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I. Introduction 

Due to imperfect dynamical models, sparse observational networks, and errors in 
observations, data assimilation has emerged as a vital field in the atmospheric 
sciences. The process of accurately determining the initial conditions of a model based 
on a background state and inadequate observations is a critical part of all forecasts. 
When Evensen (1994) updated the traditional Kalman filter (KF) with the Ensemble 
Kalman Filter (EnKF), it emerged as one of the premiere data assimilation schemes. As 
a Monte Carlo approximation to the traditional KF, the EnKF util izes a collection of 
forecast runs to determine the background error covariance. The error covariance 
matrix P (superscript can be added depending on analysis or forecast)  is computed 
with the equation 

P=1/(m-1) * ∑ [i=1 to m]  (Xi-x )(Xi-x )T  (1) 

 
where Xi represents a model run and x is the ensemble mean,  

 
x =1/m  ∑ [i=1 to m]  Xi  .  (2) 

 

Like the traditional KF, the EnKF is based on the analysis equation 

xa = xf +K(d-Hxf)   where K= PfHT(HPfHT + R)-1    (3) 

where K is the Kalman gain, xa is the analysis, xf is the forecast, d is the vector of 

observations, H is the matrix that maps the first guess vector onto the observations, P f 
is the background error covariance matrix, R is the observation covariance matrix, and 
the superscripts f and a represent the forecast and analysis respectively (Sakov and 
Oke 2008, hereafter SO2008). 

The EnKF was such a significant improvement over previous data assimialtion 
techniques  that used background error covariances based on mainly climatology 
because the EnKF background error covariance is allowed to change based on the 
current atmospheric pattern and the geography of a data point. As a result, updates to 
the first guess vector are more grounded dynamically. However, Houtemaker and 
Mitchell (1998) discovered that the EnKF, due to small ensemble sizes in operations, 
was often underdispersive and added random perturbations (added noise to d in 
equation 3) to the observations. As a result, the term EnKF is now currently associated 

with an EnKF involving perturbed observations (SO2008). 

 Although adding noise to observations helped with the EnKF’s inherent 
underestimation of analysis error, there are problems with this technique (Tippett et al. 
2003). The addition of noise to observations lowers the accuracy of the analysis error 
covariance estimate by increasing the sampling error and thereby raising the likelihood 
that the analysis error covariance will be underestimated by the ensemble (Whitaker 
and Hamill 2002). Deterministic methods, such as the Ensemble Square Root Filters 



(ESRF), were proposed to avoid the sampling issues associated with the use of 
perturbed observations (Tippett et al. 2003). There are a number of different ESRF 
algorithms in the literature, and it is not clear if any of these techniques are superior for 
every situation. One such ESRF is proposed by SO2008 and was named the 
deterministic EnKF (DEnKF). The DEnKF uses the expression for the analyzed error 
covariance without perturbations  
 

Pa = Pf  - PfHTKT - KHPf  + KHPf  + KHPfHTKT    (4) 

 

and the fact that  PfHTKT = KHPf     (5)  
 

to get  Pa = Pf  –2KHPf  + KHPf HT KT .   (6)  
 

 Then, Sakov and Oke assume that the KH product is sufficiently small so the 
second term is much greater than the third term (considered negligible). Finally, with 
this assumption, the theoretical covariance of the traditional Kalman filter can be 
matched by halving the Kalman gain K. The analyzed error covariance then becomes 
equal to  

Pa = (I-KH)Pf  + 1/4 * KHPfHTKT .    (7)  

When HPfHT  << R, the EnSRF analyzed covariance proposed by Whitaker and 
Hamill (2002) becomes equivalent to (7). Therefore, when the analysis corrections are 
small (observations have more error than the background), the DEnKF can be 
considered a linear approximation to the EnSRF. After formulating the update equations 
for the DEnKF, SO2008 tested the DEnKF by applying it to three different dynamical 
models and comparing its performance with the EnKF and serial EnSRF. Evensen’s 
(2004) Linear Advection model, Lorenz and Emanuel’s nonlinear Lorenz-40 model 
(1998), and a reduced-gravity quasi-geostrophic (QG) model with double-gyre wind 
forcing and bi-harmonic friction were the three small models examined.  

 
The experiments conducted in this study aim to quantify the skill of the DEnKF 

and EnKF when applied to the QG model (EnSRF omitted due to issues with Sakov’s 
EnKF Matlab package) by duplicating figure 7 of SO2008. The QG model was selected 
because it is the most similar to an actual Global Circulation Model: its dimension (127 
X 127) is significantly larger than the other two models in SO2008. The exact 
methodology of the numerical tests conducted is introduced in section 2. In section 3, a 
portion of the localization radius-inflation factor subspace in figure 7 of SO2008 is 
recreated as well as this same parameter space for a larger ensemble. In section 4, a 
justification for the differences between the presented results and SO2008 results are 
discussed. The discrepancy between the effects of increasing ensemble size on the skill 
of EnKF and DEnKF is examined in section 5, followed by the conclusions in section 6. 
 
 
 



II. Methodology 
 
The particular design of the QG model used for this study is detailed carefully in section 
4.3 of SO2008. In order to accurately reproduce figure 7 of SO2008, the data 
assimilation parameters required to produce the series of experiments depicted in figure 
7 of SO2008 are followed exactly. The data assimilation is conducted as follows: data 
assimilation occurs at every fourth time step; 300 observations of Ψ with observation 
variance of 4.0 are inputted at each step; the initial ensemble is formed by 25 random 
samples of 2000 fields; ensemble inflation factors range from 1.0 to 1.18; a Gaussian 
localization function is used with localization radii varying from 5 to 45. Since the 
ensemble size is significantly smaller than the dimension of the model’s sub-space, both 
the EnKF and DEnKF require localization of the background covariance matrix to lower 
the probability of filter divergence. For a small ensemble, spurious correlations between 
distant grid points are possible and localization reduces the impact of remote grid points 
on the analysis (Oke and Sakov 2006). Also, inflation is necessary to help with the 
underestimation of the background error covariance. Covariance inflation amplifies the 

ensemble anomalies at the end of each assimilation step by some factor, and 
consequently increases the background error covariance (SO2008). Figure 1 is included 
as an example of a typical analysis and true field for the QG model at the final 
assimilation step. SO2008 selected parameters for the data assimilation systems with 
the intention of producing a variety of non-divergent runs for a range of inflation factors 
and localization radii.  
 

 
Figure 1.  An example of a final state for an indiv idual QG model experiment run to reproduce 

figure 7 of SO2008.  The dots represent the observ ation locations for the particular run. True Ψ 

field is on the left, and the analysis Ψ field is on the right. 

 
 Figure 7 of SO2008 shows that the QG model is run for localization radii 
increments of 5 and inflation factor increments of 0.02. The area of localization radii- 
inflation factor subspace investigated here includes localization radii between 15 and 25 
and inflation factors between 1.04 and 1.08 (nine bins). For each combination of the 
ensemble inflation and localization radius, 10 runs of 1200 steps each are carried out. 



To quantify the performance of the DEnKF and DEnKF, the root mean squared error 
(RMSE) of the analysis of the streamfunction Ψ is computed. The RMSE values 
depicted in figure 7 of SO2008 represent an average over 10 realizations, for 
assimilation cycles 52 to 301 of each realization. As a reference, figure 7 is included 
with the localization radii and inflation factors reproduced in this investigation 
demarcated by a red box (Figure 2).  
 

 
 
Figure 2. Figure 7 from SO2008 with a red box surrounding the localization radii and inflation 

factor combinations reproduced in this study. The shading refers to the size of the RMSE of the 

analysis of Ψ. White cells indicate experiments where at least one realization out of ten div erged 

or became unstable.  

 

 Figure 2 demonstrates that the DEnKF outperforms the EnKF considerably for 
the chosen data assimilation parameters. Not only are there fewer localization radii- 
inflation factor combinations that converge for the EnKF but the converging 
configurations have higher RMSE. The boxed area in Figure 2 appears qualitatively to 
be one of the regions of inflation factors and localization radii with the largest 
discrepancy in performance between the two data assimilation methods. The inferior 
results of the EnKF in this region of localization radii-inflation factor subspace is largely 
attributable to EnKF’s higher sensitivity to the optimality of the parameters for the given 
ensemble size. Both data assimilations methods have their lowest RMSE values for 
moderate inflation factors with low localization radii. The location of this best performing 
region in the given parameter space indicates that the configuration of the data 
assimilation is certainly not optimal (background error covariance requires significant 
adjustments). In theory, the EnKF requires a larger inflation than any ESRF in these 
situations due to the small ensemble size’s substantial impact on the EnKF’s 
background error covariance (Whitaker and Hamill 2002).  
 

Figure 2 agrees well with figures 3 and 4 from Whitaker and Hamill (2002), which 
shows a much smaller parameter space where the filter diverges for the EnSRF method 
compared to the EnKF. However, it is important to note that the RMSE values displayed 
in Figure 2 are not necessarily representative of the true performance of the two data 
assimilation systems. Each realization incorporates an initial ensemble that is formed by 



25 random samples of 2000 fields. By only averaging over ten realizations, the RMSE in 
a square of Figure 2 might be quite different depending on which 10 realizations are 
averaged over. The results of section 3 highlight this important observation as well the 
impact of ensemble size on the performance of the EnKF and DEnKF.     
 
III. Results 
 
Results using the same QG model and the data assimilation parameters described in 
SO2008 to create Figure 2 are shown in Figure 3. The 3 X 3 parameter subspace 
depicted is the boxed region in Figure 2. The RMSE values are clearly different than 
SO2008’s figure 7 so different realizations of the initial ensemble were clearly used 
which is not surprising. One of the more notable differences between Figure 3 and the 
boxed region of Figure 2 is the presence of five white squares EnKF’s red box in Figure 
2 but only one white square in the EnKF subplot of Figure 3. Again, this result is 
expected because the small sample size when randomly selecting ten realizations will 
naturally lead to differing amounts of diverging model runs.  

 
Still, the overall trends in Figures 2 and 3 remain largely identical. The RMSE 

magnitudes for both the EnKF and DEnKF in Figure 3 agree very well with the 
corresponding bins in Figure 2. The DEnKF significantly outperforms the EnKF in both 
Figure 2 and 3. There are no combinations of parameters in the boxed region of Figure 
2 or the entirety of Figure 3 that results in smaller RMSE values for the EnKF in 
comparison to the corresponding parameter combinations for the DEnKF. Also, the 
optimal parameter combinations are very similar in the two figures; smaller localization 
radii and larger inflation factors lead to smaller mean RMSEs in both Figure 2 and 
Figure 3.      

 

 
 
Figure 3. Comparison of the RMSE of the analysis of Ψ for the DEnKF and EnKF as a function of 

localization radius and inflation factor for the ensemble size of 25, av eraged ov er 10 realizations 

and assimilation cycles 52-301 within each realization. White cells correspond to experiment 

where at least 1 realization out of 10 div erged.  The color bar ranges from RMSE v alues of 0.7 to 

1.1.    

 



 When evaluating Figure 3 and Figure 2, it is clear that with the data assimilation 
parameters and QG model employed in SO2008, the DEnKF is the better performing 
data assimilation system. However, one needs to consider how the DEnKF and EnKF 
improve when the data assimilation parameters becomes more optimal. In other words, 
what happens to each system’s RMSE when improving the likelihood of a better 
analysis? There are a numbers of ways to theoretically achieve a better data 
assimilation system: lower the observational error, add more observations, increase the 
number of ensemble members, etc. In this study, the number of ensemble members 
was doubled to simulate the impact of bolstering the data assimilation configuration. 
Figure 4 applied the same data assimilation system to the SO2008 QG model as Figure 
3 except for the increased amount of ensemble members.  
 

 
 
Figure 4. Comparison of the RMSE of the analysis of Ψ for the DEnKF and EnKF as a function of 

localization radius and inflation factor for the ensemble size of 50, av eraged ov er 10 realizations 

and assimilation cycles 52-301 within each realization.  The color bar ranges from RMSE v alues of 

0.6 to 0.8.    

   
Similar to Figure 3, Figure 4 includes the same localization radius and inflation 

factor ranges boxed in Figure 2 but there are several conspicuous differences between 
the two figures. The lower RMSE values for all bins are accentuated by the different 
color bar ranges in Figure 4 compared to Figure 3. Secondly, there are localization radii- 
inflation factor combinations where the EnKF RMSE is lower than the corresponding 
DEnKF bins. In other words, the EnKF is now performing better than the DEnKF for 
certain parameter configurations. The trends involving the localization radius and 
inflation factor are now significantly different for the two schemes. In general, the EnKF 
performs better for smaller localization radii and larger inflation factors but the gradient 
in RMSE across bins is not as dramatic as Figure 3. The DEnKF shows no noticeable 
patterns besides performing slightly better for lower inflation factors. However, smaller 
localization radii are not necessarily optimal for the DEnKF in this larger ensemble. 
Although the trends in the EnKF localization radii-inflation factor are predominantly the 
same for the different ensemble sizes, the DEnKF exhibits different trends between the 
two ensemble sizes. Based on Figure 4, it appears the DEnKF does not need inflation 
with this larger ensemble while EnKF still benefits considerably. The possible reasons 
for this conclusion will be discussed further in section 5. The results displayed in Figures 



3 and 4 show only a small portion of the possible inflat ion factor-localization radius 
combinations illustrated in Figure 2 but the comparisons between the different figures 
provide several important conclusions about the merits of each data assimilation 
scheme.    
 
IV. Discussion of the Discrepancies between Figures 2 and 3 
 
In order to assess the performance of different data assimilation schemes on three 
relatively small models, SO2008 conducted a set of experiments where skill was 
quantified by the RMSE of the analysis Ψ. In this study, the performance of two data 
assimilation schemes, EnKF and DEnKF, is diagnosed for the QG model using the 
same experimental setup as SO2008. However, reproducing the SO2008 experiments 
exactly is impossible because the initial ensemble inputted into the two data assimilation 
systems is selected randomly from a large sample. Therefore, the RMSE values for 
each square in Figure 2 represent an average over ten numerical tests with randomly 
selected 25 initial ensemble members for each test (without knowledge of which 
ensemble members were used for each test, it is not possible to recreate Figure 2).  

 
Additionally, the small number of samples creating each bin’s average RMSE is 

responsible for the noticeably different results between Figures 2 and 3. In fact, the 
standard deviations of the ten realizations in each bin of Figure 3 suggest that if the 
experiment was reproduced again, different conclusions could be made. The same 
inference is appropriate for the bins in Figure 4.  

 

 
Figure 5. The mean RMSE of the ten realizations for each of the nine radius-inflation factor 

combinations is plotted against the standard dev iation of the ten realizations. The  DEnKF is 

denoted by squares and the EnKF is denoted by stars. The plot on the left represents the 

experiment conducted with an ensemble size of 50 while the plot on the right represents the 

experiment with the ensemble size of 25.   

 
Figure 5 provides justification for the differences in mean RMSE between 

corresponding bins in Figures 2 and 3 as well as information on the performance of 
each data assimilation scheme. For each of the subplots in Figure 5, the standard 
deviation of the RMSE for each bin’s ten realizations is on the x axis while the mean 



RMSE of the ten realizations is on the y axis. Each of the nine squares represents one 
localization radius-inflation factor combination for the DEnKF; each star represents one 
localization radius-inflation factor combination for the EnKF.  Data is included for both 
ensemble sizes.  
 

The ratio of the standard deviation divided by the corresponding mean RMSE for 
each bin varies from approximately five percent to over twenty percent for the 25-
member ensemble. For the 50-member ensemble, the standard deviations are much 
smaller in comparison to the RMSE mean, ranging from less than two percent to nine 
percent of the mean RMSE. These results show that realizations can vary significantly 
in individual bins and as a result, certain localization radius-inflation factor combinations 
will produce vastly different mean RMSEs depending on which initial ensemble 
members are selected for each realization. As a result, bins in Figure 2 should include 
many more realizations to lower the RMSE standard deviations of each bin and lead to 
more robust conclusions about data assimilation scheme performance and the effects of 
the size of the localization radius and inflation factor.  

 
Figure 5 also demonstrates a relationship between the spread of the realizations’ 

RMSE (standard deviation interpreted as proxy for spread) in a bin and the mean RMSE 
of the bin. For the 25-member ensemble, both data assimilation methods show a strong 
linear relationship between the standard deviation of the realizations’ RMSE and the 
mean RMSE of the bin. As the variability between each realization’s RMSE increases, 
the mean RMSE of the bin increases proportionally. This relationship can demonstrate 
the consistency of the data assimilation system; the system performs best when the 
ensemble-based estimate if the background error variance correlates well with the 
actual background error variance (SO2008).  For the larger ensemble, there is much 
weaker correlation between mean RMSE and the RMSE standard deviation of a bin. 
EnKF still shows a positive correlation but DEnKF displays a weak negative correlation. 
This relationship between RMSE spread and mean RMSE further emphasizes the fact 
that a larger ensemble, or more optimal data assimilation parameterization, does not 
benefit the DEnKF in the same way as the EnKF.  

 
V. Discussion of Ensemble Size Effects on DEnKF and EnKF 
 

Comparing each bin’s performance for the different ensembles sizes in the EnKF 
and DEnKF highlights the trends discussed in section 3. Figure 6 shows the difference 
in RMSE between each bin for the ensemble size of 25 and 50. This plot highlights the 
bins that display the greatest improvement when the ensemble members are increased. 
Figure 6 emphasizes the EnKF improves more than the DEnKF when the ensemble 
size is expanded. SO2008 provides a possible explanation for the lack of improvement 
in the DEnKF for the larger ensemble. Equation (7) demonstrates that DEnKF always 
overestimates the analyzed error covariance and the difference between the analysis of 
the error covariance of the DEnKF and the Kalman filter only differs considerably when 
the analysis correction is large (when KH assumption in introduction fails). For a larger 
ensemble, the background error covariance matrix formulated by the ensemble 
technique (part of both EnKF and DEnKF) is more realistic. As a result, the 
overestimation of the error covariance matrix by the DEnKF becomes more 



unnecessary for the more optimal data assimilation configuration. The impact of the 
more accurate background error covariance is also visible in the EnKF results. The bins 
with the largest improvement in RMSE between the smaller and larger ensembles are 
the least optimal parameter combinations. Smaller adjustments from inflation and 
localization are required because the larger ensemble produces a more precise 
background error covariance matrix.   

    

 
Figure 6. RMSE difference between 25-member ensemble experiment and 50-member ensemble 

experiment plotted against localization radius and inflation factor for DEnKF (left) and EnKF 

(right). White squares indicate one realization of either the 25-member experiment or 50-member 

experiment div erged. 

 
 
VI. Conclusions 
 

The primary goal of this study is to analyze and recreate the results presented in 
SO2008’s figure 7. Additionally, the effects of upgrading the data assimilation schemes 
used in figure 7 by doubling the ensemble members are discussed. The QG model 
delineated in SO2008 provides a realistic, but small model to assess the performance of 
the EnKF and DEnKF data assimilation systems. However, to produce significant 
conclusions comparing the EnKF and DEnKF, SO2008 needed more thorough and 
comprehensive statistical analyses. The mean RMSE values of the bins in figure 7 of 
SO2008 were composed of 10 realizations. The typical standard deviations of the 
RMSE values in each bin indicate that more realizations are necessary to compare the 
performance of the EnKF and DEnKF and to even compare the different parameter 
configurations. Also, it is not mentioned how adjusting some of the QG equation’s (eqn. 
20 of SO2008) coefficients or data assimilation parameters would affect the conclusions 
drawn on the performance of the EnKF compared to the DEnKF. By doubling the 
ensemble size and repeating the experiments that produced figure 7, significant 
changes in EnKF and DEnKF performance are observed. If the data assimilation 
parameters become more optimal with another doubling of the ensemble size or 
lowering of the observation error, how will the DEnKF fair against other data 



assimilation schemes? Future experimentation with the DEnKF is needed before 
considering it a legitimate data assimilation technique for operations.    
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