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TABLE 1II
CopING REsuLTS. TOTAL BITS AND RATES REQUIRED FOR THE
EXPERIMENT TEXTURES (RIGHT COLUMN GIVES REQUIRED JPEG RATE)

ﬁeztum Indeterministic | Deterministic Total Number of
Number | Comp ts Comp ts | (Including Bits/Pizel
8-bits for
Mean) | Model Based | JPEG
Coding
1 74 480 554 0.14 1.16
2 74 592 666 0.16 1.28
3 90 520 610 0.15 1.56
4 60 864 924 0.23 1.24
5 202 136 338 0.08 0.76
6 267 584 851 0.21 1.36

We present in Figs. 2 and 3 the original, the model-based recon-
struction, and the JPEG reconstruction for the six textures at the
coding rates given in Table II. Despite the higher rates, the JPEG
reconstructions are inferior to the model-based ones, as they display
blocking effects and tend to smooth the characteristic roughness of
the textures. It is evident that our coding method obtains a high-
quality rendition of the original and is superior to the JPEG method
applied at much higher rates.

V. CONCLUSIONS

We have presented a novel approach for coding textured images
whereby the images are decomposed into a 2-D Wold-like representa-
tion, and the parameters of this representation are encoded. We have
proved, through enactment of a coding scheme for the parameters, that
both high-quality reconstructions and low bit rates are simultaneously
achievable for a wide variety of natural textures. We conclude that
this new approach is promising and viable for encoding of textured
images.
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Model-Based Reconstruction of Multiple Circular and
Elliptical Objects from a Limited Number of Projections

S. Wang, B. Liu, and S. R. Kulkarni

Abstract—We consider tomographic image reconstruction from a lim-
ited number of noisy projections. An efficient algorithm based on max-
imum likelihood estimation (MLE) is developed to reconstruct images
of multiple discs with unknown locations and radii. The algorithm is
successfully applied to images with signal-to-noise ratio (SNR) as low as 0
dB, using as few as 16 projections, and containing as many as twelve discs
with widely varying radii. Experimental results show that our approach
significantly outperforms conventional convolution back projection. The
algorithm is successfully extended to the multiple ellipse case.

I. INTRODUCTION
The Radon transform of a two-dimensional (2-D) image

g(€,t)=/w /°° f(z,y)6(t — xsinf — ycosh) dz dy (1)

maps the image f(z,y) into another 2-D function g(6,¢). Various
techniques for inverting g(6, t) lay the ground for reconstruction of a
2-D image from integral projections. It is well known that when the
projections are limited in number or view angle, or have high noise
levels, it is generally not possible to reconstruct the image accurately
using conventional approaches such as filtered back projection. It is
reasonable to expect that with prior information about the image,
such as a parametrized model of the image, better quality of the
reconstruction is achievable. Rossi and Willsky [1] investigated the
case of reconstruction of an image of a single disc with known radius
and uniform intensity on a known background by estimating the
location of the disc using maximum likelihood estimation (MLE).
Rossi et al. [3] proposed an algorithm for reconstructing an elliptical
object using a maximum likelihood (ML) method. Milanfar [4] used
ML to reconstruct a binary polygonal image. In his study, moments of
the polygon were estimated from the projection data, and then were
used to generate an initial guess for the ML algorithm. When there
is more than one disc, the computational complexity of MLE grows
exponentially. Thus, the approach is impractical even for a moderate
image size and more than one disc. Sauer and Liu [2] developed an
algorithm for the detection and estimation of multiple discs of equal
and known radius with complexity similar to that of the single disc
case, and performance very close to that of MLE.

In this paper, we extend the Sauer-Liu algorithm of [2] to the
case of multiple discs with unknown radii. We are able to detect the
number of discs and estimate both locations and radii of the discs
with computational complexity that is linear in the number of discs
and the number of possible locations and radii for each disc. The
algorithm is further extended to the case in which the image contains
multiple ellipses.
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Fig. 1. (a) Original image of five discs. (b) Reconstructed image using CBP
and 16 projections when no noise is added. (c) Reconstructed image using
CBP and 16 projections when SNR = 10 dB. (d) Reconstructed image using
MLE and 16 projections when SNR = 10 dB.

II. MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS

A. Circular Discs

We model the image f(x,y) as the superposition of N discs. Thus

N
y) =Y filw,ys e yi,ri) @
=1
where each f; has known constant intensity in a disc with center at
(xi.y:) and radius r; and is zero elsewhere, i.c.,
1 (z—2:)’+(y—w)® <7}
X, Y) = =
e ={y GIIRIUTmLSY
The number NV, the locations, and the radii are unknown. Let
9:(6,t:xi, y;, ;) denote the Radon transform of fi(x,y; xi, yi,7:).
Let (8. t) be the noisy observation. Then §(6,t) = g(8,t) +n(8,t)
where g(#, t) is the Radon transform of f(z,y), and n(8,t) denotes
the noise that is assumed to be independent identically distributed
(ii.d.) Gaussian with zero mean and variance o2. The log-likelihood
function for the N-disc field can be written as

m o0 N
ivaw=-[f (00,0~ 3 0020w ))* e
0] —o0

// 2(8,1) dtd0+22// §(0,1)

‘Qi(e,t;ﬂfz,yz,r ) dt dé

—ZZ// 9:(8, 52, yi, 1)

i=1 j=1

’g](gﬁta'rjwy]qr])dtde 4)

3

where (2 is the parameter set [@1,y1,71, %2, Y2, T2, , ZN, YN, TN]
and g; is the Radon transform of f;. The first term on the right side
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of (4) is independent of €2 and can be ignored in the computing of
the MLE. By regrouping the second and the third term and dropping
the first term, we can rewrite (4) as

N N
DD ¥ )

N
Ln(3,9) = Z
i=1 i=1 j=1,j#i
where
v, =/ / 3(0,t)g: (0, t; 24,95, 7:) dt df
0 —oo
- %/ / gf(ﬁ,t;xi,yi,r,’) dt do (6)
0 — oo
and

‘1%']:// gi(0,txi, yi, i) g5 (8, 625,95, 75) dt d6.
0 —00
@)

The square term is included in ¥; so that ¥; contains all terms
depending on a single g;, while ®;; accounts for all the cross-terms.
The @;; can be precomputed, the evaluation of the likelihood function
is simple for any given parameter set {2, but the search for the MLE
has complexity O((MR)"), where M is the number of possible
locations for the centers of the discs and R is the number of possible
values for the radii of the discs. Thus direct optimization of (4) is
impractical even for a few discs. Note that when the projections
are taken from limited angles, the only change in the log-likelihood
function is that the integral over ¢ is taken over a subset S C [0, 7]
rather than over the whole [0, 7] range.

B. Ellipses

For the case of multiple ellipses, the image can be modeled as

N
fz,y) =Efi(z,y;x,',yi,ai,b,-,oi) (8)
i=1
where each f; has known constant intensity in an ellipse centered at
(z:,y:) with a; and b; being its major and minor axes and o; being
its orientation, i.e.,
((z — z:) cos o; + (y — y:) sin 0;)?
P
L yi)cosoi ~
b?

1

(z — x;) sin 0;)?

fi(ws y) =

<1
0 otherwise.
)

With § denoting the projection data and g; the Radon transform of
fi, the log-likelihood function can be written as

) L

—Zgz (8,t; 20, yi, @i by, 05))? dt df
=1
——// §2(8,t) dt df
0 -0
N - 0o
+2Z// 3(6.1)
i=1 VY0 -0
-gi(8, 8 2, yi, ai, bi, 0;) dt df

_ZZ// 9:(0,t; i, yi, ai, by, 0;)

=1 j=1
- g;(6,t5x5,y;5,a5,b5,05) dt df.

Ln(3,Q) = 9(8,t)

(10)
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Fig. 2. (a) Reconstructed image using CBP and 32 projections when
SNR = 0 dB. (b) Reconstructed image using MLE and 32 projections
when SNR = 0 dB. (c) Reconstructed image using MLE and 16 projections
within angles 45° to 135° when SNR = 10 dB. (d) Reconstructed image
using MLE and eight projections from angles 45° to 90° and eight projections
from 135° to 180° when SNR = 10 dB.

III. DETECTION AND ESTIMATION OF MULTIPLE DiIsCs

A. Algorithm

Sauer and Liu [2] proposed an algorithm for the detection and
estimation of multiple discs that are of the same known radius. The
algorithm has complexity near that of the single disc case, and with
performance very close to that of the MLE. We extend this algorithm
to the case where the radii are varying and unknown, but take values
from a finite set.

First, we divide the possible locations of the center (i.e., the whole
image field) into A" x K blocks. Within each block, we find a
maximum for ¥, as defined in (6), among all possible values of
z,y with the block and all possible r, and we retain only those
with positive ¥. After this step, we have a set of candidate locations
and radii. Normally, N' will be large enough that Ly (g, Q) will be
negative because of the ® term in (5).

The number of candidate discs is then reduced by iteration. At
each step, among the N candidates, we evaluate Lx—1(g, Q) for all
combinations of N—1 candidates, and retain those N —1 candidates
with the largest Ly _,. The iteration stops when further reduction
will not increase the likelihood function.

After the pruning of the candidate set, we perturb each remaining
candidate over an area at least four times the size of original detection
block and over all possible radii. This step resembles the direct global
search for the MLE, but with complexity linear in V.

Finally, we scan the whole image field to see if the likelihood
function can be increased by adding a new disc. The process stops
when adding a new disc will not increase the likelihood function.
Perturbation of each of the current discs is done after each addition.

A multiresolution approach is used when the search is through all
the possible radii. We divide the possible radii into several subsets
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Fig. 3. (a) Original image of 12 discs. (b) Reconstructed image using MLE
and 32 projections when SNR = 20 dB.

and pick one element from each subset. We first search through the
representative elements, then search though the subset corresponding
to the best representative. In doing so, we reduce the complexity to
a fraction of N M R, with M being the number of possible locations
and R being the number of possible radii.

B. Experimental Results
We define the SNR in the Radon transform as

(6.t
SNR = 101log (%2)

Typical experimental cases have as inputs the projections from 16 or
32 equally spaced angles, with each projection sampled at 256 values
of t. The radii of the discs in the experimental images are integers
between 5 and 35, and the block size constant A equals 16 in our
experiments. We compare the reconstructed images using convolution
backprojection (CBP) and the approach proposed in this paper, which,
for simplicity, shall be referred to as MLE reconstruction.

Fig. 1(a) is the original image with five discs. Fig. 1(b)~(d) shows
the reconstructed image with 16 projections using (b) CBP and no
noise added, (c) CBP with SNR = 10 dB, and (d) our MLE method
with SNR = 10 dB. Fig. 2(a) and (b) show the reconstructed image
with 32 projections using a) CBP with SNR = 0 dB and b) our
MLE method with SNR = 0 dB. We have also considered cases in
which the projections are taken from a limited angle. Fig. 2(c) and
(d) shows the reconstructed image using our MLE method when c¢)
16 projections are taken equally spaced between 45° and 135° with
SNR = 10 dB and d) eight projections are taken from angles between
45° and 90° and the other eight projections are taken from angles
between 135° and 180°. Fig. 3(a) shows an original image with 12
discs, and Fig. 3(b) is the reconstructed image using our MLE method
when 32 projections are used and SNR = 20 dB. At SNR = 10 dB,
the MLE reconstruction is about identical to Fig. 3(b) except that the
smallest disc is not detected. Most of the positions and radii of the
circles were estimated either correctly or to within one pixel. None
of the estimated positions were more than four pixels off, and none
of the estimated radii were more than two pixels off.

an

C. Performance Analysis

For performance analysis, both analytical approaches and simu-
lations are difficult for multiple discs due to the large number of
parameters. We want performance analysis primarily for qualitative
insight, so for simplicity we consider only the case of a single
disc. Analysis of estimating the center was considered by Rossi and
Willsky in [1]. Hence, we consider a single disc centered at the origin
and analyze the performance in estimating .

We have done simulations both as a function of the radius and
as a function of the noise level. Fig. 4(a) shows the mean squared



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. 9, SEPTEMBER 1996

6 v 6 T

s : 4&0 S| emref /
5 ma x! 5 [ |
& 4 / E 4|20 ;
é é —%—rudf /

a : - P )
§ /w-asso g /
5 2f 52
2 i / / s 1 < //,

ol aet H 0

0 005 01 045 02 025 50 100 150
1 variance of Gaussian noise
(a) (b)

Fig. 4. (a) MSE versus r with single disc located at the origin. (b) MSE
versus o with single disc located at the origin.

error (MSE) as a function of 1/7 for three values of o, and Fig. 4(b)
shows the MSE as a function of ¢ for five values of ». Each point
in the figures was obtained using 1000 randomly generated noisy
projection data sets and computing the resulting MSE. Note that from
the figures it appears that the MSE is approximately linear in 1/r,
and the MSE is approximately quadratic in o, the standard deviation
of the Gaussian noise.

We verify the qualitative aspects in the simulation results through
an analytical computation. The lack of smoothness and functional
form of the image of an ideal disc causes problems with the analysis.
Hence, following [3], for analytical tractability, we model the image
as f(z,y) = e~ /) g0 that g(6,t) = g(8,t) + n(8,t) where

g(g,t)zf e~ (@) g

—oo

The likelihood function can be written as
1 k3 (e o] .
L(r)= 0—2/ / g(0,t)g(6,t) dt d6
0 —oo

1 X OO 2
- 8,1)% dt db
202/0/_009(,)

and the Fisher information is

_ 8*L(r) o [ [0g(8,t) 2 _ 3n%y/2n

ar? o2

12)

—oo

(13)

Hence, the Cramer—Rao lower bound on the variance of the estimate
is 802/(3n%V/27r), which qualitatively matches our simulation
results in terms of the behavior as a function of r and o.

1V. DETECTION AND ESTIMATION OF MULTIPLE ELLIPSES

A. Algorithm

For the case of multiple ellipses, we first use the algorithm
proposed in the previous section to detect a set of circular discs
and obtain an estimate of their locations and radii. Then we set the
initial values of the ellipses based on the results we obtain from the
first search. For each ellipse, the center will be the center of the disc
and the major and minor axes are 7 + é and r — 6, respectively, with
the orientation set to be zero and 6 a fixed positive constant. In some
cases, some of the detected discs overlap one another or are within a
small distance d. These discs are then treated as a single disc whose
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Fig. 5. (a) Original image of five ellipses. (b) Ellipses first are detected as
discs when SNR = 15 dB and 32 projections are used. (c) Reconstructed
image using MLE when SNR = 15 dB and 32 projections are used. (d)
Reconstructed image using MLE when SNR = 30 dB and 16 projections
are used.

center is the centroid of the centers of those discs and whose radius
is such that the single disc covers all the overlapping discs.

Now we fix the location of all the ellipses and search through their
axes and orientation. For each ellipse, we search through all possible
combinations of major and minor axes in the range (¢« — A,a + A)
and (b — A,b+ A) and the orientations of every 15 degrees, i.e.,
0°,15°,30°,---,165°, where a and b are the initial values of the
major and minor axes. After finding the values of the major axis,
minor axis, and orientation that maximize that likelihood function,
we go on to search the next ellipse. After searching the last ellipse,
we come back to the first one, and the process continues until the
likelihood function will not increase after one round of search. This
process is repeated and the only difference is that for each ellipse, the
searching range of the orientation is between ¢ — 7° and 6 +8° where
6 is the orientation of the ellipse and the searching step size is 1°.

Next, we fix the major and minor axes and the orientations of the
ellipses. Following similar steps as above, we move the center of each
ellipse around a neighborhood to find the position that maximizes the
likelihood function. Combined with the major and minor axes and
the orientation we obtained during the previous step, we now have
the final result of estimation.

Suppose [V is the number of ellipses, A and B are the numbers of
the possible values of major and minor axes, respectively, and © is
the number of possible orientations. Then the computation complexity
for our algorithm is O(N©AB). Note that for a brute force MLE
search, the computation complexity is O((©AB)™).

When two or more ellipses are too close to each other, our
algorithm cannot distinguish them from a single ellipse; thus, in this
situation our algorithm fails.

B. Experimental Results

In our experiments, we take 6 to be 2, A to be 5, and d to
be 5. Fig. 5(a) is the original image consisting of five ellipses
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Fig. 6. (a) Original image of three ellipses. (b) Ellipses first are detected as
discs when SNR = 15 dB and 32 projections are used. (c) Reconstructed
image using MLE when SNR = 15 dB and 32 projections are used.

with eccentricities ranging from 1.5 to 2.0. Fig. 5(b) shows the
intermediate results when the ellipses are first detected as discs when
SNR = 15 dB and 32 projections are used. Fig. 5(c) is the final
reconstruction result using our maximum likelihood method in this
case. Fig. 5(d) is the final reconstruction result when SNR = 30 dB
and 16 projections are used. Fig. 6(a) is the original image consisting
of 3 ellipses with eccentricities of 1.3, 2.0, and 3.0. Fig. 6(b) shows
the intermediate results when the ellipses are first detected as discs.
Note that there are five discs in the figure. Those discs that are close
enough to each other are treated as one single disc. Fig. 6(c) shows
the reconstructed result using MLE when SNR = 15 dB and 32
projections are used. The estimated ellipse positions and major and
minor axis were either correct or at most one or two pixels off, and
the estimated orientations were usually within 2°, and in all cases
within 6°.

V. CONCLUSIONS

When the SNR is low and the number of projections is small, a
model-based MLE approach is an effective method in reconstructing
images consisting of discs of unknown locations and radii. The
approach is also effective in reconstructing images consisting of
multiple ellipses, where the positions, major and minor axes, and
orientations are all unknown. For multiple discs or ellipses in the
image, a brute force MLE method will have exponential complex-
ity, thus is hardly implementable. We have developed an efficient
algorithm to solve this problem, and good experimental results are
achieved using our algorithm.

To avoid the “overfitting” problem of detecting an eccentric ellipse
as multiple circular discs, an interesting alternative might be to
iteratively apply the single object methods of [1] and [3]. Specifically,
one could first search for a single object of highest energy, subtract
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the effect of this object, then search for a second object, etc. This
might be interesting to pursue for further work.
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Correction to “Hybrid Poisson/Polynomial
Objective Functions for Tomographic Image
Reconstruction from Transmission Scans”

Jeffrey A. Fessler

In the above paper,’ Fig. 7 was repeated and misnamed Fig. 8.
The correct Fig. 8 appears below.

Resolution/Noise Tradeoff
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Fig. 8. Resolution versus noise for the various reconstruction algorithms.

The FBP method has significantly greater noise than the statistical methods.
For finer resolutions, the PWLS estimates are slightly noisier than the PML
estimates. The performance of the hybrid objective with v, = 5 and v}, = 50
is indistinguishable from penalized likelihood.
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