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A GENERAL CLASSIFICATION RULE FOR PROBABILITY
MEASURES!

By SANJEEV R. KULKARNI? AND OFER ZEITOUNI®

Princeton University and Technion

We consider the composite hypothesis testing problem of classifying
an unknown probability distribution based on a sequence of random
samples drawn according to this distribution. Specifically, if A is a subset
of the space of all probability measures .#,(2) over some compact Polish
space X, we want to decide whether or not the unknown distribution
belongs to A or its complement. We propose an algorithm which leads a.s.
to a correct decision for any A satisfying certain structural assumptions. A
refined decision procedure is also presented which, given a countable
collection A; C#\(2), i = 1,2,..., each satisfying the structural assump-
tion, will eventually determine a.s. the membership of the distribution in
any finite number of the A, Applications to density estimation are
discussed.

1. Introduction. In this paper, we consider the composite hypothesis
testing problem of classifying an unknown probability distribution into one of
a finite or countable number of classes based on random samples drawn from
the unknown distribution. This problem arises in a number of applications
involving classification and statistical inference. For example, consider the
following problems:

1. Given iid. observations x, x,, ... from some unknown distribution P, we
wish to decide whether the mean of P is in some particular set (e.g., in
some interval or whether the mean is rational, etc.).

2. Given i.i.d. observations x,, x,,..., we wish to decide whether or not the
unknown distribution belongs to a particular parametric class (e.g., to
determine if it is Gaussian) or to determine to which of a countable
hierarchy of classes the unknown distribution belongs (e.g., to determine
class membership based on some smoothness parameter of the density
function).

3. We wish to decide whether or not observations x,, Xy,... are coming from
a Markov source and, if so, to determine the order of the Markov source.
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1394 S. R. KULKARNI AND O. ZEITOUNI

In these examples, our goal is to decide whether an unknown distribution
1 belongs to a set of distributions A or its complement A°, or more generally
to decide to which of a countable collection of sets of distributions AL A,,...
the unknown u belongs. After each new observation x, we will make a
decision as to the class membership of the unknown distribution. Our crite-
rion for success is to require that almost surely only a finite number of
mistakes are made. There are two aspects to the “almost sure” criterion.
First, as expected, we require that with probability 1 (with respect to the
observations x,, x,,...) our decision will be correct from some point on.
However, depending on the structure of the A ;» classification may be difficult
for certain distributions p. Hence, given a measure on the set of distributions
we allow failure (i.e., do not require a finite number of mistakes) on a set of
distributions of measure zero.

Our work is motivated by the previous work of Cover (1973), Koplowitz
(1977) and Kulkarni and Zeitouni (1991). In fact, the previous works just
mentioned deal with the specific case in which the unknown distribution is to
be classified according to its mean based on iid. observations, as in the
example problem 1 above. In this case, a subset of R can be identified with
the set of distributions A in the natural way (i.e., all distributions whose
mean is in a specified set). Cover (1973) considered the case of distributions
on [0,1] with A = @0, 1)» the set of rationals in [0, 1] and, more generally, the
case of countable A. He provided a test which, for any measure with mean in
A or with mean in A°\ N, will make (almost surely) only a finite number of
mistakes where N is a set of Lebesgue measure 0. For countable A, Cover
also considered the countable hypothesis testing problem of deciding exactly
the true mean in the case the true mean belongs to A and provided a decision
rule satisfying a similar success criterion. Koplowitz (1977) showed some
properties of sets A which allow for such decision rules and gave some
characterizations of the set N. For example, he showed that if A (the closure
of A) is countable, then N is empty, while if A is uncountable, then N is
uncountable. Kulkarni and Zeitouni (1991) extended the results of Cover
(1973) by allowing the set A to be uncountable, not necessarily of measure 0,
but such that it satisfies a certain structural assumption. Roughly speaking,
this structural assumption requires that A be decomposable into a countable
union of increasing sets B,, such that a small dilation of B,, increases the
Lebesgue measure by only a sufficiently small amount. In a different direc-
tion, Dembo and Peres (1994) provide necessary and sufficient conditions for
the almost sure discernibility between sets. Their results, when specialized to
the setup discussed above, show that the inclusion of the possibility of some
errors on the set of irrationals is necessary in order to ensure discernibility.

The decision rules of Cover (1973), Dembo and Peres (1994), Koplowitz
(1977) and Kulkarni and Zeitouni (1991) are basically as follows. At time n,
the smallest m is selected such that the observations are sufficiently well
explained by a hypothesis in B,. If m is not too large, we decide that the
unknown distribution belongs to A; otherwise we decide A°. For the case of
countable hypothesis testing, a similar criterion is used. Thus, the B,, can be
thought of as a decomposition of A into hypotheses of increasing complexity
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and so the decision rules are reminiscent of Occam’s razor or the minimum
description length (MDL) principle.

The problem considered in this paper uses a success criterion and decision
rules very similar to those in the previous work of Cover (1973), Koplowitz
(1977) and Kulkarni and Zeitouni (1991), but allows much more general types
of classification of the unknown distribution. Section 2 treats the case of
classification in A versus A° for distributions on an arbitrary compact
complete separable metric space (i.e., a compact Polish space) with i.i.d.
observations. The case of classification among a countable number of sets
Ay, Ay, ... fromiid. observations is considered in Section 3. Thus, the results
of these two sections cover the example problems 1 and 2 mentioned above.
Relaxations of the basic assumption concerning the iid. structure of the
observations x,,..., x, to a Markov situation is possible and rather straight-
forward. The interested reader is referred to Zeitouni and Kulkarni (1994) for
a treatment of example problem 3 on the determination of the order of a
Markov chain.

We now give a precise formulation of the problems considered here. Let
Xy,..., %, be ii.d. samples drawn from some distribution u. We assume that
x; takes values in some compact Polish space S, which for concreteness
should be thought of as [0, 1]¢ ¢ R€. Let #(2) denote the space of probability
measures on 2. We put on .#,(2) the Prohorov metric, denoted d(-, - ), whose
topology is equivalent to the weak topology.

We consider here the following problems:

(P1) Based on the sequence of observations ( Xy,..., x,), decide whether
K€ Aoru € A°, where A is some given set satisfying certain structural
properties [cf. (A1) below].

(P2) Based on the sequence of observations ( Xq1,..., %,), decide whether
Kk EA;, where all A, c.#(3),i=1,2,..., are sets satisfying structural
properties [cf. (A1) below].

Since .#,(3) is a Polish space [see Parthasarathy (1967)], there exist on
#(2) many finite Borel measures which we may assume to be normalized to
have a total mass 1. Suppose one is given a particular measure, denoted G,
on .#,(2). In particular, we allow G to charge all open sets in .#,(3). The
measure G will play the role of the Lebesgue measure in the following
structural condition, which is reminiscent of the assumption in Kulkarni and
Zeitouni (1991).

(Al) There exists a sequence of open sets C,, C.#,(X) and closed sets
B, c.#,(2), and a sequence of positive constants £(m) such that the follow-
ing hold:

D VueAdImy(u) <ost.Vm> my(w), u € B, ;
(i) d(B,,,C:) = V2e(m) > 0
(i) G(N 7., U5 (CY2 ™)\ A) = 0, where COZem) — (4
#(2)|d(v,C,) < /2&(m)} is the V2e&(m) dilation of C,,.
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Assumption (Al) is an embellishment of the structural assumption in
Kulkarni and Zeitouni (1991), which corresponds to the case where B, isa
monotone sequence and C,, are taken as the \/2¢(m) -dilation of B,,. The
use of (A1)(i) and (A1)(ii) was proposed to us by A. Dembo and Y. Peres, who
obtained also various conditions for full discernibility between hypotheses [cf.
Dembo and Peres (1994)]. We note that as in Kulkarni and Zeitouni (1991),
the assumption is immediately satisfied for countable sets A by taking as B,,
the union of the first m elements of A and noting that, for a finite measure
on a metric space, G(B(x, §) \ {x}) —»5_,, 0, where B(x, 8) denotes the open
ball of radius & around x. More generally, (A1) is satisfied for any closed set
by taking B,, = A and using for C,, a sequence of open sets which include A
whose measure converges to the outer measure of A. Since C,, is open and 3
is compact, it follows that d(A,C¢) > 0, and (A1) is satisfied. By the same
considerations, it also follows that (A1) is satisfied for any countable union of
closed sets. Also, note that whenever both A = Ui_14; and A° = US_,D,,
with A; and D; closed, then, choosing B,, = U i=14;and C,, = N D¢, one
sees that (A1) holds [with actually an empty intersection in (A1)iii) for
appropriate £(m)]. In this situation, the results of this paper correspond to
the sufficient part of Dembo and Peres (1994).

2. Classification in A versus A°. The definition of success of the
decision rule will be similar to the one used in Kulkarni and Zeitouni (1991).
Namely, a test which makes at each instant » a decision whether L EAor
M € A® based on x,,..., x, will be called successful if the following hold:

(S VueA as w,3T(w)st.V n > T(w), the decision is A;
(82) AN c.#,(3) st.
(82.1) G(N) =0,
(82.2) Vu € A°\ N, as. o, 3T(w)st.Vn > T(w), the decision is A°.

Note that the outcome is unspecified on N. Note also that the definition is
asymmetric in the roles played by A and A° in the sense that errors in A are
not allowed at all.

Let u, = (1/n)Z}_ 8, . We recall that u, satisfies a large-deviation princi-
ple, that is, ‘

1
— inf H(6|p) < liminf —log P( u, € A)
(1) 9 A n-« n
1 ‘
< limsup —log P(pn, € A) < — inf H(6| p),
A

n—w n

where A (A°) denotes the closure (interior) of a set A c.#,(2) in the weak
topology, respectively, and

dol i if 6
2) Holw) - | L4 lB g, o<,

oo, otherwise.
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[See Deuschel and Stroock (1989) or Dembo and Zeitouni (1993) for an
introduction to the theory of large deviations.]

Our decision rule is very similar to that in Kulkarni and Zeitouni (1991).
Specifically, we parse the input sequence Xy, X3,... to form the subsequences

(3) Xmé(xB(m—1)+1""’xB(m))’

where the choice of the 8(m) will be given below. The length of the sequence
X™ will be denoted by a(m), so that

(4) B(m) = X a(i), B(0) =0.
i=1
We will specify the B(m) by appropriately selecting the lengths a(m) of the
subsequences.
At the end of each subsequence X™, we form the empirical measure pyn
based on the data in the subsequence X™, namely,

1 Bg:n)
(5) MKxm = ——— ax,'
a(m) i=B(m-1)+1

Then we make a decision of whether M €A or u € A° according to whether
pxn € C,, or not. Between parsings, we do not change the decision.

Recall that, from the structural assumption (AD), C;, is /2&(m) -sep-
arated from B™. We choose a(m) sufficiently large such that if the true
measure u is in B, , then we will have enough data in forming the empirical
measure uy~ to make the probability of an incorrect decision (deciding A°
because pyn € Cy) less than 1/m?. If a(m) can be chosen in this manner,
then, for any u € A, once m > my( 1) our probability of error at the end of
the parsing interval m is less than 1 /m? so that by the Borel-Cantelli
lemma we make only finitely many errors.

To show that a(m) can be chosen to satisfy the necessary properties, we
will need a strengthened version of the upper bound in Sanov’s theorem (1).
To do that, we use the notion of covering numbers.

DEFINITION.  Let & > 0 be given. The covering number of A#(2), denoted
N(e, #((3)), is defined by

(6) N(e,.#,(3)) éinf{n 135100, v, EH(Z) sit. #(3) C O B(y,, s)},

i=1

where B(y, £) denotes a ball of radius & (in the Prohorov metric) around y.
Similarly, for any given £ > 0, denote by N*(¢) the covering number of 3,
that is,

(7) Ni(e) 2 inf{n 1351,...,5, €3st. 3 C UB(y,.,e)}.

i=1

where B(j,, £) are taken in the metric corresponding to 3.
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We now make the following claim.

LEMMA 1.

e \(Ni(e) A=
) & N(e, #,(3)).

(8) N(e, #,(3)) sz(;
PROOF. In order to prove the lemma, we will explicitly construct an
e-cover of .#,(2) with N(e, .#,(3)) elements.
Let §y,..., 3, be the centers of a set of & balls in 3 which create the
cover N*(¢) in (7). Let 8, 2 8;., that is, the distribution concentrated at 3;,
and let

N*(¢)

&
v rad B ' =0,1,..., .
’ (N‘(e)) S :

>

W

Define

k
ya {y €A(2):3(i, /1) (s i) sty = 1 /’Li:}'
a=1
Note that Y is a finite set, for it includes at most (N*(g)/e) + DV He)
members. Also, note that Y is an &-cover of .#,(3), that is, for any u €.#,(3)
there exists a y € Y such that, for any open set C c 3, w(C) < y(C*) + &. To

see that, choose as y the following approximation to u. Let i, = a, a =
1,..., N*(¢), and choose

oo (22

&

Ja=

where by | X | we mean the closest approximation to X on the N%(¢)/¢ j-net
from below. Finally, let

NE Ni(e)-1
IN3(g) £ — - Z Ja-
£ a=1
Now take y = LN uf=. Due to our choice of JN3(ey it follows that y is a
probability measure based on a finite number of atoms. Furthermore, since
for every measurable set C one has
EJa

a—1
ulCcn (B(ya,e)\ (kle(yk,e)))) < pfe + Ni(s)’

it follows by construction that for every open (actually, for every measurable)
set C one has that uw(C) < y(C*®) + ¢ and hence, by definition, d(y, p) <
[recall that the metric on .#,(2) is Prohorov]. We need therefore only to
estimate the cardinality of the set Y, denoted |Y|. Note that |Y| is just the
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number of vectors (j,..., jyz,,) such that Ef’:{‘) Ji=1 and j, €
{0, /N(e),2e/N(e),...,1}. Hence,

¥l < Z\rI(s) 1 Nz(s)fl fxa fxzdx dx
s
- e 0 0 o 1 N*(¢)

Nz(é‘) Ni(e) 1
=( ¥ 1) Mo

(9)

£

However, by Stirling’s formula,

(10) log(N*(£)!) > N*(&)log N*(&) — N3(¢).
Substituting (10) into (9), one has
NE(S) Ni(e) 1
(11) Y| < ( - + 1) exp[NE(a)] . W,

which implies that

1 N(e)
N(s,/l(E)) < (;(1 + Fé(‘_e))) exp[Nz(a)]

e \N¥e) e Ni(e) e \ N3
=|- 1+ —— <2|-—
(8) ( Nz(s)) (6‘)

= N(e, #,(3)). o

For completeness, we show in the Appendix a complementary lower bound
on the covering number which exhibits a behavior similar to N. Thus, the
upper bound N cannot be much improved.

The existence of the bound N permits us to mimic the computation in
Kulkarni and Zeitouni (1991) for the case in hand. Indeed, a crucial step
needed is bounding the probability of complements of balls, for all n, uni-
formly over all measures, as follows.

THEOREM 1. ,
P(p, €B(p, S)C) < N(;,II(E))exp[—n(g)z].

PROOF. The proof follows the standard Chebyshev bound technique, with-
out taking n limits as in the large-deviation framework. Indeed,

eon =90 o
P(p.nEB(p.,S) )SN(—,II(Z))- sup P(;L"EB(y,-—)).
4 YA (), d(y, )z 38/4 4
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Therefore, by the Chebyshev bound, letting P, denote the law of the random

variable p, and letting C,(2) denote the space of continuous (and hence, by
compactness, bounded) functions on 3, it follows that, for any 6 € C,(3),

P(p, €B(u,8)°)
(5
sN(Z,ll(E))

X sup

/ exp(n(8, v))exp(—n(6, v)) dP,(v)
yeh(3),d(y, n)=36/4 " B(y,8/4)

sﬁ(g,ll(z))

X sup exp(—n sup inf ((6, v)
y:d(y, p)=2368/4 9eCy(3) ¥€B(y, 8/4)

- %log Ep (exp[n{e, ">])))

X exp| —n inf sup ((0,v)
veB(y, 8/4),d(y,u)=236/4 0 Cy(3)

1
~ —log Ep (exp[ n(9, V>])))

,A’I(E))exp(—n inf H(Vl/.L))
veB(y,6/4),d(y, n)=>36/4

A exp(<n_int B w)

IA

(5 oo (2]

where (0,v) = [6(x)v(dx), the first equality in (12) follows from the
min-max theorem for convex compact sets [cf. Sion (1958), Theorem 4.2], the
second equality follows by Lemma 3.2.13 of Deuschel and Stroock (1989), and
the last inequality from the fact that [Deuschel and Stroock ( 1989), Exercise
3.2.24], for any n € B(u, §/2)°,

N o>

<d(n, u) <lln - wllvar <2HY?(n| ). m]
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COROLLARY 1. Let B,, C.#\(Z) be a measurable set such that u € B,,. Let
B, denote an open set such that d(B,,,(B2)°) > 8. Then

5 2
—n(z) ]
We return now to the proposed classification algorithm. Motivated by

Corollary 1, define
g(m) -1 g(m)
8 8} 78
and let B(m) be as defined previously by (4).

Note that with this choice of a(m), using Corollary 1 with & = V2e(m),
and the expression for N(5/4, .#,(3)) from Lemma 1, we have that, for all
i €A and m > my(w),

c —( &
(13) P(p,m € (B}) ) SN(Z,JI(E))exp

(14) a(m) = %[Zlogm +log2 + N*

1
(15) P(piaemy € Cr,) < —5,
m
as we wanted.
For convenience we summarize the decision rule again here.

DECISION RULE. For any input sequence Xy, X9,..., form the subse-
quences

X" = (xﬁ(m—1)+11"'1xﬁ(m))'

Let uy~ denote the empirical measure of the sequence X™. At the end of
each parsing, decide u € A if uy» € C,,, and decide u € A¢ otherwise. Be-
tween parsings, do not change the decision.

We now make the following claim.

THEOREM 2. The decision rule defined by the parsing B(m) as above is
successful.

Proor. The proof is essentially identical to the proof of Theorem 1 in
Kulkarni and Zeitouni (1991).

(a) If u € A, then by assumption (A1)i) there exists my( ) such that
wn € B, for all m > my( u). Note that the event of making an error infinitely
often is equivalent to the event of making an error at the parsing intervals
infinitely often. However, by our choice of a(m),

o

x< . 1
Y. Prob{error after mth parsing} < mg(u) + > — < ™,

2
m=1 m=my(p)+1
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Therefore, using the Borel-Cantelli lemma, we have that our decision rule
satisfies part (S1) of the definition of a successful decision rule.
(b) Let

(16) N = a O C'(n\/2s(m))\A_

n=1m=n

By assumption (A1Xiii), G(N) = 0. Now, if u € A°\ N, we may repeat the
arguments of part (a) in the following way: For an my(u) large enough,
p € (CLV2U™))e for all m > my( w). Therefore, we have d( u, C,,) > V2e(m)
for all m > my( ). Then, using Corollary 1 with & = V2&(m), the expres-
sion for N(5/4, #|(%)) from Lemma 1 and the choice of a(m), we have that,
for m > my(p),

(17) Prob{error after mth parsing} = P(uy» € C,)) < pol

Hence, as in part (a), the result follows by a simple application of the
Borel-Cantelli lemma. O

3. Classification among a countable number of sets. In this section,
we refine the decision rule to allow for classification among a countable
number of sets. Specifically, if A, A,,... are a countable number of subsets
of .#(Z), we are interested in deciding to which of the A; the unknown
measure u belongs. The only assumption we make on the A, is that each A;
satisfies the structural assumption (A1). The A, are not required to be either
disjoint or nested, although these special cases are most commonly of interest
in applications. In general, after a finite number of observations one cannot
expect to determine the membership status of u in all of the A,. However, we
will show that for all i except in a set of G-measure zero in .#1(3) there is a
decision procedure that a.s. will eventually determine the membership of u in
any finite subset of the A;. In the special cases of disjoint or nested A;, the
membership status of x in any of the countable A, is completely determined
by membership in some finite subset. Hence, in these cases, except for x in a
set of G-measure zero the membership of u in all the A; will as. be
eventually determined.

We modify our previous decision rulé as follows. The observations x D Xgy.en
will still be parsed into increasingly larger blocks in a manner to be defined
below. However, now, at the end of the mth block, we will make a decision as
to the membership of u in the first m of the A;. The decisions of whether u
belongs to A,,..., A, are made separately for each A; using a procedure
similar to that of the previous section.

Specifically, for each A;, let B, ,, be a sequence of closed sets, let C;,bea
sequence of open sets and let £,(m) —,, ., 0 be a positive sequence satisfying
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the requirements of the structural assumption (A1). From the same consider-
ations that led to (15), for

8
a;(m) = [2 log m + log2
(18) g(m)
+N*(\/e:(m)/8)(1 - logy/e,(m) /8],
we have, for u € A,
1
(19) PM( Heo (m) € Cic,In) = -3
m
As before, the observation sequence x,, x,,... will be parsed into nonoverlap-
ping blocks
(20) xm =(x6(m_1)+1,...,x5(m)),

where the B(m) are defined below. At the end of the mth block, a decision
will be made about the membership of x in A,,..., A,,. This decision will
be made separately for each i = 1,...,m using the observation sequence
X™ exactly as before: that is, at the end of the parsing sequence X™,
for i = 1,...,m, decide that u € A, according to whether or not puxn € C; .,
and do not change the decision except at the end of a parsing sequence. We
define the parsing sequence B(m) by B(0) =0 and B(m) - B(m - 1) =
max,; _; ., a;(m) or, equivalently,

m
(21) B(m) = ). max a;(k), B(0) = 0.
k=1 1<i<k
For this decision rule we have the following theorem.

THEOREM 3. Let A, c#'(2), for i =1,2,..., satisfy the structural as-
sumption (Al). Then there is a set N C M\(3) of G-measure zero such that,
for every pu €4 (2)\ N and every k < =, the decision rule will make (a.s.)
only a finite number of mistakes in deciding the membershipof winA,,..., A;:
that is, given any p € #(2)\ N, for a.e. w there exists m(w) = m(w, p, k)
such that for all m > m(w) the algorithm makes a correct decision as to
whether w € A; or p € A, fori=1,...,k.

PrOOF. Let
(22) No= ) U CWVm\4,,
n=1m=n ’
and let

(23) N=UN.
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Then from assumption (A1) it follows that the G-measure of each N; is zero,
and so the G-measure of N is also zero.

Now, let u €#1(Z)\ N, and let £ < . For each i = 1,..., k, there exists
m,(p) < such that if u €A, then u € B, ,, for all m > m(p), while if
p € A, then p € (C{V2U™)) for all m > m,(u) (since p & N,). Recall that,
at the end of the parsing sequence X™, the algorithm decides u € A; iff
uxn € C; ., sothatif u € A, then an error is made about membership in A,
iff pyn & C,; ,, while if u & A;, an error is made iff uy» € C; . If u €A,
then, using Corollary 1 and the fact that d(B,; ,,,C; ) = y/2¢,(m) , we have
that the probability of making an incorrect decision is less than 1/m? for
m > m;(u). On the other hand, if u € A¢, then since

d(C, i (COET)) 2 Y2a(m)

we also have probability of error less than 1/m? for m > m,(u) [again using
Corollary 1 and the expression for a(m)]. Hence, for m > my(u) =
max(m,(u),..., m,( ), the probability of making an error about the mem-
bership of w in any of A,,..., A, is less than k/m?. Then

o2}

- 1
Y. Prob{error in any A; on mth parsing} < my+k Y — <=,

m=1 m=mgy+1
so that the theorem follows by the Borel-Cantelli lemma. 0O

Note that if one also wants to make a correct decision after some finite
time whether or not u is in any of the A;, for i = 1,2,..., then the decision
procedure can be easily modified to handle this. Specifically, it is easy to show
that sets satisfying the structural assumption are closed under countable
union. Hence, one could include in the hypothesis testing the set A, =
U%-14;, so that after some finite time a correct decision would be made
about the membership of u € A,.

Also, it is worthwhile to note that if the A; have more structure then some
improvements can be made. For example, if the membership status of u in
A,;, for i =1,2,..., is determined by its membership status in some finite
number of the A;, then a correct decision regarding the membership of u in
all of the A; can be guaranteed (a.s.) after some finite time (depending on ).
This is the case for disjoint or nested A;, which may be of particular interest
in some applications. For these cases, by letting A, = U7.14; and running
the decision rule on A,, A;,A,,... as mentioned above, we have the follow-
ing corollary of Theorem 3.

COROLLARY 2. Let A, c.#Y(3), for i =1,2,..., satisfy the structural as-
sumption (A1) and suppose the A; are either disjoint or nested. Then there is
a set N C M((%) of G-measure zero such that, for every u € #(3)\ N, the
decision rule will make (a.s.) only a finite number of mistakes in deciding the




CLASSIFYING PROBABILITY MEASURES 1405

membership of w in all of the A;: that is, given any u €#(Z)\ N, for a.e.
there exists m(w) = m(w, u) such that for all m > m(w) the algorithm makes
a correct decision as to whether u € A;, foralli=1,2,... .

It is worthwhile to note that the results of this section may be used also in
the case that 2 is locally compact but not compact. In that case, one may first
intersect the A; with compact sets K,, which sequentially approximate 3
and then use m(n) — «. We do not consider this issue here.

We conclude this section with an example taken from the problem of
density estimation. Let 3 = [0, 1] and assume that Xq,..., %, are ii.d. and
drawn from a distribution with law u,, 8 € ®. When some structure is given
on the set ¥ = U, ¢ 1y, there exists a large body of literature which enables
one to obtain estimates of the error after n observations [e.g., see Ibragimov
and Has’'minskii (1981)]. All these results assume an a priori structure, for
example, a bound on the L?-norm of the density f, = d uy/dx. If such informa-
tion 1s not given a priori, it may be helpful to design a test to check for this
information and thus to be able to estimate eventually whether the distribu-
tion belongs to a nice set and if so, to apply the error estimates alluded to
above. The application of such an idea to density estimation was suggested by
Cover (1972).

As a specific example, let

Ai={nem(z)=[;(d‘;(xx)] si}.

Note that the sets A; are closed w.r.t. the Prohorov metric and therefore they
satisfy the structural assumption (A1). Moreover, they are nested and thus
Corollary 2 may be applied to yield a decision rule which will asymptotically
decide correctly on the appropriate class of densities.

A somewhat different application to density estimation arises when the A i
consist of single points (i.e., each A; contains a single probability measure).
The special case in which A; consists of the ith computable density is related
to a model considered by Barron (1985) and Barron and Cover (1991). For an
estimation procedure based on the minimum description length (MDL) princi-
ple, they showed strong consistency results when the true density is a
computable one. Since there are a countable number of computable densities
and the structural assumption (Al) is satisfied for any singleton, a strong
consistency result for computable densities follows immediately from our
results.

APPENDIX

For completeness, here we prove a lower bound for the covering number of
#(3) with respect to the Prohorov metric. This lower bound exhibits a
behavior similar to the upper bound of (8), so that these bounds cannot be
much improved. In the proof below, M(¢,Y,n) denotes the e-capacity (or
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packing number) of the space Y with respect to the metric n, that is,
M(e,Y, n) represents the maximum number of nonoverlapping balls of diam-
eter £ with respect to the metric 1 that can be packed in Y. The well-known
relationship

N(2&,Y,m7) <M(2¢,Y,7m) <N(e,Y,n)

between covering numbers and packing numbers is easy to show and is used
in the proof below. Note that, for a Polish space 3 with metric 7, we use the
notation N(e, 2, m) = N*(¢) and N(s, #'(3),d) = N(e, #1(3)).

LEMMA Al.  Let 3 be compact Polish space with metricm, and let #(3)
denote the set of probability measures on 3, with the Prohorov metric d. Then

1
N(e, #'(2)) > 8ey/N*(2¢) (a

ProoF. First, we can find N = N*(¢) points x,,..., x, which are pair-
wise greater than or equal to & apart. Each measure supported on these N
points corresponds to a point in R¥ in the natural way. Then, the set of all
probability measures supported on x,,..., x ~ corresponds to the simplex SV
in RV,

Now, let p and g be points on the simplex S¥ and suppose that d_.(p, q)
> 2¢, where d,i =LY |Ip, — q,|. Then on some subset G c{1,..., N} of
coordinates either L, p; < L;cgq;+ & or L,cgq; < Licg p; + & Then,
considered as probability measures on 3, d(p, q) > & since there is a closed
set F C 3, namely, F = {x,li € G}, for which either p(F) > q(F®)+ ¢ or
q(F) > p(F*) + &. Hence,

N(s/Z,II(E),d) ZM(S,II(E),d) > M(2a,SN, d/l) 2N(2e,SN, d/x).

Finally, to get a lower bound on N(2¢, SV, d 1), we note that the (N — 1)-
dimensional surface measure of the simplex SV is VN /(N — D! (simply,
differentiate the N-dimensional volume of the interior of an x-scaled simplex
with respect to x, taking the angles into account). On the other hand, note
that the (N — 1)-dimensional volume of the intersection of SM with an
N-dimensional #'-ball of radius 2¢ is not larger than the volume of an
(N — 1)-dimensional /-ball of radius 2¢, which equals (4&)V~! /(N — 1)
Thus, N@2¢,S",d 1) > (1/4&)¥ /N . Thus,

N(g,ll(Z)) > (Zlg)wﬁsm,

)NX(Ze)

or equivalently,

) N%2¢)

1
N(e, #'(2)) > 86/N*(2¢) (g;
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