τσ1σ2 + σ2
1

))
where the underlying normal random variables have means µ1 and µ2, variances σ2

1 and σ2
2 and

correlation τ . This gives closed-form solutions for w1i1+ρE [max {w1i2, w2i2}|x1i, x2i, di1 = 1]

and w2i1 + ρE [max {w1i2, w2i2}|x1i, x2i, di2 = 1].

We will now imagine a setting in which the econometrician has a data set with n observa-

tions from this model. xis is composed of a constant and a normally distributed component

that is independent across sectors and across individuals. In the data-generating process,

β1 = (1, 1)′, β2 =
(

1
2
, 1
)′

, γ1 = 0, γ2 = 1., σ2
1 = 2, σ2

2 = 3, τ = 0 and ρ = 0.95. In the

estimation, we treat ρ and τ as known, and we estimate the remaining parameters. Fixing
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the discount rate parameter is standard and we assume independent errors for computa-

tional convenience. The sample size is n = 2000 and the results presented here are based

on 400 Monte Carlo replications, each using 1000 bootstrap samples to calculate the poor

(wo)man’s bootstrap standard errors.

The model is estimated by indirect inference matching the following parameters in the

regressions (all estimated by OLS, with the additional notation that di0 = 0): (i) The re-

gression coefficients and residual variance in a regression of wit on xi1, xi2, and 1 {dit−1 = 1}

using the subsample of observations in sector 1. (ii) The regression coefficients and residual

variance in a regression of wit on xi1, xi2, and 1 {dit−1 = 1} using the subsample of observa-

tions in sector 2. And (iii) the regression coefficients in a regression1 {dit = 1} on xi1 and

xi2 and 1 {dit−1 = 1}.

Let â be the vector of those parameters based on the data and let V̂ [α̂] be the associ-

ated estimated variance. For a candidate vector of structural parameters, θ, the researcher

simulates the model 2 times (holding the draws of the errors constant across different values

of θ), calculates the associated α̃ (θ) and estimates the model parameters by minimizing

(â− α̃ (θ))′ V̂ [α̂]−1 (â− α̃ (θ))

over θ. Note that α̃ (θ) is discontinuous in the parameter because there will be some values

of θ for which the individual is indifferent between the sectors.

This example is deliberately chosen in such a way that we can calculate the asymptotic

standard errors. See Gourieroux and Monfort (2007). We use these as a benchmark when

evaluating our approach. Tables 3 and 4 present the results. With the possible exception of

the intercept in sector 1, both the standard errors suggested by the asymptotic distribution

and the standard errors suggested by the poor woman’s bootstrap approximate the standard

deviation of the estimator well (Table 3). The computation times make it infeasible to

perform a Monte Carlo study that includes the usual bootstrap method. For example,

estimating the model with 2000 observations once took approximately 900 seconds. By

comparison, calculating all the one-dimensional parameters (once) took less that 5 seconds

on the same computer. In addition, the computing cost of minimizing equation (5) was

approximately 90 seconds. With 1000 bootstrap replications, this suggests that it would

20



take more than 10 days to do the regular bootstrap in one sample, while our approach would

take approximately one and a half hours. Table 4 illuminates the performance of the proposed

bootstrap procedure for doing inference by comparing the rejection probabilities based on

our standard errors to the rejection probabilities based the true asymptotic standard errors.

6.3 Two-Step Estimation

In this section, we illustrate the use of the poor (wo)man’s bootstrap applied to two-step

estimators using a modification of the empirical model in Helpman, Melitz, and Rubinstein

(2008). We first estimate the model and then use the estimated model and the explanatory

variables as the basis for a Monte Carlo study.

The econometric model has the feature that the first step can be estimated by a standard

probit. We therefore use it to illustrate the situation where the first estimation step is easy

as discussed in Section 5. The model also has the feature that in the second step, some of

the parameters can be estimated by ordinary least squares for fixed values of the remaining

parameters. The example will therefore also illustrate simplification described in Section 4.2.

Online Appendix 4 gives the mathematical for combining the insights in Sections 5 and 4.2.

Finally, we have deliberately chosen the example to be simple enough that we can compare

our approach to the regular bootstrap in the Monte Carlo study.

6.3.1 Model Specification

In one of their specifications, Helpman, Melitz, and Rubinstein (2008) use a parametric

two-step sample selection estimation procedure that assumes joint normality to estimate a

model for trade flows from an exporting country to an importing country. The estimation

involves a probit model for positive trade flow from one country to another in the first step,

followed by nonlinear least squares in the second step using only observations that have the

dependent variable equal to one in the probit. It is a two step estimation problem, because

some of the explanatory variables in the second step are based on the index estimated in

the first step. In this specification, the expected value of the logarithm of trade flows in the
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second equation is of the form

x′β1 + λ (−z′γ̂) β2 + log (exp (β3 (λ (−z′γ̂) + z′γ̂))− 1) (12)

where γ̂ is the first step probit estimator and λ (·) = ϕ(·)
1−Φ(·) . Since probit maximum likelihood

estimator is based on maximizing a concave objective function, this is an example where the

first step estimation of γ is computationally relatively. Moreover, the second step has the

feature discussed in Section 4.2, namely that it is easy to estimate some parameters (here

β1 and β2) conditional on the rest (here β3). One of the key explanatory variables in x and

in z is logarithm of the distance between countries.

As pointed out in Santos Silva and Tenreyro (2015), this econometrics specification is

problematic, both because of the presence of the sample selection correction term inside a

nonlinear function and because it is difficult to separately identify β2 and β3. To illustrate

our approach, we therefore consider a modified reduced form specification that has some

of the same features as the model estimated in Helpman, Melitz, and Rubinstein (2008).

Specifically, we estimate a sample selection model for trade in which the selection equation

(i.e., the model for positive trade flows) is the same as in Helpman, Melitz, and Rubinstein

(2008) but in which the outcome (i.e., the logarithm of trade flows) is linear using the

same explanatory variables as Helpman, Melitz, and Rubinstein (2008) except that we allow

distance to enter through a Box-Cox transformation rather than through its logarithm.

Following Helpman, Melitz, and Rubinstein (2008) we estimate this model by a two-step

procedure, but in our case the second step involves nonlinear least squares estimation of the

equation

yi = β0

xλ0 − 1

λ
+ x′1β1 + λ (−z′γ̂) β2 + errori

where x0 is the distance between the exporting country and the importing country. When

x1 contains a constant or a saturated set of dummies, this model can be written as

yi = β̃0x
λ
0 + x′1β̃1 + λ (−z′γ̂) β2 + errori. (13)

Like (12), equation (13) has one parameter that enters nonlinearly. As a result, the second

step again has the feature discussed in Section 4.2.
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Helpman, Melitz, and Rubinstein (2008) use a panel from 1980 to 1989 of the trade flows

(exports) from each of 158 countries to the remaining 157 countries5. In the specification

that we mimic, the explanatory variables in the selection equation are (1) distance (the

logarithm of the geographical distance between the capitals), (2) border (a binary variable

indicating if both countries share a common border), (3) island (a binary variable indicating

if both countries in the pair are islands), (4) landlock (indicating if both countries in the

pair are landlocked), (5) colony (indicating if one of the countries in the pair colonialized

the other one), (6) legal (indicating if both countries in the pair have the same legal

system, (7) language (indicating if both countries in the pair speak the same language),

(8) religion (a variable measuring the similarity in the shares of Protestants, Catholics and

Muslims in the countries in the pair; a higher number indicates a bigger similarity), (9) CU

(indicating whether two countries have the same currency or have a 1:1 exchange rate), (10)

FTA (indicating if both countries are part of a free trade agreement), (11) WTOnone and

(12) WTOboth (binary variables indicating if neither or both countries are members of the

WTO, respectively). They also include a full set of year dummies as well as import country

and export country fixed effects (which are estimated as parameters). The explanatory

variables in the second equation are the same variables except for religion.

In our Monte Carlo study, we use the same explanatory variables as Helpman, Melitz,

and Rubinstein (2008) except that we replace the country fixed effects by continent fixed

effects. The reason is that when we simulated from the estimated model, we frequently

generated data from which it was impossible to estimate all the probit parameters6.

To illustrate that our method can be used in “less than ideal” situations, we generate

data from the full model, but estimate the selection equation (the probit) using only data

from 1980. This is because some papers estimate the first step and the second step using

different samples. Using only data from one year in the selection necessitates replacing the

year-dummies in the selection equation with a constant. In the second estimation step, we

use data from all the years and include a full set of year dummies.

5See http://scholar.harvard.edu/melitz/publications.

6Even when we replaced the country dummies with continent dummies, we sometimes generated data

sets from which we could not estimate the probit parameters. When that happened, we re-drew the data.
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6.3.2 Monte Carlo Results

We first estimate the model using the actual data. This gives the values of γ, λ, β̃0, β̃1

and β2 to be used in the data generating process. We then set the correlation between the

errors in the selection and the outcome equations to 0.5 and we calibrate the variance of the

error in the second equation to 32. This roughly matches the variance of the residuals in the

second equation in the data generating process to the same variance in the data.

The Monte Carlo study uses 400 replications. These replications use the same explana-

tory variables as in the actual data, and they only differ in the draws of the errors. In

each replication, we estimate the parameters and calculate the standard errors using (1)

the asymptotic variance that corrects for the two-step estimation, (2) the poor (wo)man’s

bootstrap and (3) the regular bootstrap7. In each Monte Carlo replication, we use the same

1000 samples to calculate the two versions of the bootstraps standard errors. The results

are reported Tables 5–7.

Table 5 reports the standard deviations of the parameters estimates across the 400 Monte

Carlo replications in column 1. Columns 2 reports the means of the estimated standard errors

using the asymptotic expressions with correction for the two-step estimation. Columns 3 and

4 report the means of the standard errors estimated using the poor (wo)mans bootstrap and

the regular bootstrap, respectively. The results for the year dummies and continent fixed

effects are omitted. The bootstrap and the poor (wo)mans bootstrap are almost identical

in all cases. Moreover, in almost all cases, they are closer to the actual than the standard

errors based on the asymptotic distribution. Table 6 report almost identical results for the

medians of the estimated standard errors.

Table 7 presents the size of the T-statistics that test that the parameters equal their true

values using different estimates of the standard errors. The results based on the bootstrap

and the poor (wo)man’s bootstrap are again almost identical in all cases. They are also close

to those based on the asymptotic distribution with correction for the two-step estimation.

7By concentrating out the coefficients that enter linearly in the second step, it is trivial to do a full

bootstrap in this example. We deliberately set it up like this in order to compare the results of our approach

to the results from a regular bootstrap.
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7 Conclusion

This paper has demonstrated that it is possible to estimate the asymptotic variance for broad

classes of estimators using a version of the bootstrap that only relies on the estimation of

one-dimensional parameters. We believe that this method can be useful for applied re-

searchers who are estimating complicated models in which it is difficult to derive or estimate

the asymptotic variance of the estimator of the parameters of interest. The contribution

relative to the bootstrap is to provide an approach that can be used when researchers find it

time-consuming to reliably re-calculate the estimator of the whole parameter vector in each

bootstrap replication. This will often be the case when the estimator requires solving an

optimization problem to which one cannot apply gradient-based optimization techniques. In

those cases, one-dimensional search will not only be faster, but also more reliable.

We have discussed the method in the context of the regular (nonparametric) bootstrap

applied to extremum estimators, generalized method of moments estimators and two-step

estimators. However, the same idea can be used without modification for other bootstrap

methods such as the weighted bootstrap or the block bootstrap.
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Appendix 1: Validity of Bootstrap

Hahn (1996) established that under random sampling, the bootstrap distribution of the

standard GMM estimator converges weakly to the limiting distribution of the estimator

in probability. Here, we state the same result under the same regularity conditions for

estimators that treat part of the parameter vector as known. Whenever possible, we use the

same notation and the same wording as Hahn (1996). In particular, oωp (·), Oω
p (·), oB (·) and

OB (·) are defined on page 190 of that paper. A number of papers have proved the validity

of the bootstrap in different situations. We choose to tailor our derivation after Hahn (1996)

because it so closely mimics the classic proof of asymptotic normality of GMM estimators

presented in Pakes and Pollard (1989).

We first review Hahn’s (1996) setup. The parameter of interest θ0 is the unique solution

to G (t) = 0 where G (t) ≡ E [g (Zi, t)], Zi is the vector of data for observation i and g is a

known function. The parameter space is Θ.

Let Gn (t) ≡ 1
n

n∑
i=1

g (Zi, t). The GMM estimator is defined by

τn ≡ arg min
t
|AnGn (t)|

where An is a sequence of random matrices (constructed from {Zi}) that converges to a

nonrandom and nonsingular matrix A.

The bootstrap estimator is the GMM estimator defined in the same way as τn but from

a bootstrap sample
{
Ẑn1, . . . , Ẑnn

}
. Specifically

τ̂n ≡ arg min
t

∣∣∣ÂnĜn (t)
∣∣∣

where Ĝn (t) ≡ 1
n

n∑
i=1

g
(
Ẑni, t

)
. Ân is constructed from

{
Ẑni

}n
i=1

in the same way that An

was constructed from {Zi}ni=1.

Our result is based on the same GMM setting as in Hahn (1996). The difference is

that we are primarily interested in an infeasible estimator that assumes that one part of

the parameter vector is known. We will denote the true parameter vector by θ0, which we

partition as θ′0 =
(
θ1

0, θ
2
0

)
.
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The infeasible estimator of θ0, which assumes that θ2
0 is known, is

γn = arg min
t

∣∣∣∣AnGn

((
t
θ2

0

))∣∣∣∣ (14)

or

γn = arg min
t
Gn

((
t
θ2

0

))′
A′nAnGn

((
t
θ2

0

))
Let the dimensions of θ1

0 and θ2
0 be k1 and k2, respectively. It is convenient to define E1 =

(Ik1×k1 : 0k1×k2)
′ and E2 = (0k2×k1 : Ik2×k2)

′. Post-multiplying a matrix by E1 or E2 will

extract the first k1 or the last k2 columns of the matrix, respectively.

Let (
θ̂

1
, θ̂

2
)′

= arg min
(t1,t2)

Gn

((
t1

t2

))′
A′nAnGn

((
t1

t2

))
be the usual GMM estimator of θ0. We consider the bootstrap estimator

γ̂n = arg min
t

∣∣∣∣∣ÂnĜn

(
t

θ̂
2

)∣∣∣∣∣ (15)

where Ĝn (t) ≡ 1
n

n∑
i=1

g
(
Ẑni, t

)
. Ân is constructed from

{
Ẑni

}n
i=1

in the same way that An

was constructed from {Zi}ni=1. Below we adapt the derivations in Hahn (1996) to show that

the distribution of γ̂n can be used to approximate the distribution of γn. We use exactly the

same regularity conditions as Hahn (1996). The only exception is that we need an additional

assumption to guarantee the consistency of γ̂n. For this it is sufficient that the moment

function, G, is continuously differentiable and that the parameter space is compact. This

additional stronger assumption would make it possible to state the conditions in Proposition

1 more elegantly. We do not restate those conditions because that would make it more

difficult to make the connection to Hahn’s (1996) result.

Proposition 1 (Adaption of Hahn’s (1996) Proposition 1) Suppose that the conditions

in Proposition 1 of Hahn (1996) are satisfied. In addition suppose that G is continu-

ously differentiable and that the parameter space is compact. Then γn = θ1
0 + op (1) and

γ̂n = θ1
0 + oB (1) .
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Theorem 3 (Adaption of Hahn’s (1996) Theorem 1) Assume that the conditions in

Proposition 1 and Theorem 1 of Hahn (1996) are satisfied. Then

n1/2
(
γn − θ1

0

)
=⇒ N (0,Ω)

and

n1/2 (γ̂n − γn)
p

=⇒ N (0,Ω)

where

Ω = (E ′1Γ′A′AΓE1)
−1
E ′1Γ′A′ASA′AΓE1 (E ′1Γ′A′AΓE1)

−1

and

V = E
[
g (Zi, θ0) g (Zi, θ0)′

]
The proofs of Proposition 1 and Theorem 3 are provided in Online Appendix 5.

Theorem 3 is stated for GMM estimators. This covers extremum estimators and the

two-step estimators as special cases. Theorem 3 also covers the case where one is interested

in different infeasible lower-dimensional estimators as in Section 4.2. To see this, consider

two estimators of the form

â (δ1) = arg min
a

(
1

n

n∑
i=1

f (xi, θ0 + aδ1)

)′
Wn

(
1

n

n∑
i=1

f (xi, θ0 + aδ1)

)
and

â (δ2) = arg min
a

(
1

n

n∑
i=1

f (xi, θ0 + aδ2)

)′
Wn

(
1

n

n∑
i=1

f (xi, θ0 + aδ2)

)
and let An denote the matrix-square root of Wn. We can then write

(â (δ1) , â (δ2)) = arg min

∣∣∣∣∣
(
An 0
0 An

)
1

n

n∑
i=1

(
f (xi, θ0 + aδ1)
f (xi, θ0 + aδ2)

)∣∣∣∣∣
which has the form of (14).

Appendix 2: Proof of Theorem 1

Let ωδ`,δk = (δ′`Hδ`)
−1
δ′`V δj

(
δ′jHδj

)−1
, let hj` denote the elements of H and write V =(

1 ρv
ρv v2

)
with v > 0. We use ej to denote a vector that has 1 in its j’th element and

zeros elsewhere.
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First, note that we can always rotate the coordinate system so that two of the directions

are e1 and e2. Let (a1, a2)′ and (b1, b2)′ be the other two directions (after the rotation).

Second, note that√
1

ωe1,e1
= h11

ωe1,e2√
ωe1e1ωe2e2

=
h−1

11 ρvh
−1
22√

h2
11h

2
22v

2
= ρ

√
ωe2e2 =

v

h22

≡ k1

ωe1,(a1,a2)′ = h−1
11 (a1 + a2ρv)

(
a2

1h11 + 2a1a2h12 + a2
2h22

)−1 ≡ k2

ωe1,(b1,b2)′ = h−1
11 (b1 + b2ρv)

(
b2

1h11 + 2b1b2h12 + b2
2h22

)−1 ≡ k3

So ρ and h11 are identified. Using the third equation, the last two equations can be written

as

k2h11

(
a2

1h11 + 2a1a2h12 + a2
2h22

)
= (a1 + a2ρk1h22)

k3h11

(
b2

1h11 + 2b1b2h12 + b2
2h22

)
= (b1 + b2ρk1h22)

or (
2k2h11a1a2 k2h11a

2
2 − a2ρk1

2k3h11b1b2 k3h11b
2
2 − b2ρk1

)(
h12

h22

)
=

(
a1 − a2

1k2h
2
11

b1 − b2
1k3h

2
11

)
. (16)

Below, we show that the determinant of the matrix on the left cannot be zero. As a result,

(16) has a unique solution for h12 and h22. Once we have h22, we then get the remaining

unknown, v, from v = k1h22. This will complete the proof.

The determinant of the matrix on the left of (16) is

(2k2h11a1a2)
(
k3h11b

2
2 − b2ρk1

)
−
(
k2h11a

2
2 − a2ρk1

)
(2k3h11b1b2)

=
(

2h−1
11 (a1 + a2ρv)

(
a2

1h11 + 2a1a2h12 + a2
2h22

)−1
h11a1a2

)
(
h−1

11 (b1 + b2ρv)
(
b2

1h11 + 2b1b2h12 + b2
2h22

)−1
h11b

2
2 − b2ρ

v

h22

)
−
(
h−1

11 (a1 + a2ρv)
(
a2

1h11 + 2a1a2h12 + a2
2h22

)−1
h11a

2
2 − a2ρ

v

h22

)
(

2h−1
11 (b1 + b2ρv)

(
b2

1h11 + 2b1b2h12 + b2
2h22

)−1
h11b1b2

)
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=
(2 (a1 + a2ρv) a1a2)

(a2
1h11 + 2a1a2h12 + a2

2h22)

(
(b1 + b2ρv) b2

2h22

(b2
1h11 + 2b1b2h12 + b2

2h22)h22

− b2ρv (b2
1h11 + 2b1b2h12 + b2

2h22)

(b2
1h11 + 2b1b2h12 + b2

2h22)h22

)

− 2 (b1 + b2ρv) b1b2

(b2
1h11 + 2b1b2h12 + b2

2h22)(
(a1 + a2ρv) a2

2h22

(a2
1h11 + 2a1a2h12 + a2

2h22)h22

− a2ρv (a2
1h11 + 2a1a2h12 + a2

2h22)

(a2
1h11 + 2a1a2h12 + a2

2h22)h22

)

=
(2 (a1 + a2ρv) a1a2)

(a2
1h11 + 2a1a2h12 + a2

2h22)

(
b1b

2
2h22 − b2ρv (b2

1h11 + 2b1b2h12)

(b2
1h11 + 2b1b2h12 + b2

2h22)h22

)

− 2 (b1 + b2ρv) b1b2

(b2
1h11 + 2b1b2h12 + b2

2h22)

(
a1a

2
2h22 − a2ρv (a2

1h11 + 2a1a2h12)

(a2
1h11 + 2a1a2h12 + a2

2h22)h22

)
.

Multiplying out and cancelling terms, we get

2a1a2b1b2 (a1b2 − a2b1) (h11v
2ρ2 − 2h12vρ+ h22)

(b2
1h11 + 2b1b2h12 + b2

2h22) (a2
1h11 + 2a1a2h12 + a2

2h22)h22

= 2a1a2b1b2 (a1b2 − a2b1)

[
(−ρv, 1)H (−ρv, 1)′

][
(b1, b2)H (b1, b2)′

] [
(a1, a2)H (a1, a2)′

]
[e′2He2]

Each of the four terms in brackets is positive because H is positive definite. Moreover, since

none of four directions is proportional to another a1a2b1b2 (a1b2 − a2b1) cannot be zero.

Appendix 3. Exploiting the Structure in Helpman et al

In the specification used by Helpman, Melitz, and Rubinstein (2008) and in the modification

in Section 6.3.1, it is relatively easy to re-estimate the first step parameter in each bootstrap

replication. In the second step it is easy to estimate β1 and β2 for given value of β3, since

this is a linear regression. We therefore consider estimators of the form

â1 = arg min
a1

1

n

∑
Q (zi, θ1 + a1)

â2 (∆) = arg min
a2

1

n

∑
R (zi, θ1 + â1, θ2 + ∆a2)

â3 (∆) = arg min
a3

1

n

∑
R (zi, θ1, θ2 + ∆a3)
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where â2 (∆) and â3 (∆) are now the vectors of dimension l < k2.and ∆ is k2-by-l. In the

application, ∆ is either pick out the vector (β′1, β
′
2)
′

or the scalar β3.

Using the notation from Section 5, the asymptotic variance of (â1, â2 (∆) , â3 (∆)) is Q1 0 0
∆′R1 ∆′R2∆ 0

0 0 ∆′R2∆

−1 V11 V12∆ V12∆
∆′V ′12 ∆′V22∆ ∆′V22∆
∆′V ′12 ∆′V22∆ ∆′V22∆

 Q1 R′1∆ 0
0 ∆′R2∆ 0
0 0 ∆′R2∆

−1

Using the expression for partitioned inverse and multiplying out gives a matric with nine

blocks. The second and third blocks in the first row of blocks are−Q−1
1 V11Q

−1
1 R′1∆ (∆′R2∆)−1+

Q−1
1 V12∆ (∆′R2∆)−1 and Q−1

1 V12∆ (∆′R2∆)−1, respectively. With R2 and Q1 known and

∆ = (Il×l : 0l×k2)
′ , the block Q−1

1 V12∆ (∆′R2∆)−1 identifies ∆V ′12 which is the first l row of

V ′12 (and hence the first l columns of V12). The difference between the last two blocks in the

top row of blocks is −Q−1
1 V11Q

−1
1 R′1∆ (∆′R2∆)−1. This identifies R′1∆, which is the first l

columns of R′1.
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Table 1: Ordinary Least Squares, n = 200

Mean Absolute Difference in T-Statistics

|TE − TB| |TE − TN | |TB − TN |

β1 0.031 0.027 0.017

β2 0.029 0.023 0.017

β3 0.031 0.027 0.018

β4 0.032 0.027 0.020

β5 0.033 0.026 0.020

β6 0.032 0.029 0.022

β7 0.031 0.025 0.020

β8 0.033 0.027 0.020

β9 0.034 0.026 0.021

β10 0.033 0.034 0.018

Table 2: Ordinary Least Squares, n = 2000

Mean Absolute Difference in T-Statistics

|TE − TB| |TE − TN | |TB − TN |

β1 0.025 0.025 0.004

β2 0.021 0.021 0.003

β3 0.024 0.024 0.004

β4 0.023 0.022 0.004

β5 0.025 0.025 0.004

β6 0.025 0.025 0.004

β7 0.026 0.025 0.004

β8 0.024 0.023 0.004

β9 0.022 0.023 0.003

β10 0.023 0.023 0.006
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Table 3: Structural Model

Asymptotic and Estimated Standard Errors

Actual Asymptotic Mean BS Median BS

β11 0.044 0.049 0.053 0.052

β12 0.040 0.041 0.042 0.042

β21 0.050 0.051 0.052 0.052

β22 0.039 0.040 0.041 0.041

γ1 0.027 0.028 0.031 0.031

γ2 0.064 0.068 0.069 0.068

log (σ1) 0.023 0.026 0.026 0.026

log (σ2) 0.018 0.019 0.018 0.018

Table 4: Structural Model

Rejection Probabilities (20% level of significance)

Asymptotic s.e. Poor Woman’s BS s.e.

β11 15% 13%

β12 16% 17%

β21 21% 19%

β22 19% 18%

γ1 19% 16%

γ2 17% 17%

log (σ1) 15% 15%

log (σ2) 18% 19%
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Table 5: Selection Model

Means of Estimated Standard Errors

Actual With Correction Poor Woman’s BS Regular BS

β̃0 0.290 0.278 0.280 0.283

border 0.077 0.072 0.080 0.080

island 0.052 0.054 0.059 0.059

landlocked 0.098 0.093 0.100 0.100

legal 0.024 0.023 0.025 0.025

language 0.026 0.025 0.027 0.027

colonial 0.074 0.068 0.074 0.074

CU 0.127 0.119 0.129 0.128

FTA 0.106 0.094 0.104 0.105

WTOnone 0.045 0.040 0.044 0.043

WTOboth 0.025 0.023 0.026 0.026

Mills 0.052 0.047 0.051 0.051

λ 0.060 0.054 0.057 0.058

37



Table 6: Selection Model

Medians of Estimated Standard Errors

Actual With Correction Poor Woman’s BS Regular BS

β̃0 0.290 0.277 0.278 0.280

border 0.077 0.072 0.080 0.079

island 0.052 0.054 0.059 0.059

landlocked 0.098 0.093 0.100 0.100

legal 0.024 0.023 0.025 0.025

language 0.026 0.025 0.027 0.027

colonial 0.074 0.068 0.074 0.073

CU 0.127 0.119 0.129 0.128

FTA 0.106 0.094 0.103 0.105

WTOnone 0.045 0.040 0.043 0.043

WTOboth 0.025 0.023 0.026 0.026

Mills 0.052 0.046 0.050 0.051

λ 0.060 0.054 0.057 0.058
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Table 7: Selection Model

Rejection Probabilities (20% level of significance)

With Correction Poor Woman’s BS Regular BS

β̃0 24% 23% 23%

border 26% 20% 20%

island 20% 16% 16%

landlocked 20% 17% 18%

legal 25% 20% 20%

language 21% 18% 18%

colonial 25% 21% 22%

CU 21% 19% 19%

FTA 24% 20% 20%

WTOnone 25% 22% 22%

WTOboth 25% 19% 19%

Mills 27% 24% 23%

λ 25% 23% 21%
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Note that the numbering of sections, theorems. etc is as in the paper.

1 Online Appendix 1: Identification of the Variance of

Two-Step Estimators

Consider the two-step estimation problem in equation (8) in Section 5. As mentioned, the

asymptotic variance of θ̂2 is

R−12 R1Q
−1
1 V11Q

−1
1 R′1R

−1
2 −R−12 V21Q

−1
1 R′1R

−1
2 −R−12 R1Q

−1
1 V12R

−1
2 +R−12 V22R

−1
2

where

 V11 V12

V21 V22

 = var

 q (zi, θ1)

r (zi, θ1, θ2)

, Q1 = E
[
∂q(zi,θ1)
∂θ1

]
, R1 = E

[
∂r(zi,θ1,θ2)

∂θ1

]
and R2 = E

[
∂r(zi,θ1,θ2)

∂θ2

]
. It is often easy to estimate V11, V22, Q1 and R2 directly. When

it is not, they can be estimated using the poor woman’s bootstrap procedure above. We

therefore focus on V12 and R1.

∗Mailing Address: Department of Economics, Princeton University, Princeton, NJ 08544-1021. Email:

honore@Princeton.edu.

†Mailing Address: Economic Research Department, Federal Reserve Bank of Chicago, 230 S. La Salle

Street, Chicago, IL 60604. Email: lhu@frbchi.org.
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Consider one-dimensional estimators of the form

â1 (δ1) = arg min
a1

1

n

∑
Q (zi, θ1 + a1δ1)

â2 (δ1, δ2) = arg min
a2

1

n

∑
R (zi, θ1 + â1δ1, θ2 + a2δ2)

â3 (δ3) = arg min
a3

1

n

∑
R (zi, θ1, θ2 + a3δ3) .

The asymptotic variance of (â1 (δ1) , â2 (δ1, δ2) , â3 (δ3)) is
δ′1Q1δ1 0 0

δ′1R1δ2 δ′2R2δ2 0

0 0 δ′3R2δ3


−1

δ′1V11δ1 δ′1V12δ2 δ′1V12δ3

δ′1V
′
12δ2 δ′2V22δ2 δ′2V22δ3

δ′1V
′
12δ3 δ′2V22δ3 δ′3V22δ3




δ′1Q1δ1 δ′2R
′
1δ1 0

0 δ′2R2δ2 0

0 0 δ′3R2δ3


−1

.

When δ2 = δ3, this has the form


q1 0 0

r1 r2 0

0 0 r2


−1

Vq Vqr Vqr

Vqr Vr Vr

Vqr Vr Vr




q1 r1 0

0 r2 0

0 0 r2


−1

where q1 = δ′1Q1δ1, r1 = δ′1R1δ2, r2 = δ′2R2δ2, Vq = δ′1V11δ1, Vqr = δV12δ2 and Vr = δ′2V22δ2.

This can be written as


Vq
q21

1
q1r2Vqr −

Vq
q21

r1
r2

1
q1r2Vqr

1
q1

(
1
r2Vqr −

Vq
q1
r1
r2

)
1
r2

(
Vr
r2 −

1
q1
r1
r2Vqr

)
− 1
q1
r1
r2

(
1
r2Vqr −

Vq
q1
r1
r2

)
1
r2

(
Vr
r2 −

1
q1
r1
r2Vqr

)
1
q1r2Vqr

Vr
r22
− 1
q1
r1
r22
Vqr

Vr
r22


Normalize so Vq = 1, and parameterize Vr = v2 and Vqr = ρ

√
VqVr = ρv gives the matrix

1
q21

1
q1r2ρv −

1
q21

r1
r2

1
q1r2ρv

1
q1

(
1
r2ρv −

1
q1
r1
r2

)
1
r2

(
v2
r2 −

1
q1
r1
r2ρv

)
− 1
q1
r1
r2

(
1
r2ρv −

1
q1
r1
r2

)
1
r2

(
v2
r2 −

1
q1
r1
r2ρv

)
1
q1r2ρv

v2

r22
− 1
q1
r1
r22
ρv v2

r22


Denoting the (`,m)’th element of this matrix by ω`m we have
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ω33 − ω32 =
1

q1

r1
r22
ρv =

r1
r2
ω31

ω33 − ω32

ω31

=
r1
r2

ρ =
ω31√
ω11ω33

Since r2 is know, this gives r1 and ρ. We also know v from ω33.

This implies that the asymptotic variance of (â1 (δ1) , â2 (δ1, δ2) , â3 (δ3)) identifies δ′1V12δ2

and δ′1R1δ2. Choosing δ1 = ej and δ2 = em (for j = 1, .., k1 and m = 1, ...k2) recovers all the

elements of V12 and R1.

Online Appendix 2: Bootstrapping with Easy Second-

Step Estimator

Consider the case of a two-step estimator like the one in Section 5, but where the first step

estimator is computationally challenging while it is feasible to recalculate the second step

estimator in each bootstrap sample. We again consider estimators of the form

â1 (δ) = arg min
a1

1

n

∑
Q (zi, θ1 + a1δ)

â2 (δ) = arg min
a2

1

n

∑
R (zi, θ1 + â1δ, θ2 + a2)

â3 = arg min
a3

1

n

∑
R (zi, θ1, θ2 + a3)

but now â2 is a vector of the same dimension as θ2. The asymptotic variance of (â1 (δ) , â2 (δ) , â3)

is 
δ′Q1δ 0 0

R1δ R2 0

0 0 R2


−1

δ′V11δ δ′V12 δ′V12

V ′12δ V22 V22

V ′12δ V22 V22




δ′Q1δ δ′R′1 0

0 R2 0

0 0 R2


−1

. (1)

Multiplying (1) yields a matrix with nine blocks. The upper-middle block is − (δ′Q1δ)
−1

(δ′V11δ) (δ′Q1δ) δ
′R′1R

−1
2 +(δ′Q1δ)

−1
δ′V12R

−1
2 while the upper-right block is (δ′Q1δ)

−1
δ′V12R

−1
2 .

The latter identifies δ′V12. When δ = ej this is the j’th row of V12. The difference between

3



the upper-middle block and upper-right block gives − (δ′Q1δ)
−1

(δ′V11δ)
−1

(δ′Q1δ) δ
′R′1R

−1
2

which in turn gives δ′R′1 or R′1δ. When δ equals ej this is the j’th column of R1.

This approach requires calculation of only 2k1 one-dimensional estimators using the more

difficult first step objective function. Moreover, as above, the approach gives closed form

estimates of V12 and R1.

Online Appendix 3: Maximum of Two Lognormals

Let (X1, X2)
′ have a bivariate normal distribution with mean (µ1, µ2)

′ and variance

 σ2
1 τσ1σ2

τσ1σ2 σ2
2


and let (Y1, Y2)

′ = (exp (X1) , exp (X2))
′. We are interested in E [max {Y1, Y2}].

Kotz, Balakrishnan, and Johnson (2000) present the moment-generating function for

min {X1, X2} is

M (t) = E [exp (min {X1, X2} t)] = exp
(
tµ1 + t2σ2

1

/
2
)

Φ

(
µ2 − µ1 − t (σ2

1 − τσ1σ2)√
σ2
2 − 2τσ1σ2 + σ2

1

)

+ exp
(
tµ2 + t2σ2

2

/
2
)

Φ

(
µ1 − µ2 − t (σ2

2 − τσ1σ2)√
σ2
2 − 2τσ1σ2 + σ2

1

)

Therefore

E [max {Y1, Y2}] = E [Y1] + E [Y2]− E [min {Y1, Y2}]

= E [exp (X1)] + E [exp (X2)]− E [min {exp (X1) , exp (X2)}]

= exp
(
µ1 + σ2

1

/
2
)

+ exp
(
µ2 + σ2

2

/
2
)
− E [exp (min {X1, X2})]

= exp
(
µ1 + σ2

1

/
2
)

+ exp
(
µ2 + σ2

2

/
2
)

− exp
(
µ1 + σ2

1

/
2
)

Φ

(
µ2 − µ1 − (σ2

1 − τσ1σ2)√
σ2
2 − 2τσ1σ2 + σ2

1

)

− exp
(
µ2 + σ2

2

/
2
)

Φ

(
µ1 − µ2 − (σ2

2 − τσ1σ2)√
σ2
2 − 2τσ1σ2 + σ2

1

)

= exp
(
µ1 + σ2

1

/
2
)(

1− Φ

(
µ2 − µ1 − (σ2

1 − τσ1σ2)√
σ2
2 − 2τσ1σ2 + σ2

1

))

+ exp
(
µ2 + σ2

2

/
2
)(

1− Φ

(
µ1 − µ2 − (σ2

2 − τσ1σ2)√
σ2
2 − 2τσ1σ2 + σ2

1

))
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Online Appendix 4: Implementation with Two-Step Es-

timation

In the discussion in Section 5, we identified R1 and V12 in closed forms using a subset of the

information contained in the asymptotic variance of (â1, â2, â3). Here we present one way to

use all the components of this variance to estimate R1 and V12. For simplicity, we consider

the case where one recalculates the entire first step estimator in each bootstrap sample.

Consider estimating the second step parameter in J different directions in each bootstrap

replication,

â1 = arg min
a1

1

n

∑
Q (zi, θ1 + a1)

â2 (δj) = arg min
a2

1

n

∑
R (zi, θ1 + â1, θ2 + a2δj)

â3 (δj) = arg min
a3

1

n

∑
R (zi, θ1, θ2 + a3δj) .

The asymptotic variance of
(
â1, {â2 (δj)}Jj=1 , {â3 (δj)}Jj=1

)
is of the form Ω = A−1B (A′)−1

where

A =


Q1 0 0

D′R1 C ′ (I ⊗R2)C 0

0 0 C ′ (I ⊗R2)C

 and B =


V11 V12D V12D

D′V ′12 D′V22D D′V22D

D′V ′12 D′V22D D′V22D

 .

This gives
V11 V12D V12D

D′V ′12 D′V22D D′V22D

D′V ′12 D′V22D D′V22D

 (2)

=


Q1 0 0

D′R1 C ′ (I ⊗R2)C 0

0 0 C ′ (I ⊗R2)C

Ω


Q1 R′1D 0

0 C ′ (I ⊗R2)C 0

0 0 C ′ (I ⊗R2)C

 .
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This suggests estimating V12 and R1 by minimizing

∑
i,j





V̂11 V12D V12D

D′V ′12 D′V̂22D D′V̂22D

D′V ′12 D′V̂22D D′V̂22D



−


Q1 0 0

D′R1 C ′
(
I ⊗ R̂2

)
C 0

0 0 C ′
(
I ⊗ R̂2

)
C

 Ω̂


Q1 R′1D 0

0 C ′
(
I ⊗ R̂2

)
C 0

0 0 C ′
(
I ⊗ R̂2

)
C



ij


2

over V12 and R1.

When δj = ej, D = I and C ′ (I ⊗R2)C = diag (R2)
def
= M . Using this and multiplying

out the right hand side of (2) gives


V11 V12 V12

V ′12 V22 V22

V ′12 V22 V22

 =


Q1 0 0

R1 M 0

0 0 M




Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33




Q1 R′1 0

0 M 0

0 0 M

 =


Q1Ω11Q1 Q1Ω11R

′
1 +Q1Ω12M Q1Ω13M

R1Ω11Q1 +MΩ21Q1 R1Ω11R
′
1 +MΩ21R

′
1 +R1Ω12M +MΩ22M R1Ω13M +MΩ23M

MΩ13Q1 MΩ31R
′
1 +MΩ32M MΩ33M

 .

The approach in Section 5 uses the last two parts of the first row to identify V12 and R1. The

upper left and lower right hand corners are not informative about V12 or R1. Moreover, the

matrix is symmetric. All the remaining information is therefore contained in the last two

parts of the second row. R1 enters the middle block nonlinearly, which leaves three blocks

of equations that are linear in V12 and R1:

V12 = Q1Ω11R
′
1 +Q1Ω12M

V12 = Q1Ω13M

V23 = R1Ω13M +MΩ23M.

These overidentify V12 and R1, but they could be combined through least squares.
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Online Appendix 5: Validity of Bootstrap

Hahn (1996) established that under random sampling, the bootstrap distribution of the

standard GMM estimator converges weakly to the limiting distribution of the estimator

in probability. In this appendix, we establish the same result under the same regularity

conditions for estimators that treat part of the parameter vector as known. Whenever

possible, we use the same notation and the same wording as Hahn (1996). In particular,

oωp (·), Oω
p (·), oB (·) and OB (·) are defined on page 190 of that paper. A number of papers

have proved the validity of the bootstrap in different situations. We choose to tailor our

derivation after Hahn (1996) because it so closely mimics the classic proof of asymptotic

normality of GMM estimators presented in Pakes and Pollard (1989).

We first review Hahn’s (1996) results. The parameter of interest θ0 is the unique solution

to G (t) = 0 where G (t) ≡ E [g (Zi, t)], Zi is the vector of data for observation i and g is a

known function. The parameter space is Θ.

Let Gn (t) ≡ 1
n

n∑
i=1

g (Zi, t). The GMM estimator is defined by

τn ≡ arg min
t
|AnGn (t)|

where An is a sequence of random matrices (constructed from {Zi}) that converges to a

nonrandom and nonsingular matrix A.

The bootstrap estimator is the GMM estimator defined in the same way as τn but from

a bootstrap sample
{
Ẑn1, . . . , Ẑnn

}
. Specifically

τ̂n ≡ arg min
t

∣∣∣ÂnĜn (t)
∣∣∣

where Ĝn (t) ≡ 1
n

n∑
i=1

g
(
Ẑni, t

)
. Ân is constructed from

{
Ẑni

}n
i=1

in the same way that An

was constructed from {Zi}ni=1.

Hahn (1996) proved the following results.

Proposition 0 (Hahn Proposition 1) Assume that

(i) θ0 is the unique solution to G (t) = 0;

(ii) {Zi} is an i.i.d. sequence of random vectors;
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(iii) inf |t−θ0|≥δ |G (t)| > 0 for all δ > 0

(iv) supt |Gn (t)−G (t)| −→ 0 as n −→∞ a.s.;

(v) E [supt |g (Zi, t)|] <∞;

(vi) An = A+ op (1) and Ân = A+ oB (1) for some nonsingular and nonrandom matrix A;

and

(vii) |AnGn (τn)| ≤ op (1) + inft |AnGn (t)| and
∣∣∣ÂnĜn (τ̂n)

∣∣∣ ≤ oB (1) + inft

∣∣∣ÂnĜn (t)
∣∣∣

Then τn = θ0 + op (1) and τ̂n = θ0 + oB (1) .

Theorem 0 (Hahn Theorem 1) Assume that

(i) Conditions (i)-(vi) in Proposition 0 are satisfied;

(ii) |AnGn (τn)| ≤ op
(
n−1/2

)
+inft |AnGn (t)| and

∣∣∣ÂnĜn (τ̂n)
∣∣∣ ≤ oB

(
n−1/2

)
+inft

∣∣∣ÂnĜn (t)
∣∣∣;

(iii) limt→θ0 e (t, θ0) = 0 where e (t, t′) ≡ E
[
(g (Zi, t)− g (Zi, t

′))2
]1/2

;

(iv) for all ε > 0,

lim
δ→0

lim sup
n→∞

P

(
sup

e(t,t′)≤δ
|Gn (t)−G (t)−Gn (t′) +G (t′)| ≥ n−1/2ε

)
= 0;

(v) G (t) is differentiable at θ0, an interior point of the parameter space, Θ, with derivative

Γ with full rank; and

(vi) {g (·, t) : t ∈ Θ} ⊂ L2 (P ) and Θ is totally bounded under e (·, ·).

Then

n1/2 (τn − θ0) = −n−1/2 (Γ′A′AΓ)
−1

Γ′A′AnGn (θ0) + op (1) =⇒ N (0,Ω)

and

n1/2 (τ̂n − τn)
p

=⇒ N (0,Ω)

where

Ω = (Γ′A′AΓ)
−1

Γ′A′AV A′AΓ (Γ′A′AΓ)
−1

8



and

V = E
[
g (Zi, θ0) g (Zi, θ0)

′]
Our paper is based on the same GMM setting as in Hahn (1996). The difference is

that we are primarily interested in an infeasible estimator that assumes that one part of

the parameter vector is known. We will denote the true parameter vector by θ0, which we

partition as θ′0 =
(
θ10, θ

2
0

)
.

The infeasible estimator of θ0, which assumes that θ20 is known, is

γn = arg min
t

∣∣∣∣∣∣AnGn

 t

θ20

∣∣∣∣∣∣ (3)

or

γn = arg min
t
Gn

 t

θ20

′A′nAnGn

 t

θ20


Let the dimensions of θ10 and θ20 be k1 and k2, respectively. It is convenient to define E1 =

(Ik1×k1 : 0k1×k2)
′ and E2 = (0k2×k1 : Ik2×k2)

′. Post-multiplying a matrix by E1 or E2 will

extract the first k1 or the last k2 columns of the matrix, respectively.

Let (
θ̂
1
, θ̂

2
)′

= arg min
(t1,t2)

Gn

 t1

t2

′A′nAnGn

 t1

t2


be the usual GMM estimator of θ0. We consider the bootstrap estimator

γ̂n = arg min
t

∣∣∣∣∣∣ÂnĜn

 t

θ̂
2

∣∣∣∣∣∣ (4)

where Ĝn (t) ≡ 1
n

n∑
i=1

g
(
Ẑni, t

)
. Ân is constructed from

{
Ẑni

}n
i=1

in the same way that An

was constructed from {Zi}ni=1. Below we adapt the derivations in Hahn (1996) to show that

the distribution of γ̂n can be used to approximate the distribution of γn. We use exactly the

same regularity conditions as Hahn (1996). The only exception is that we need an additional

assumption to guarantee the consistency of γ̂n. For this it is sufficient that the moment

function, G, is continuously differentiable and that the parameter space is compact. This
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additional stronger assumption would make it possible to state the conditions in Proposition

0 more elegantly. We do not restate those conditions because that would make it more

difficult to make the connection to Hahn’s (1996) result.

Proposition 1 (Adaption of Hahn’s (1996) Proposition 1) Suppose that the conditions

in Proposition 0 are satisfied. In addition suppose that G is continuously differentiable and

that the parameter space is compact. Then γn = θ10 + op (1) and γ̂n = θ10 + oB (1) .

Proof. As in Hahn (1996), the proof follows from standard arguments. The only difference

is that we need

sup
t

∣∣∣∣∣∣Ĝn

 t

θ̂
2

−G
 t

θ20

∣∣∣∣∣∣ = oωp (1)

This follows from∣∣∣∣∣∣Ĝn

 t

θ̂
2

−G
 t

θ20

∣∣∣∣∣∣
=

∣∣∣∣∣∣Ĝn

 t

θ̂
2

−G
 t

θ̂
2

+G

 t

θ̂
2

−G
 t

θ20

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Ĝn

 t

θ̂
2

−G
 t

θ̂
2

∣∣∣∣∣∣+

∣∣∣∣∣∣G
 t

θ̂
2

−G
 t

θ20

∣∣∣∣∣∣
As in Hahn (1996), the first part is oωp (1) by bootstrap uniform convergence. The sec-

ond part is bounded by sup
∣∣∣∂G(t1,t2)

∂t2

∣∣∣ ∣∣∣θ̂2 − θ20∣∣∣. This is Op

(
θ̂
2
− θ20

)
= Op

(
n−1/2

)
by the

assumptions that G is continuously differentiable and that the parameter space is compact.

Theorem 3 (Adaption of Hahn’s (1996) Theorem 1) Assume that the conditions in

Proposition 1 and Theorem 0 are satisfied. Then

n1/2
(
γn − θ10

)
=⇒ N (0,Ω)

and

n1/2 (γ̂n − γn)
p

=⇒ N (0,Ω)
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where

Ω = (E ′1Γ
′A′AΓE1)

−1
E ′1Γ

′A′ASA′AΓE1 (E ′1Γ
′A′AΓE1)

−1

and

V = E
[
g (Zi, θ0) g (Zi, θ0)

′]
Proof. We start by showing that

 γ̂n

θ̂
2

 is
√
n-consistent, and then move on to show

asymptotic normality.

Part 1.
√
n–consistency. For θ̂

2
root-n consistency follows from Pakes and Pollard

(1989). Following Hahn (1996), we start with the observation that∣∣∣∣∣∣ÂnĜn

 γ̂n

θ̂
2

− AG
 γ̂n

θ̂
2

− ÂnĜn (θ0) + AG (θ0)

∣∣∣∣∣∣
≤

∣∣∣Ân∣∣∣
∣∣∣∣∣∣Ĝn

 γ̂n

θ̂
2

−G
 γ̂n

θ̂
2

− Ĝn (θ0) +G (θ0)

∣∣∣∣∣∣+
∣∣∣Ân − A∣∣∣

∣∣∣∣∣∣G
 γ̂n

θ̂
2

−G (θ0)

∣∣∣∣∣∣
≤ oB

(
n−1/2

)
+ oB (1)

∣∣∣∣∣∣G
 γ̂n

θ̂
2

−G (θ0)

∣∣∣∣∣∣ (5)

Combining this with the triangular inequality we have∣∣∣∣∣∣AG
 γ̂n

θ̂
2

− AG (θ0)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ÂnĜn

 γ̂n

θ̂
2

− AG
 γ̂n

θ̂
2

− ÂnĜn (θ0) + AG (θ0)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ÂnĜn

 γ̂n

θ̂
2

− ÂnĜn (θ0)

∣∣∣∣∣∣
≤ oB

(
n−1/2

)
+ oB (1)

∣∣∣∣∣∣G
 γ̂n

θ̂
2

−G (θ0)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ÂnĜn

 γ̂n

θ̂
2

− ÂnĜn (θ0)

∣∣∣∣∣∣ (6)

The nonsingularity of A implies the existence of a constant C1 > 0 such that |Ax| ≥ C1 |x| for

all x. Applying this fact to the left-hand side of (6) and collecting the G

 γ̂n

θ̂
2

−G (θ0)
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terms yield

(C1 − oB (1))

∣∣∣∣∣∣G
 γ̂n

θ̂
2

−G (θ0)

∣∣∣∣∣∣ (7)

≤ oB
(
n−1/2

)
+

∣∣∣∣∣∣ÂnĜn

 γ̂n

θ̂
2

− ÂnĜn (θ0)

∣∣∣∣∣∣
≤ oB

(
n−1/2

)
+

∣∣∣∣∣∣ÂnĜn

 γ̂n

θ̂
2

∣∣∣∣∣∣+
∣∣∣ÂnĜn (θ0)

∣∣∣
≤ oB

(
n−1/2

)
+

∣∣∣∣∣∣ÂnĜn

 θ10

θ̂
2

∣∣∣∣∣∣+
∣∣∣ÂnĜn (θ0)

∣∣∣ (8)

Stochastic equicontinuity implies that

ÂnĜn

 θ10

θ̂
2

 = Ân

G
 θ10

θ̂
2

−G (θ0)

+ ÂnĜn (θ0) + ÂnoB
(
n−1/2

)
or∣∣∣∣∣∣ÂnĜn

 θ10

θ̂
2

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣Ân

G
 θ10

θ̂
2

−G (θ0)

∣∣∣∣∣∣+
∣∣∣ÂnĜn (θ0)

∣∣∣+
∣∣∣Ân∣∣∣ oB (n−1/2)

so (8) implies

(C1 − oB (1))

∣∣∣∣∣∣G
 γ̂n

θ̂
2

−G (θ0)

∣∣∣∣∣∣
≤ oB

(
n−1/2

)
+

∣∣∣∣∣∣Ân
G

 θ10

θ̂
2

−G (θ0)

∣∣∣∣∣∣+ 2
∣∣∣Ân∣∣∣ ∣∣∣Ĝn (θ0)

∣∣∣+
∣∣∣Ân∣∣∣ oB (n−1/2)

≤ oB
(
n−1/2

)
+
∣∣∣Ân∣∣∣

∣∣∣∣∣∣
G

 θ10

θ̂
2

−G (θ0)

∣∣∣∣∣∣+ 2
∣∣∣Ân∣∣∣ ∣∣∣Ĝn (θ0)−Gn (θ0)

∣∣∣
+2
∣∣∣Ân∣∣∣ |Gn (θ0)|+

∣∣∣Ân∣∣∣ oB (n−1/2)
= oB

(
n−1/2

)
+OB (1)Op

(
n−1/2

)
+OB (1)OB

(
n−1/2

)
+OB (1)Op

(
n−1/2

)
+OB (1) oB

(
n−1/2

)
(9)

Note that

G

 γ̂n

θ20

 = ΓE1

(
γ̂n − θ10

)
+ oB (1)

∣∣γ̂n − θ10∣∣
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As above, the nonsingularity of Γ implies nonsingularity of ΓE1, and hence, there exists a

constant C2 > 0 such that |ΓE1x| ≥ C2 |x| for all x. Applying this to the equation above

and collecting terms give

C2

∣∣γ̂n − θ10∣∣ ≤ ∣∣ΓE1

(
γ̂n − θ10

)∣∣ =

∣∣∣∣∣∣G
 γ̂n

θ20

−G (θ0)

∣∣∣∣∣∣+ oB (1)
∣∣γ̂n − θ10∣∣ (10)

Combining (10) with (9) yields

(C1 − oB (1)) (C2 − oB (1))
∣∣γ̂n − θ10∣∣

≤ (C1 − oB (1))

∣∣∣∣∣∣G
 γ̂n

θ20

−G (θ0)

∣∣∣∣∣∣
≤ oB

(
n−1/2

)
+OB (1)Op

(
n−1/2

)
+OB (1)OB

(
n−1/2

)
+OB (1)Op

(
n−1/2

)
+OB (1) oB

(
n−1/2

)
or ∣∣γ̂n − θ10∣∣ ≤ OB (1)

(
Op

(
n−1/2

)
+OB

(
n−1/2

))
Part 2: Asymptotic Normality. Let

L̃n (t) = AΓ

 t

θ̂
2

−
 θ10

θ20

+ ÂnĜn (θ0)

Define

σ̂n = arg min
t

∣∣∣L̃n (t)
∣∣∣ =

arg min
t

AΓ

 t

θ̂
2

−
 θ10

θ20

+ ÂnĜn (θ0)

′
AΓ

 t

θ̂
2

−
 θ10

θ20

+ ÂnĜn (θ0)


Solving for σ̂n gives

σ̂n = θ10 −B−111 (B′21x+ C ′1)

= θ10 −
(
(ΓE1)

′A′AΓE1

)−1(
(ΓE1)

′A′AΓE2

(
θ̂
2
− θ20

)
+ (ΓE1)

′A′ÂnĜn (θ0)
)

= θ10 −
(
(ΓE1)

′A′AΓE1

)−1
(ΓE1)

′A′(
AΓE2

(
θ̂
2
− θ20

)
+ ÂnĜn (θ0)

)
13



Mimicking the calculation on the top of page 195 of Hahn (1996),

(σ̂n − γn) = −
(
(ΓE1)

′A′AΓE1

)−1
(ΓE1)

′A′
(
AΓE2

(
θ̂
2
− θ20

)
+ ÂnĜn (θ0)

)
+ (E ′1Γ

′A′AΓE1)
−1
E ′1Γ

′A′AGn (θ0)

= −
(
(ΓE1)

′A′AΓE1

)−1
(ΓE1)

′A′(
AΓE2

(
θ̂
2
− θ20

)
+ ÂnĜn (θ0)− AGn (θ0)

)
= −∆

(
ρn + ÂnĜn (θ0)− AGn (θ0)

)
where ∆ =

(
(ΓE1)

′A′AΓE1

)−1
(ΓE1)

′A′ and ρn = AΓE2

(
θ̂
2
− θ20

)
. Or

(σ̂n − γn + ∆ρn) = −∆
(
ÂnĜn (θ0)− AGn (θ0)

)
From this it follows that σ̂n − γn = OB

(
n−1/2

)
.

Next we want to argue that
√
n (σ̂n − γ̂n) = oB (1).

We next proceed as in Hahn (1996) (page 194). First we show that∣∣∣∣∣∣ÂnĜn

 γ̂n

θ̂
2

− L̃n (γ̂n)

∣∣∣∣∣∣ = oB
(
n−1/2

)
(11)

It follows from Hahn∣∣∣∣∣∣ÂnĜn

 γ̂n

θ̂
2

− AG
 γ̂n

θ̂
2

− ÂnĜn (θ0) + AG (θ0)

∣∣∣∣∣∣ = oB
(
n−1/2

)
We thus have∣∣∣∣∣∣ÂnĜn

 γ̂n

θ̂
2

− L̃n (γ̂n)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ÂnĜn

 γ̂n

θ̂
2

− AΓ

 γ̂n

θ̂
2

−
 θ10

θ20

− ÂnĜn (θ0)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ÂnĜn

 γ̂n

θ̂
2

− AG
 γ̂n

θ̂
2

− ÂnĜn (θ0) + AG (θ0)

∣∣∣∣∣∣
+

∣∣∣∣∣∣AG
 γ̂n

θ̂
2

− AG (θ0)− AΓ

 γ̂n

θ̂
2

− θ0
∣∣∣∣∣∣

= oB
(
n−1/2

)
+ o

 γ̂n

θ̂
2

− θ0


= oB
(
n−1/2

)
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This uses the fact that

 γ̂n

θ̂
2

 is
√
n-consistent.

Next, we will show that∣∣∣∣∣∣ÂnĜn

 σ̂n

θ̂
2

− L̃n (σ̂n)

∣∣∣∣∣∣ = oB
(
n−1/2

)
(12)

We have∣∣∣∣∣∣ÂnĜn

 σ̂n

θ̂
2

− L̃n (σ̂n)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ÂnĜn

 σ̂n

θ̂
2

− AΓ

 σ̂n

θ̂
2

− θ0
− ÂnĜn (θ0)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ÂnĜn

 σ̂n

θ̂
2

− AG
 σ̂n

θ̂
2

− ÂnĜn (θ0) + AG (θ0)

∣∣∣∣∣∣
+

∣∣∣∣∣∣AG
 σ̂n

θ̂
2

− AG (θ0)− AΓ

 σ̂1

θ̂
2

− θ0
∣∣∣∣∣∣

= oB
(
n−1/2

)
+ o

 σ̂1

θ̂
2

− θ0


= oB
(
n−1/2

)
For the last step we use σ̂n − θ10 = (σ̂n − γn) +

(
γn − θ10

)
= OB

(
n−1/2

)
+Op

(
n−1/2

)
.

Combining (11) and (12) with the definitions of γ̂n and σ̂n we get∣∣∣L̃n (γ̂n)
∣∣∣ =

∣∣∣L̃n (σ̂n)
∣∣∣+ oB

(
n−1/2

)
(13)

Exactly as in Hahn (1996) and Pakes and Pollard (1989), we start with

∣∣∣L̃n (σ̂n)
∣∣∣ ≤

∣∣∣∣∣∣AΓ

 σ̂n

θ̂
2

− θ0
∣∣∣∣∣∣+

∣∣∣ÂnĜn (θ0)
∣∣∣

≤

∣∣∣∣∣∣AΓ

 σ̂n

θ̂
2

−
 γn

θ̂
2

∣∣∣∣∣∣+
∣∣∣ÂnĜn (θ0)− ÂnGn (θ0)

∣∣∣
+

∣∣∣∣∣∣AΓ

 γn

θ̂
2

− θ0
∣∣∣∣∣∣+

∣∣∣ÂnGn (θ0)
∣∣∣

= OB

(
n−1/2

)
+OB (1)OB

(
n−1/2

)
+Op

(
n−1/2

)
+OB (1)Op

(
n−1/2

)
(14)
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Squaring both sides of (13) we have∣∣∣L̃n (γ̂n)
∣∣∣2 =

∣∣∣L̃n (σ̂n)
∣∣∣2 + oB

(
n−1
)

(15)

because (14) implies that the cross-product term can be absorbed in the oB (n−1). On the

other hand, for any t

L̃n (t) = AΓ

 t

θ̂
2

−
 θ10

θ20

+ ÂnĜn (θ0)

has the form L̃n (t) = y − Xt where X = −AΓE1 and y = −AΓE1θ
1
0 + AΓE2

(
θ̂
2
− θ20

)
+

+ÂnĜn (θ0)

σ̂n solves a least squares problem with first-order condition X ′L̃n (σ̂n) = 0. Also∣∣∣L̃n (t)
∣∣∣2 = (y −Xt)′ (y −Xt)

= ((y −Xσ̂n)−X (t− σ̂n))′ ((y −Xσ̂n)−X (t− σ̂n))

= (y −Xσ̂n)′ (y −Xσ̂n) + (t− σ̂n)′X ′X (t− σ̂n)

−2 (t− σ̂n)′X ′ (y −Xσ̂n)

=
∣∣∣L̃n (σ̂n)

∣∣∣2 + |X (t− σ̂n)|2 − 2 (t− σ̂n)′X ′L̃n (σ̂n)

=
∣∣∣L̃n (σ̂n)

∣∣∣2 + |(AΓE1) (t− σ̂n)|2

Plugging in t = γ̂n we have∣∣∣L̃n (γ̂n)
∣∣∣2 =

∣∣∣L̃n (σ̂n)
∣∣∣2 + |(AΓE1) (γ̂n − σ̂n)|2

Compare this to (15) to conclude that

(AΓE1) (γ̂n − σ̂n) = oB
(
n−1/2

)
AΓE1 has full rank by assumption so (γ̂n − σ̂n) = oB

(
n−1/2

)
and n1/2 (γ̂n − γn) = n1/2 (σ̂n − γn)+

oB
(
n−1/2

)
and since n1/2 (σ̂n − γn)

p
=⇒ N (0,Ω), we obtain n1/2 (γ̂n − γn)

p
=⇒ N (0,Ω).

Theorem 3 is stated for GMM estimators. This covers extremum estimators and the

two-step estimators as special cases. Theorem 3 also covers the case where one is interested

in different infeasible lower-dimensional estimators as in Section 4.2. To see this, consider

16



two estimators of the form

â (δ1) = arg min
a

(
1

n

n∑
i=1

f (xi, θ0 + aδ1)

)′
Wn

(
1

n

n∑
i=1

f (xi, θ0 + aδ1)

)

and

â (δ2) = arg min
a

(
1

n

n∑
i=1

f (xi, θ0 + aδ2)

)′
Wn

(
1

n

n∑
i=1

f (xi, θ0 + aδ2)

)
and let An denote the matrix-square root of Wn. We can then write

(â (δ1) , â (δ2)) = arg min

∣∣∣∣∣∣
 An 0

0 An

 1

n

n∑
i=1

 f (xi, θ0 + aδ1)

f (xi, θ0 + aδ2)

∣∣∣∣∣∣
which has the form of (3).
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