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Abstract

It is well understood that classical sample selection models are not semi-
parametrically identified without exclusion restrictions. Lee (2009) developed
bounds for the parameters in a model that nests the semiparametric sample se-
lection model. These bounds can be wide. In this paper, we investigate bounds
that impose the full structure of a sample selection model with errors that are
independent of the explanatory variables but have unknown distribution. The
additional structure can significantly reduce the identified set for the parame-
ters of interest. Specifically, we construct the identified set for the parameter
vector of interest. It is a one-dimensional line segment in the parameter space,
and we demonstrate that this line segment can be short in practice. We show
that the identified set is sharp when the model is correct and empty when there
exist no parameter values that make the sample selection model consistent with
the data. We also provide non-sharp bounds under the assumption that the
model is correct. These are easier to compute and associated with lower statis-
tical uncertainty than the sharp bounds. Throughout the paper, we illustrate
our approach by estimating a standard sample selection model for wages.
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1 Introduction

This paper considers identification in the classical sample selection model (Heckman

(1976))

y∗i = x′iβ + εi, (1)

where yi = y∗i is observed if w′iγ + νi ≥ 0. Early applications of the model assumed

(εi, νi) is independent of (xi, wi), and distributed according to a bivariate normal

distribution where both means are 0 and the variance of νi is 1. This allows one to

estimate β (and γ) by maximum likelihood or by a two-step procedure. See Heckman

(1979). Powell (1987) and others later considered semiparametric estimation of β

under the assumption that (εi, νi) is independent of (xi, wi) but without the normality

assumption. See, for example, Powell (1994). The key identifying assumption is that

xi must have full rank conditional on w′iγ. This is essentially an exclusion restriction

that requires that wi include variables that do not enter in xi. Ahn and Powell (1993)

and Das, Newey, and Vella (2003) make a similar exclusion restriction assumption in

more nonparametric settings.1

In this paper, we address the question of how much can be learned without an

exclusion restriction like the one assumed in the literature discussed above2. We con-

sider this important because it is often difficult to find variables that both matter

for selection and can be credibly excluded from the main equation. For example,

Krueger and Whitmore (2001) assumed normality and wrote, “Identification in these

models is based on the assumption of normal errors, as there is no exclusion restric-

tion.” Lee (2009) and Krueger and Whitmore (2001) considered set identification in

a sample selection model which contains (1) as a special case3. Unfortunately, these

1Escanciano, Jacho-Chvez, and Lewbel (2016) considered an identified sample selection model in
which identification is essentially driven by nonlinearity. We consider our paper a complement to
theirs.

2We focus on the case where w′iγ is bounded from above, since otherwise, one might use “identi-
fication at infinity” arguments to identify β.

3Manski (1989) constructed bounds in a model that is neither more general nor more restrictive
than our setting. See also Manski (1990). Blundell, Gosling, Ichimura, and Meghir (2007) also
constructed bounds in a sample selection model, but in a much more nonparametric setting than
the one considered here.
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sets are often too large to be informative. For example, Barrow and Rouse (2017)

wrote, “Unfortunately, Lee Bounds estimates (Lee, 2009) are quite wide and largely

uninformative.” This is the motivation for this paper.

We first gain insights by studying the simplest case where the only explanatory

variable is binary (Section 3). We demonstrate that in that model, the identified

region for the parameter of interest can be quite small, and we provide conditions

under which the upper or lower limits of the bound for the parameter coincide with

the true parameter value. These results are then generalized to a model with a single

potentially non-binary explanatory variable.

We next study the sample selection model with a more general set of explanatory

variables in Section 4. We show that in this case, the identified set is one-dimensional.

This observation is also implicit in Chamberlain (1986). Combining this insight with

the results from Section 3, we then construct the identified set for the parameter

vector. We show that if the model is correctly specified, our constructed identified

region is sharp, and that it is empty when there exist no parameter values that make

the sample selection model consistent with the data.

The population version of the identified set for β can be small enough to be

empirically interesting. However, the characterization of the sharp identified set for

β relies heavily on the whole distribution of yi (conditional on selection). This will

make estimation of the set based on a sample analog unattractive. We will therefore

propose estimators of slightly larger sets.

Throughout the paper, we illustrate our approach by estimating a classical sample

selection model for wages. We introduce this application in Section 2 and expand the

analysis throughout the paper.

Notational Note: Throughout this paper, we use f with a subscript letter to

denote the density of that variable. If a variable, y, is subject to sample selection,

i.e., it is observed with probability less than 1, fy will integrate to the probability

that yi is observed. For the unobserved error terms, εi and νi, fε and fν denote the

underlying densities and they each integrate to 1.

3



2 Empirical Illustration: Wages and Ethnicity

Throughout the paper, we use a simple sample selection model for log-wages to il-

lustrate our approach. The emphasis will be on the effect of ethnicity on wages. In-

spired by Mora (2008), we investigate the wage-differential between third-generation

Mexican-Americans and other Americans after controlling for sample selection.

Like Mora (2008), we use CPS data on wages from Arizona, California, New

Mexico and Texas. Our data spans the years 2003 to 2016, and contains 129, 907

women, of whom 26, 698 are third-generation Mexican-Americans and 103, 209 are

non-Hispanic whites. There are 118, 418 men. Of them, 21, 402 are third-generation

Mexican-Americans and 97, 016 are non-Hispanic whites. For women, the percentage

working is 64% for third-generation Mexican-Americans and 61% for non-Hispanic

whites. For men, the shares are 71% and 67%, respectively.

Summary statistics are provided in Table 1. Appendix 2 provides details about

the data.

3 Simplest Case: Single Regressor

Consider first the simple case with a scalar binary explanatory variable, xi:

y∗i = xiβ + εi (2)

where yi = y∗i is observed if xi + νi ≥ 0 and (εi, νi) is independent of xi. When

xi + νi < 0, y∗i is not observed and yi is undefined. The coefficient on the sample

selection equation is only identified up to scale and its sign is identified. There is

therefore no loss of generality by assuming that the coefficient on xi is4 1. Our

theorems below consider the more general setting, but since point-mass or limited

support of the distribution of εi generally help with identification, it is useful to

4The exception is when the sample selection is independent of x. However, in that case, estimation
of the coefficient on x will not suffer from sample selection bias. Moreover, one can identify whether
selection is independent of x.
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build intuition from the case where εi is continuously distributed with full support

conditional on νi. We will implicitly assume random sampling, and occasionally drop

the subscript i to aid readability.

Lee (2009) considers a more general sample selection model in which both the dis-

tribution of yi and the probability of selection depend on selection in a nonparametric

manner and the object of interest is the average effect of the “treatment”, xi. His

main assumption is a monotonicity assumption that requires that any individual who

is selected into the sample when xi = 0 would also have been selected in a counterfac-

tual scenario where xi = 1. As such, he essentially considered the same model, but

with (2) replaced by yi = h (xi, εi) for some unknown h. The average treatment effect,

E [y∗i |xi = 1] − E [y∗i |xi = 0], is not identified in this case, but Lee constructed the

sharp identified set for the parameter E [y∗i |xi = 1, si]− E [y∗i |xi = 0, si] where si is

the event that yi would be observed whether xi = 0 or xi = 1. The bounds are based

on the insight that an individual, for whom yi is observed when xi = 0, would also

have had an observed yi if xi had been 1. On the other hand, some individuals would

have observed yi only when xi = 1. This follows from his monotonicity assumption,

and it implies that one must “trim” some observations from the distribution of yi

conditional on xi = 1 in order to make it comparable to the distribution of yi con-

ditional on xi = 0. The extreme cases are to trim the top and the bottom of the

distribution of yi conditional on xi = 1.

Lee’s bounds are illustrated graphically in Figure 1 for a data-generating process

with (εi, νi)
′ distributed according to a bivariate normal distribution, β = 1, E [εi] =

0, E [νi] = 1
2
, ν [εi] = 1, ν [νi] = 1 and cov (εi, νi) = 1

2
. See also Example 1 below. The

first panel displays the “densities” of yi conditional on xi = 0 and xi = 1, respectively.

They both integrate to the respective probabilities of selection. The second and third

panels display the “density” of yi conditional on xi = 0 and the “density” of yi

conditional on xi = 1 after being trimmed at the top or at the bottom.

The sample selection model considered here implies the monotonicity assumption

in Lee (2009). If yi is observed when xi = 0, then νi must be greater than 0, as

a result, yi will also be observed for the same draw of νi when xi = 1. Hence the
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Figure 1: Construction of Lee Bounds for Data-Generating Process in Example 1

Observed distributions of y conditional on x = 0 and x = 1.

Distributions after trimming according to Lee (2009).

sample selection model (2) is the version of Lee’s setup in which the treatment effect

is constant, and Lee’s bounds can be thought of as non-sharp bounds on β.

To illustrate the approach in this paper, it is useful to define a binary variable for

whether yi is observed, di = 1 {xi + νi ≥ 0}. For all c1 < c2, we then have

P (c1 < εi ≤ c2, di = 1|xi = 0) ≤ P (c1 < εi ≤ c2, di = 1|xi = 1) (3)

or

P (c1 < yi ≤ c2, di = 1|xi = 0) ≤ P (c1 < yi − β ≤ c2, di = 1|xi = 1) . (4)

When the errors are continuously distributed, the restriction (4) can be expressed

in terms of the density of the observed y conditional on xi. Define

fy (c|xi) = fy∗ (c|xi)P (di = 1| yi = c, xi) .

This is the “density” of the observed yi, except that it does not integrate to 1 because
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yi is not observed when di = 0. With this notation, (4) can be expressed as5

fy (c|xi = 0) ≤ fy (c+ β|xi = 1) (5)

for all values of c.

Equation (5) is illustrated in Figure 2 using the same data-generating process as

above. The contour plot in the left panel shows the joint distribution of (εi, νi) before

selection and the solid line in the right panel depicts the corresponding marginal

distribution of εi. The selection implies that y∗i is not observed when νi ≤ −xi. For

xi = 0 and xi = 1, this means that we “lose” the errors below the solid lines in the left

panel of Figure 2. The dashed lines in the right panel of Figure 2 show the “density”

of the remaining ε’s. These densities integrate to the probability that y∗i is observed

conditional on xi.

This logic relies on the full structure of the classical sample selection model. This

includes independence between the explanatory variable and the error, monotone

selection and parameter homogeneity. In Figure 2(b), the distribution of ε before

selection needs to be the same whether xi = 0 or xi = 1. This would be violated

without independence between εi and xi. Without monotone selection, we could

not conclude equation (3). Finally, it is the parameter homogeneity that allows us

to translate the statement about the unobserved εi in equation (3) into a statement

about the observed yi in equation (4). In contrast, Lee (2009) only assumed monotone

selection, which is why our identified region is smaller than his.

The following theorem establishes that the inequalities in equation (4) contain all

the available information. As a result they can be used to construct the identified

region for β.

Theorem 1 Let xi be a scalar, non-degenerate, binary random variable, and let

(εi, νi) be independent of xi. If y∗i = xiβ + εi and if yi = y∗i is observed when

5This is reminiscent of the insight in Kitagawa (2015) who creates a test for instrument validity
based on whether one product of a density and a probability lies above a second product of a density
and a probability at all points. To map our insight into his, we would have to think of (a) his outcome
as our y − xβ, (b) his instrument as our x, and (c) his treatment as our selection dummy.
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Figure 2: Distribution of ε Before and After Selection

(a) Joint Distribution of (ε, ν) (b) Distribution of ε

di = 1 {xi + νi ≥ 0} equals one, then the identified region for β is

B = {b ∈ R : P (c1 < yi ≤ c2, di = 1|xi = 0)

≤ P (c1 < yi − b ≤ c2, di = 1|xi = 1) for all values of c1, c2}

provided that P (di = 1|xi = 1) > 0.

Proof. This is a special case of Theorem 3 below. The proof here is more readable.

The discussion above established that the true β belongs to B. We will now argue

that for any b in B, there exists a joint (cumulative) distribution6 G of (ε, ν) such

that (G, b) will be consistent with the observed distribution of (y, d) given x. First,

define the marginal distribution of ε by

F̃ε (a) =
P (y ≤ a+ b, d = 1|x = 1)

P (d = 1|x = 1)
.

6For ease of exposition, we have dropped the subscript i in the proof.
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Next, define a conditional distribution function of ν given ε by7

F̃ν (−1|ε ≤ a) = 1− P (d = 1|x = 1)

and

F̃ν (0|ε ≤ a) = 1−P (y ≤ a, d = 1|x = 0)

F̃ε (a)
= 1− P (y ≤ a, d = 1|x = 0)

P (y ≤ a+ b, d = 1|x = 1)
P (d = 1|x = 1)

when F̃ε (a) > 0, and F̃ν (0|ε ≤ a) = 1 when F̃ε (a) = 0.

This construction defines a cumulative distribution function if F̃ε,ν (a1, 0)+F̃ (a0,−1)−

F̃ (a1,−1)− F̃ (a0, 0) ≥ 0 for all a0 < a1 (Durrett (2019), Theorem 1.1.11). It follows

immediately from the expressions above that

F̃ε,ν (a1, 0) + F̃ (a0,−1)− F̃ (a1,−1)− F̃ (a0, 0)

= P (a0 < y − b ≤ a1, d = 1|x = 1)− P (a0 < y ≤ a1, d = 1|x = 0)

when F̃ε (a0) > 0; it is P (−∞ < y − b ≤ a1, d = 1|x = 1)−P (−∞ < y ≤ a1, d = 1|x = 0)

when F̃ε (a0) = 0 and F̃ε (a1) > 0; finally, it is 0 when F̃ε (a0) = 0 and F̃ε (a1) = 0.

Hence F̃ε,ν satisfies the conditions for a cumulative distribution function if (and only

if) b belongs to B.

With this
(
F̃ε,ν , b

)
,

P̃ (y ≤ c, d = 1|x = 1) = F̃ε (c− b)
(

1− F̃ν (−1|ε ≤ c− b)
)

=
P (y ≤ c, d = 1|x = 1)

P (d = 1|x = 1)
P (d = 1|x = 1) = P (y ≤ c, d = 1|x = 1)

7It does not matter what the conditional distribution function of ν given ε is at points other than
−1 and 0.
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and

P̃ (y ≤ c, d = 1|x = 0)

= F̃ε (c)
(

1− F̃ν (0|ε ≤ c)
)

=
P (y ≤ c+ b, d = 1|x = 1)

P (d = 1|x = 1)

P (y ≤ c, d = 1|x = 0)

P (y ≤ c+ b, d = 1|x = 1)
P (d = 1|x = 1)

= P (y ≤ c, d = 1|x = 0) .

This proves the theorem.

The construction of the identified region in equation (5) is illustrated graphically

in Figure 3. The left side of Figure 3 shows the density of the observed y conditional

on x multiplied by the conditional probability of selection for xi equal to 0 and 1.

Theorem 1 characterized the identified region for β as the length of the horizontal

shifts of one of the curves that will result in one of the curves being above the other.

This is illustrated in the right hand side of Figure 3.

Figure 3: Illustration of Bounds Based on Equation (5).

(a) Observed Distributions (b) Observed Distributions Shifted
by b in Identified Region

Example 1 Let (εi, νi)
′ be distributed according to a bivariate normal distribution

with β = 1, E [εi] = 0, E [νi] = 1
2
, ν [εi] = 1, ν [νi] = 1 and cov (εi, νi) = 1

2
. With

these P (di = 1|xi = 0) = 0.691 and P (di = 1|xi = 1) = 0.933. This is the situation

depicted in Figure 3 and the identified region for β is [0.626, 1.00]. In contrast, the

Lee bounds are8 [0.389, 1.238].

8To calculate the bounds, we use equation (5) in Muthén (1990) after correcting a typo in the
second line (the next to last subscript-i should be subscript-j).
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To estimate the identified region characterized by Theorem 1, one needs to com-

pare the estimated probabilities for all pairs of (c1, c2). This is clearly impossible.

Moreover, when c1 and c2 are close, this is akin to comparing estimated density of the

observed yi conditional on xi for xi = 0 and xi = 1. This is troublesome because the

probabilities will typically both be close to 0 in the tails, and small estimation errors

will have a big effect on which one takes on the larger value. This suggests construct-

ing an identified region by exploring (4) for a finite number of pairs of (c1, c2). For

example, one could calculate the deciles of the observed y conditional on xi = 0 and

then use (c1, c2) = (qj−1, qj) for j = 1, ..., 10, where qj is the j-th decile, q0 = −∞ and

q10 =∞.

Example 2 (Example 1 continued) In this setup the crude bounds described above

are [0.609, 1.025].

In Example 1, the upper bound of the identified set equals the true β. This is true

in general when the true (unknown) distribution of the errors is a bivariate normal

with positive correlation.

Proposition 1 When the distribution of the errors is bivariate normal with positive

correlation, the upper limit of the identified region based on equation (5) is the true

parameter value. When the correlation is negative, the lower limit of the identified

region is the true value. With no selection, i.e., independence of the errors, the

identified region is the true value.

Proof. See Appendix 1.

The proof of Proposition 1 is driven by the tail behavior of the normal distribution.

As a result, the proposition can be generalized to

Proposition 2 Suppose that ε is continuously distributed with a density which has

sufficiently thin tails that for a > 0, f (c) /f (c+ a) → ∞ as c → ∞ and for a < 0,

f (c) /f (c+ a)→∞ as c→ −∞. Then
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1. If the distribution of ν given ε = c1 stochastically dominates the distribution of

ν given ε = c2 whenever c1 > c2, then the upper limit of the identified region is

the true value.

2. If the distribution of ν given ε = c1 stochastically dominates the distribution of

ν given ε = c2 whenever c1 < c2, then the lower limit of the identified region is

the true value.

3. If ν and ε are independent, then the identified region is the true value.

Proof. See Appendix 1.

The assumption on the tail behavior of the marginal distribution of ε is slightly

stronger than log-concavity and is implied by tail-behavior of the form exp (−axγ)

for a > 0 and γ > 1. We interpret the stochastic dominance assumption in 1 as

positive selection: larger values of ε are associated with higher probability of selection.

Likewise, we interpret the stochastic dominance assumption in 2 as negative selection.

The setup in Proposition 2 is different from, but similar in spirit to, the approach

in Heckman (1990) and Andrews and Schafgans (1998). Both rely on “identification

at infinity,” but while Heckman (1990) and Andrews and Schafgans (1998) need an

exclusion restriction and rely on extreme values of the selection index, we do not need

exclusion restrictions and rely on extreme values of the outcome variable.

3.1 Empirical Illustration Part 1

In this section, we illustrate the insights above graphically. Using the data described

in Section 2, we plot the “densities” (the product of the density conditional on selec-

tion and the probability of selection) of log-wages for Mexican-Americans and Non-

Hispanic white Americans by gender. We restrict the sample to individuals whose

highest degree is high school. These are depicted by the solid lines in Figure 4. The

areas under the Mexican-American curves are larger than for Non-Hispanic white

Americans because the former are more likely to work for pay.
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The dashed lines are the curves for the Non-Hispanic whites shifted by −0.11

for women and by −0.18 for men. The shifted curves for whites almost fit under the

curves for the Mexican-Americans. This suggests that the assumptions of the classical

sample selection model are not too unreasonable in this case. Moreover, it is clear from

the figure that shifting the curves by a lot more or a lot less would lead to violations

of equation (5). This suggests that the identified regions are relatively small. In this

case, the Lee bounds for the log-wage differentials between Mexican-Americans and

Non-Hispanic white Americans are (−0.210,−0.041) for women and (−0.249,−0.074)

for men while the difference in means of the observed data are −0.123 for women and

−0.162 for men.

Figure 4: Shifted and Unshifted Log-Wage Distributions. The dashed lines display
the White log-wage densities shifted by −0.11 for women and by −0.18 for men.

(a) Women (b) Men

Heckman’s two-step estimator exploits variation in the conditional mean of the

dependent variable. When the only explanatory variable is binary, there will be per-

fect collinearity between it and the sample selection correction term. The procedure

therefore cannot be applied. In contrast, the maximum likelihood estimator for the

log-wage differentials between Mexican-Americans and Non-Hispanic white Ameri-

cans exploits information from the entire distribution of the dependent variable, and

this estimator is therefore in principle applicable, although it is likely to be fragile.
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For example, when we tried to estimate the model using Stata9, the routine failed to

converge for the men and located a coefficient on Mexican-American to be −0.174 for

women and −0.208 for men.

3.2 Single Non-Binary Regressor

Theorem 1 applies to the case where xi is binary. When xi is not binary and un-

bounded from above, identification at infinity arguments like those in Andrews and

Schafgans (1998) and Heckman (1990) yield point-identification of β. We therefore

focus on the case where xi is bounded from above.

When xi is not binary and bounded from above, applying (4) to all pairs of values

in the support of xi yields bounds on the identified region of β. The following theorem

establishes that the intersection of these bounds is sharp.

Theorem 2 Let (xi, εi, νi) be a random vector such that (εi, νi) is independent of xi,

and (εi, νi) has continuous and everywhere positive density. If yi = xiβ + εi, yi = y∗i

is observed when di = 1 {xi + νi ≥ 0} equals one, and the upper bound on the support

of xi is xmax <∞, then the identified region for β is 10

B = {b ∈ R : P (c1 < yi ≤ c2, di = 1|xi = ξ1) ≤ P (c1 < yi − b ≤ c2, di = 1|xi = ξ2)

for all values of c and ξ1 < ξ2 in the support of xi} .

Proof. Follows from Theorem 3 below.

As discussed above, the identified set can also be expressed in terms of densities,

B =
{
b ∈ R : fyi|xi (c+ xib| ξ1) ≤ fyi|xi (c+ xib| ξ2)

for all values of c and ξ1 < ξ2 in the support of xi}

provided that these densities are well-defined.

9More precisely, the routine heckman in Stata Version 14 with all the default options.
10Recall that fyi|xi

does not integrate to 1, since yi is not always observed.
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We finally note that the conclusion of Proposition 2 carries over to general distri-

bution of xi. Specifically,

Proposition 3 Let xi be a random variable and let (εi, νi) be independent of xi.

Assume that (εi, νi) has continuous and everywhere positive density. Also assume

that yi = xiβ + εi, that yi = y∗i is observed when di = 1 {xi + νi ≥ 0} equals one,

and that the upper bound on the support of xi is xmax < ∞. If the density of ε has

sufficiently thin tails that for a > 0, f (c) /f (c+ a) → ∞ as c → ∞ and for a < 0,

f (c) /f (c+ a)→∞ as c→ −∞, then

1. If the distribution of ν given ε = c1 stochastically dominates the distribution of

ν given ε = c2 whenever c1 > c2, then the upper limit of the identified region

for β is the true value.

2. If the distribution of ν given ε = c1 stochastically dominates the distribution of

ν given ε = c2 whenever c1 < c2, then the lower limit of the identified region for

β is the true value.

3. If ν and ε are independent, then the identified region for β is the true value.

Proof. See Appendix 1.

Needless to say, all of the analysis in this section could be performed conditional

on a set of covariates, x2, in which case the bounds derived here would become bounds

on the effect of x conditional on x2. In the next section, we investigate the alternative

approach of explicitly incorporating additional explanatory variables in the standard

selection model.

4 More General Sample Selection Model

We now return to the sample selection model with a k–dimensional vector of explana-

tory variables, xi,

y∗i = x′iβ + ε = xi1β1 + x′i2β2 + εi (6)
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where yi = y∗i is observed if x′iγ + νi ≥ 0. When the support of x′iγ is unbounded

from above, identification at infinity arguments like those in Andrews and Schafgans

(1998) and Heckman (1990) can yield point-identification of β. We therefore focus

on the case where x′iγ is bounded from above.

To fix ideas, suppose that β1 is the parameter of interest.

Conditions under which γ is identified up to scale are well-understood; see for

example Powell (1994) and the references therein. In the following, we assume that

these conditions hold and that the necessary scale normalization has been imposed

by normalizing the first element of γ to be11 1. We will then write γ = (1, γ′2)
′ to

distinguish between the variable of interest, xi1, and the other explanatory variables.

As in the previous section, we assume independence between (εi, νi) and (xi1, xi2),

and we define g (z) = E [εi| νi > −z, xi1, xi2]. We can then write

yi = xi1β1 + x′i2β2 + g (x′iγ) + ui (7)

with E [ui|xi1, xi2] = 0.

In this section, we will argue that the vector β is identified except for a single

scale parameter. In the following subsections we will then show that bounds can

be obtained for this parameter. The intuition for why β is identified except for a

single scale parameter is very simple. Suppose we knew β1. We could then define

w∗i = y∗i − xi1β1 = x′i2β2 + εi. The variable xi1 would then be excluded from the

model for w∗i . On the other hand, by normalizing the first coefficient in the selection

equation to be 1, we have already assumed that xi1 matters for selection. Hence we

have the necessary exclusion restriction, and the parameter vector, β, is identified

except for the one-dimensional component β1. Here, we give a slightly different

argument because it makes the empirical implementation easier.

11This implicitly rules out that all coefficients in the selection equation are 0. However, in that
case, estimation of β does not suffer from sample selection bias. Moreover, one can identify whether
selection is independent of x.
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Following, for example Robinson (1988), we start by noting that (7) implies that

yi − E [yi|x′iγ] = (xi1 − E [xi1|x′iγ]) β1 + (xi2 − E [xi2|x′iγ])
′
β2 + ui. (8)

Next note that

(xi1 − E [xi1|x′iγ]) + (xi2 − E [xi2|x′iγ])
′
γ2 = (xi1 − E [xi1|x′iγ]) +

(
xi2γ2 − E [xi2|x′iγ]

′
γ2
)

= x′iγ − E [x′iγ|x′iγ] = 0.

In other words, (xi1 − E [xi1|x′iγ]) = − (xi2 − E [xi2|x′iγ])′ γ2. Equation (8) can then

be written as

yi − E [yi|x′iγ] =
(
− (xi2 − E [xi2|x′iγ])

′
γ2
)
β1 + (xi2 − E [xi2|x′iγ])

′
β2 + ui (9)

= (xi2 − E [xi2|x′iγ])
′
(β2 − γ2β1) + ui = (xi2 − E [xi2|x′iγ])

′
α2 + ui

where α2 = (β2 − γ2β1). We can therefore identify α2 = (β2 − γ2β1) subject to a rank

condition on (xi2 − E [xi2|x′iγ]). Since γ2 is identified, this implies that for a given

value of β1, β2 is identified. In other words, the identification problem is essentially

one-dimensional, and bounds on β1 will imply bounds of the whole β vector.

4.1 Sharp Bounds

With the result of the previous section, we can write

y∗i = xi1β1 + x′i2β2 + εi

= xi1β1 + x′i2 (α2 + γ2β1) + εi

or

y∗i − x′i2α2 = (xi1 + x′i2γ2) β1 + εi (10)

where γ2 and α2 are identified as above and yi = y∗i (and hence yi−x′i2α2 = y∗i −x′i2α2)

is observed when di = 1 {xi1 + x′i2γ2 + νi > 0}. We can then apply Theorem 2 to
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bound β1 to the region

B = {b1 ∈ R : P (c1 < yi − x′i2α2 − (xi1 + x′i2γ2) b1 ≤ c2, di = 1|x′iγ = ξ1) (11)

≤ P (c1 < yi − x′i2α2 − (xi1 + x′i2γ2) b1 ≤ c2, di = 1|x′iγ = ξ2)

for all values of c1 < c2 and ξ1 ≤ ξ2 in the support of x′iγ} .

The identified region for the whole vector, β, is then the one-dimensional line segment
 b1

α2 + γ2b1

 : b1 ∈ B

 .

The identified region can also be written in terms of the density of the observed

data:

{
b1 ∈ R : fy|x (c+ x′i2α2 + (xi1 + x′i2γ2) b1|x′iγ = ξ1) (12)

≤ fy|x (c+ x′i2α2 + (xi1 + x′i2γ2) b1|x′iγ = ξ2)

for all values of c and all ξ1 ≤ ξ2 in the support of x′iγ}

provided that these densities are well-defined.

The bounds implied by B are sharp by Theorem 3.

Theorem 3 Suppose that (i) (εi, νi) is independent of xi, (ii) E [εi| νi > a] is finite

for all a, (iii) there is no proper linear subspace of Rk that contains xi with probability

1, and (iv)

y∗i = x′iβ + εi

is observed if di = 1 {x′iγ + νi ≥ 0} equals one for some β and some γ with γ1 = 1.

If P (d = 1) > 0, γ is identified and the support of x′iγ is bounded from above, then

B is the (sharp) identified region for β1.

Proof. The discussion in the text established that the true β1 belongs to B and that

β2 = α2 + γ2β1. We next need to argue that for any b = (b1, α
′
2 + γ′2b1)

′ with b1 in
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B, there exists a joint distribution, F̃ , of (ε, ν) such that the distribution implied by

the model combined with
(
F̃ , b

)
is the same as the observed distribution of (y, d)

conditional on x = ξ for all ξ in the support of x.

Let x be such that x′γ is the upper bound of the support of x′γ.

First, define the marginal distribution of ε by

F̃ε (a) =
P (y ≤ a+ x′b, d = 1|x = x)

P (d = 1|x = x)
.

The definition of B guarantees that this gives the same F̃ε (a) for all choices of x such

that x′γ is the upper bound of the support of x′γ. The assumption that P (d = 1) > 0

guarantees that the denominator is non-zero. Next, we define the conditional cumu-

lative distribution function of ν given ε over the support of −x′γ. Let g be a point

in that support and let xg be such that x′gγ = −g. We then define

F̃ν (g|ε ≤ a) = 1−
P
(
y ≤ a+ x′gb, d = 1|x = xg

)
F̃ε (a)

= 1−
P
(
y ≤ a+ x′gb, d = 1|x = xg

)
P (y ≤ a+ x′b, d = 1|x = x)

P (d = 1|x = x)

when F̃ε (a0) > 0, and 1 otherwise. The definition of B guarantees that this gives the

same F̃ν (g|ε ≤ a) for all choices of xg such that x′gγ = −g.

This construction defines a cumulative distribution function if F̃ (a1, g1)+F̃ (a0, g0)−

F̃ (a1, g0)−F̃ (a0, g1) ≥ 0 for all a0 < a1 and g0 < g1 (Durrett (2019), Theorem 1.1.11).

It follows immediately from the expressions above that

F̃ (a1, g1) + F̃ (a0, g0)− F̃ (a1, g0)− F̃ (a0, g1)

= P (a0 < y ≤ a1, d = 1|x = xg0)− P (a0 < y ≤ a1, d = 1|x = xg1)

when F̃ε (a0) > 0 and F̃ε (a1) > 0. Since x′g0γ > x′g1γ, this is non-negative by the
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definition of B. Also,

F̃ (a1, g1) + F̃ (a0, g0)− F̃ (a1, g0)− F̃ (a0, g1)

= P
(
−∞ < y ≤ a1 + x′g0b, d = 1|x = xg0

)
−P

(
−∞ < y ≤ a1 + x′g1b, d = 1|x = xg1

)
when F̃ε (a0) = 0 and F̃ε (a1) > 0. This is again non-negative by the definition of

B. Finally, F̃ (a1, g1) + F̃ (a0, g0) − F̃ (a1, g0) − F̃ (a0, g1) = 0 when F̃ε (a0) = 0 and

F̃ε (a1) = 0. Hence F̃ defines a bivariate cumulative distribution function.

With this
(
F̃ , b

)
, the model yields

P̃ (y ≤ c, d = 1|x = x0)

= F̃ε (c− x′0b)
(

1− F̃ν (−x′0γ|ε ≤ c− x′0b, x = x0)
)

=
P (y ≤ c− x′0b+ x′b, d = 1|x = x)

P (d = 1|x = x)

P (y ≤ c− x′0b+ x′0b, d = 1|x = x0)

P (y ≤ c− x′0b+ x′b, d = 1|x = x)
P (d = 1|x = x)

= P (y ≤ c, d = 1|x = x0) .

This proves the theorem.

Theorem 3 states that B characterizes the identified region for β1 when the model

is correct. Theorem 4 below establishes that when B is not empty, the linear sample

selection model cannot be rejected by the data.

Theorem 4 Suppose that the data-generating process for the observed distribution of

(di, yi, xi) is such that (i) yi is only observed when di = 1, (ii) P (di = 1|xi) can be

written as a non-decreasing, right-continuous function of x′iγ for some γ = (1, γ′2)
′,

(iii) the support of x′iγ is bounded from above, and (iv) the density of yi given xi is

positive everywhere for all xi in the support of xi.

If, for α2 defined in (9), B in (11) is not empty, then for every β in B, there

exists a distribution of (εi, νi) such that the observed distribution is the same as the

one generated from a model in which (εi, νi) is independent of xi,

y∗i = x′iβ + εi
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and yi = y∗i is observed if di = 1 {x′iγ + νi ≥ 0} equals 1.12

Proof. Let b1 be an element of B, b2 = α2 + γ2b1 and b = (b1, b
′
2)
′. As in the proof

of Theorem 3, we need to argue that there exists a joint distribution, F̃ , of (ε, ν)

such that the distribution implied by the model combined with
(
F̃ , b

)
is the same as

the observed distribution of (y, d) conditional on x = ξ for all ξ in the support of x.

This is done exactly as in the proof of Theorem 3, except that there, the model yields

that the constructed conditional cumulative distribution function of ν given ε ≤ a is

right-continuous. Here it follows from assumption (ii).

4.2 Non-sharp Bounds

One could in principle estimate bounds on β1 based on the density inequalities in

(5) above. We do not pursue this approach because the resulting estimates would

depend on the tails of nonparametrically estimated densities. In this section, we

instead present non-sharp bounds based on moments that can be estimated using

sample averages.

Equation (11) implies that for ξ1 ≤ ξ2 in the support of xi1 + x′i2γ2

E (1 {c1 < yi − x′i2α2 ≤ c2, di = 1}|x′iγ = ξ1) (13)

≤ E (1 {c1 < yi − x′i2α2 + (ξ1 − ξ2) b1 ≤ c2, di = 1}|x′iγ = ξ2)

for any b1 in the identified set. Note that c1 and c2 in (13) can depend on b1, ξ1, and

ξ2.

This implies the moment inequalities

E [1 {c1 < yi − x′i2α2 − (x′iγ) β1 ≤ c2, di = 1}| (xi1 + x′i2γ2) ∈ A1] (14)

≤ E [1 {c1 < yi − x′i2α2 − (x′iγ) β1 ≤ c2, di = 1}| (xi1 + x′i2γ2) ∈ A2]

for all sets A1, A2 where all elements in A1 are strictly below the elements in A2.

12Here νi is allowed to take the value −∞.
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The moment inequalities (14) can be used to estimate non-sharp bounds for β in (6)

by considering a finite number of A-sets combined with a finite number of pairs of

(c1, c2).

The following example suggests that the sizes of these non-sharp identified sets

are likely to be small enough to be useful. To do this, we compare the sets to the

estimation uncertainty that a researcher would face if she estimated an identified

parametric version of the same model.

Example 3 Consider the data generating process

• (νi, εi) bivariate normal with ν [νi] = 1, ν [εi] = 2, coν (νi, εi) = 1, E [νi] = 1
2

and E [εi] = 0.

• xik = Uik + Zi for k = 1, 2, 3, where Uik ∼ U
(
−1

2
, 1
2

)
and Zi ∼ N

(
0, 1

25

)
(all

independent)

• β = (1, 1, 1)′ and γ = (0.45, 0.55, 0, 55) (before normalization)

We calculate the (non-sharp) identified region for β1 based on equation (14) with

the A’s based on quintiles of xj1 +x′j2γ2 and c1 and c2 adjacent deciles of yi−x′i2α2−

(xi1 + x′i2γ2) b1 to be (0.658, 1.003). When we decreased the number of inequalities by

only considering A1 =
(
−∞,median

(
xj1 + x′j2γ2

))
and A2 =

(
median

(
xj1 + x′j2γ2

)
,∞
)

and c1 and c2 adjacent quintiles of yi−x′i2α2− (xi1 + x′i2γ2) b1, the (non-sharp) iden-

tified region for β1 increased to (0.529, 1.031) .

By comparison, the 5th and 95th percentiles of Heckman’s two-step estimator for

β1 based on 1,000 observations from this design are 0.332 and 1.714.13

4.3 Empirical Illustration Part 2

To investigate the usefulness of the approach from Section 4.2 in empirical settings,

we return to the question in Section 2. In this application, the parameter of interest

13The bounds based on (14) are calculated using a sample with 100,000,000 observations. The
percentiles of Heckman’s two-step estimator are calculated in Matlab by Monte Carlo using 100,000
replications.
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is the coefficient on being third-generation Mexican-American as opposed to non-

Hispanic white. The other explanatory variables are age, age-squared, experience,

experience-squared, education dummies (less than high school, some college, college,

and advanced degree, with high school as the omitted category), dummies for being

a veteran and being married, state dummies, and year dummies.

We first estimate the model under the assumption of joint normality of the errors,

using both the maximum likelihood estimator and Heckman’s two-step estimator.

The estimation results are presented in the first two columns of Tables 2 and 3. To

implement the idea in Section 4.2, we define a sample analog of the solutions to the

population inequalities in equation (14) as the maximizers of Qn (b1) where

Qn (b1) = −
∑
`,k

max
{
Ê [1 {c` < yi − x′i2α̂2 − (x′iγ̂) b1 ≤ c`+1, di = 1}|x′iγ̂ ∈ Ak]

− Ê [1 {c` < yi − x′i2α̂2 − (x′iγ̂) b1 ≤ c`+1, di = 1}|x′iγ̂ ∈ Ak+1] , 0
}2

.

Figure 5 displays the objective function and the 5%-critical value function calcu-

lated using sub-sampling (see Canay and Shaikh (2017)) with sub-sample size equal

to 15,000 and 1,000 sub-samples. The parameter γ is estimated by logit maximum

likelihood14 and α2 = (β2 − γ2β1) is estimated from (9), where the conditional expec-

tations are estimated by kernel regressions with standard normal kernel and band-

width equal to 0.2 times the standard deviation of x′iγ̂ (in the sample where yi is

observed). We choose c1 = −∞, c2 to c9 are the deciles of {yi − x′i2α̂2 − (x′iγ̂) b1}

in the sample where yi is observed and c10 = ∞. The sets Ak corresponds to the

intervals between quintiles of x′iγ̂. All parameters, including the bandwidths in the

kernel regressions, and c2 to c9, are re-calculated in each subsample. The figure also

displays the maximum likelihood estimator and Heckman’s two-step estimator for β1

along with their 95% confidence intervals. The estimated bounds15 on the parameters

14Alternatively, one could use a semiparametric estimator such as Han (1987)’s maximum rank
correlation estimator in the first step.

15As explained in Manski and Tamer (2002), the set of maximizers of Qn will not (in general)
yield a consistent estimator of the identified region of β1. It is therefore customary to define the
estimator as the set of points for which the objective function is within a small distance from its
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are presented in the third column of Tables 2 and 3. The 95% confidence interval

for the log-wage differentials between Mexican-Americans and Non-Hispanic white

Americans case are the points in Figure 5 for which Qn is larger than the critical

value function. They are (−0.107,−0.046) for women and (−0.134,−0.085) for men.

Figure 5: Qn as a Function of the Coefficient on 3rd Generation Mexican-American

As expected, the implied confidence intervals for the identified sets are longer than

the confidence intervals based on the maximum likelihood estimators. On the other

hand, they are roughly equivalent to the length of the confidence intervals for the

two-step estimator. Our set estimate contains the maximum likelihood estimate for

both samples. For men, it is also close to the two-step estimate. For women, the

two-step estimate is, however, quite different from our estimated set as well as from

the maximum likelihood estimate. This casts doubt on the validity of the normality

assumption for women. On the other hand, the moment inequalities implied by

the independence assumption (equation (13)) are not rejected by the data in either

sample.

maximum. For the bounds in Tables 2 and 3, we have chosen this distance to be 1. Judging from
Figure 5, we think that this is a conservative choice.
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5 Concluding Remarks

This paper has studied identification in a classical semiparametric sample selection

model in which both the selection mechanism and outcome of interest depend linearly

on the same explanatory variables, and the errors are independent of the explana-

tory variables. This model is not semiparametrically point-identified, but the sharp

identified set is one-dimensional. Toy examples as well as an empirical application

suggest that the identified set can be quite small in practice. In this respect, the

practical take-away of this paper is similar to papers in different areas of economics

which have demonstrated that the identified regions of non-identified parameters can

be small enough to be useful in empirical applications. The papers by Haile and

Tamer (2003), Honoré and Lleras-Muney (2006), and Blundell, Gosling, Ichimura,

and Meghir (2007) are early examples of this.

The numerical calculations presented in this paper illustrate that the bounds

obtained under the semiparametric model considered here are much tighter than

those obtained in Lee (2009)’s nonparametric setting. We leave it for future research

to investigate intermediate assumptions that are weaker than those imposed here,

but strong enough to generate identified sets that are small enough to be empirically

informative.

References

Ahn, H., and J. L. Powell (1993): “Semiparametric Estimation of Censored

Selection Models with a Nonparametric Selection Mechanism,” Journal of Econo-

metrics, 58(1-2), 3–29.

Andrews, D. W. K., and M. M. A. Schafgans (1998): “Semiparametric Es-

timation of the Intercept of a Sample Selection Model,” The Review of Economic

Studies, 65(3), 497–517.

Barrow, L., and C. E. Rouse (2017): “Financial Incentives and Educational

25



Investment: The Impact of Performance-Based Scholarships on Student Time Use,”

Education Finance and Policy.

Blundell, R., A. Gosling, H. Ichimura, and C. Meghir (2007): “Changes in

the Distribution of Male and Female Wages Accounting for Employment Compo-

sition Using Bounds,” Econometrica, 75(2), 323–363.

Canay, I. A., and A. M. Shaikh (2017): “Practical and Theoretical Advances in

Inference for Partially Identified Models,” in Advances in Economics and Econo-

metrics: Eleventh World Congress, ed. by B. Honoré, A. Pakes, M. Piazzesi, and
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Appendix 1: Proofs of Propositions

Proof of Proposition 1. This proposition is a special case16 of Proposition 2.

Here we provide a more readable proof that explicitly uses properties of the normal

distribution. Recall that if ν

y

∣∣∣∣∣∣x ∼ N

 µ

x′β

 ,

 1 ρσ

ρσ σ2

 ,

then

ν| y, x ∼ N
(
µ+

ρ

σ
(y − x′β) , 1− ρ2

)
.

Hence

f (y| ν > −x, x) =
f (y|x)P (ν > −x| y, x)

P (ν > −x|x)

=
1

σ
ϕ

(
y − x′β
σ

)
Φ

(
x+ µ+ ρ

σ
(y − x′β)√

1− ρ2

)/
Φ (x+ µ)

and therefore

fy ( ·|x) =
1

σ
ϕ

(
y − x′β
σ

)
Φ

(
x+ µ+ ρ

σ
(y − x′β)√

1− ρ2

)
.

Now consider a b in the identified region, B. For that b, the inequality fy (c|x = 0) ≤

fy (c+ b|x = 1) holds for all values of c. This can be written as

fy (c|x = 0)

fy (c+ b|x = 1)
≤ 1.

16We have kept this because the concreteness of the calculation helped us understand the results.
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Under normality, the inequality becomes

fy (c|x = 0)

fy (c+ b|x = 1)
=

1
σ
ϕ
(
c
σ

)
Φ

(
µ+ ρ

σ
c√

1−ρ2

)
1
σ
ϕ
(
c+b−β
σ

)
Φ

(
1+µ+ ρ

σ
(c+b−β)√
1−ρ2

)

= exp
(
(b− β) c+ (b− β)2

/
2σ2
) Φ

(
µ+ ρ

σ
c√

1−ρ2

)
Φ

(
1+µ+ ρ

σ
(c+b−β)√
1−ρ2

) ≤ 1.

Now assume that ρ > 0 and consider the limit as c→∞. If b > β, the first term in

the product increases to ∞, while the second term converges to 1. This contradicts

the inequality, and we conclude that b ≤ β. Hence β is the upper endpoint of B.

When ρ < 0, we consider the limit as c → −∞ and conclude that b ≥ β. Hence

β is the lower endpoint of B.

Finally, when ρ = 0, the inequality becomes

(b− β) c ≤ − log

(
Φ (µ)

Φ (1 + µ)

)
− (b− β)2

/
2

for all values of c. This can only be true if b = β, and β is point-identified.

This completes the proof.

Proof of Proposition 2.

Assumptions:

1. The distribution of ν given ε = c1 stochastically dominates the distribution of

ν given ε = c2 if c1 > c2.

2. The density of ε has sufficiently thin tails that for a > 0, f (c) /f (c+ a)→∞

as c→∞ and for a < 0, f (c) /f (c+ a)→∞ as c→ −∞.

Recall that

fy (c|x) = fy∗ (c)P (ν > −x| y∗ = c)

= fε (c− xβ)P (ν > −x| ε = c− xβ) .
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Now consider a b in the identified region, B. For that b, the inequality fy (c|x = 0) ≤

fy (c+ b|x = 1) holds for all values of c. In other words

fy (c|x = 0)

fy (c+ b|x = 1)
=

fε (c)P (ν > 0| ε = c)

fε (c+ b− β)P (ν > −1| ε = c+ b− β)
≤ 1.

Suppose that b > β. Then

P (ν > 0| ε = c)

P (ν > −1| ε = c+ b− β)
>
P (ν > 0| ε = c)

1
.

The right hand side is increasing in c by the stochastic dominance assumption. Hence

it is bounded from below by some positive constant, k. Therefore

fy (c|x = 0)

fy (c+ b|x = 1)
> k

fε (c)

fε (c+ b− β)
,

where the ratio on the right hand side increases to∞ as c goes to∞. This contradicts

the inequality, and we conclude that no b in B can be greater than the true β. Hence

β is the upper endpoint of B.

Now consider the case where the distribution of ν given ε = c1 stochastically

dominates the distribution of ν given ε = c2 if c1 < c2. Suppose that b < β. Then

again
P (ν > 0| ε = c)

P (ν > −1| ε = c+ b− β)
> P (ν > 0| ε = c) > P (ν > 0| ε = 0)

for all c < 0. Therefore

fy (c|x = 0)

fy (c+ b|x = 1)
> k

fε (c)

fε (c+ b− β)

for c < 0. Taking the limit as c → −∞ brings the right hand side above 1, and we

conclude that a b for which b < β cannot belong to the set B . Hence β is the lower

endpoint of B.
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Finally, when ε and ν are independent, the inequality defining B is

fε (c)P (ν > 0| ε = c)

fε (c+ b− β)P (ν > −1| ε = c+ b− β)
=

fε (c)P (ν > 0)

fε (c+ b− β)P (ν > −1)
≤ 1.

Taking the limit as c → −∞ generates a contradiction when b < β and taking the

limit as c→∞ generates a contradiction when b > β. Therefore B = {β}.

This completes the proof.

Proof of Proposition 3. First consider case 1 (with positive selection). The

identified set can be written as

B =
{
b ∈ R : fy|x (c+ xb| ξ1) ≤ fy|x (c+ xb| ξ2)

for all values of c and ξ1 < ξ2 in the support of x}

=
⋂
ξ1<ξ2

{
b ∈ R : fy|x (c+ ξ1b| ξ1) ≤ fy|x (c+ ξ2b| ξ2) for all values of c

}
=

⋂
ξ1<ξ2

{
b ∈ R : fy−ξ1b|x (c| ξ1) ≤ fy−ξ1b|x (c+ (ξ2 − ξ1) b| ξ2) for all values of c

}
.

Now consider one of the sets on the right hand side above. By Proposition 2, the

upper limit of (ξ2 − ξ1) b will be (ξ2 − ξ1) β. This implies that the upper limit of

all the sets in the intersection above is the true β. Hence, the upper limit on the

intersection is β.

The proofs of cases 2 and 3 are similar.

Appendix 2: Data Details

This analysis utilizes the Merged Outgoing Rotation Groups (MORG) files of the

Current Population Survey (CPS), which were prepared by the National Bureau of

Economic Research (NBER). Following Mora, we restrict our sample to non-Hispanic

whites and Mexican-Americans between the ages of 25 and 62 (inclusive) who live in

Arizona, California, New Mexico, or Texas. We further limit our analysis to those who

have at least one parent born in the United States (i.e., third-generation Americans).
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We also drop the top 1.67% of earners in each year’s income distribution from our

analysis, and we multiply top-coded earnings by 1.33. Finally, in our wage samples,

we exclude self-employed workers, as well as individuals who report that they are

working but do not report either hours worked or earnings.

The variables are:

• Log hourly wage: Calculated by taking the natural log of an individual’s weekly

earnings divided by his usual hours works, adjusted for inflation.

• Veteran status: Indicator variable that equals one if an individual ever reported

serving in the U.S. military, and zero otherwise.

• Married: Indicator variable that equals one if an individual reports that she or

he is either (1) a married civilian with spouse present, (2) a married Armed

Forces member with spouse present, or (3) married with spouse absent or sep-

arated, and zero otherwise.

• Experience: For individuals who have completed at least seventh grade, their

labor market experience is defined as their age (in single years) minus their

education-years minus 6. Individuals whose educational attainment is less than

seventh grade are assigned an experience level equal to their age minus thirteen.

• Education-years: Following Mora, we assign education-years based on the level

of education attainment reported in the data as follows:

– Less than 1st grade = 0 years of education

– 1st – 4th grade = 2.5 years of education

– 5th or 6th grade = 5.5 years of education

– 7th or 8th grade = 7.5 years of education

– 9th = 9 years of education

– 10th = 10 years of education

– 11th = 11 years of education
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– 12th grade (no diploma) = 12 years of education

– High school graduate, diploma, or GED = 12 years of education

– Some college but no degree = 13.5 years of education

– Associate degree – occupational/vocational =14 years of education

– Associate’s degree – academic program = 14 years of education

– Bachelor’s degree (i.e. BA, AB, BS) = 16.5 years of education

– Master’s degree (i.e. MA, MS, MEng, MSW, MBA) = 18 years of educa-

tion

– Professional school degree (i.e. MD, DDS, DVM, LLB, JD) = 18 years of

education

– Doctorate degree (i.e. PhD, EdD) = 20 years of education
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Table 1: Summary Statistics

Mexican Women White Women Mexican Men White Men
mean sd mean sd mean sd mean sd

California 0.38 0.49 0.46 0.50 0.37 0.48 0.47 0.50
Arizona 0.08 0.26 0.11 0.31 0.08 0.28 0.11 0.31
Texas 0.47 0.50 0.34 0.47 0.46 0.50 0.34 0.47
Real Wage 2.16 0.57 2.42 0.63 2.34 0.58 2.61 0.61
Working 0.64 0.48 0.61 0.49 0.71 0.45 0.67 0.47
Age 40.66 10.76 44.34 10.81 40.56 10.74 43.99 10.92
Experience 21.63 11.19 23.88 11.15 21.65 10.97 23.63 11.08
Less than HS 0.16 0.37 0.04 0.20 0.16 0.37 0.05 0.21
Some College 0.33 0.47 0.34 0.48 0.31 0.46 0.33 0.47
College 0.12 0.32 0.27 0.44 0.11 0.31 0.26 0.44
Advanced Degree 0.05 0.21 0.12 0.33 0.04 0.18 0.12 0.32
Married 0.53 0.50 0.62 0.49 0.55 0.50 0.61 0.49
Veteran 0.01 0.10 0.02 0.13 0.12 0.32 0.16 0.37
No. Observations 26, 698 103, 209 21, 402 97, 016
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Table 2: Estimated Wage Regression (Women)

MLE Two-Step Estimated Bounds

Mexican–American −0.078 −0.013 [−0.086,−0.080]
(0.005) (0.017)

Age 0.113 0.213 [0.096, 0.106]
(0.007) (0.026)

Age–squared −0.047 −0.118 [−0.000,−0.000]
(0.005) (0.018)

Experience −0.070 −0.127 [−0.067,−0.062]
(0.006) (0.016)

Experience–squared 0.006 0.036 [−0.000,−0.000]
(0.004) (0.009)

Less than HS −0.177 −0.372 [−0.193,−0.178]
(0.015) (0.050)

Some College 0.033 0.017 [0.026, 0.028]
(0.011) (0.014)

College 0.155 0.084 [0.136, 0.142]
(0.025) (0.036)

Advanced Degree 0.199 0.113 [0.167, 0.174]
(0.034) (0.047)

Veteran 0.030 0.037 [0.029, 0.030]
(0.016) (0.020)

Married 0.033 −0.079 [0.042, 0.052]
(0.005) (0.028)

California 0.204 0.178 [0.206, 0.208]
(0.007) (0.011)

Arizona 0.098 0.103 [0.097, 0.097]
(0.009) (0.012)

Texas 0.031 0.064 [0.025, 0.028]
(0.008) (0.013)

Year Dummies yes yes yes

No. Observations 127, 738 127, 738 127, 738
Standard errors for point identified parameters in parentheses.
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Table 3: Estimated Wage Regression (Men)

MLE Two-Step Estimated Bounds

Mexican–American −0.113 −0.084 [−0.109,−0.097]
(0.005) (0.012)

Age 0.079 0.112 [0.077, 0.091]
(0.006) (0.014)

Age–squared −0.047 −0.072 [−0.001,−0.000]
(0.004) (0.010)

Experience −0.025 −0.045 [−0.032,−0.023]
(0.005) (0.009)

Experience–squared −0.014 −0.007 [−0.000,−0.000]
(0.004) (0.005)

Less than HS −0.170 −0.222 [−0.193,−0.174]
(0.012) (0.023)

Some College 0.051 0.043 [0.048, 0.050]
(0.009) (0.011)

College 0.235 0.205 [0.222, 0.232]
(0.023) (0.026)

Advanced Degree 0.257 0.194 [0.231, 0.254]
(0.031) (0.041)

Veteran −0.001 0.015 [−0.001, 0.005]
(0.006) (0.008)

Married 0.136 0.185 [0.133, 0.154]
(0.005) (0.019)

California 0.151 0.140 [0.147, 0.151]
(0.007) (0.009)

Arizona 0.042 0.052 [0.042, 0.045]
(0.009) (0.010)

Texas 0.015 0.045 [0.013, 0.026]
(0.008) (0.014)

Year Dummies yes yes yes

No. Observations 118, 250 118, 250 118, 250
Standard errors for point identified parameters in parentheses.
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