Asset Pricing under Asymmetric Information
- Bubbles, Crashes, Technical Analysis and Herding -

Markus K. Brunnermeier
Princeton University

First Version: February 15, 1997
This Version: March 24, 2000

Preliminary and Incomplete

1 An earlier version of this manuscript was titled “Prices, Price Processes, Volume and Information: A Survey of the Market Microstructure Literature”.
2 © M.K. Brunnermeier - DO NOT DISTRIBUTE THIS DOCUMENT WITHOUT MY PERMISSION!
3 Princeton University, Economics Department, Bendheim Center for Finance, Princeton, NJ, 08544 1021, USA, Tel.: +1 (609) 258 4050, FAX: +1 (609) 258 6419, e-mail: markus@princeton.edu, WWW - homepage: http://www.princeton.edu/~markus
To Smita
Asset prices are driven by public news and information that is often dispersed among many market participants. These agents try to infer each others’ information by analyzing price processes. In the past two decades, theoretical research in financial economics has significantly advanced our understanding of the informational aspects of price processes. This book provides a detailed and up-to-date survey of this important body of literature.

The book begins by demonstrating how to model asymmetric information and higher order knowledge. It then contrasts competitive and strategic equilibrium concepts under asymmetric information. It also illustrates the dependence of information efficiency and allocative efficiency on the security structure and the linkage between both efficiency concepts. No-Trade Theorems and market breakdowns due to asymmetric information are then explained and the existence of bubbles under symmetric and asymmetric information is investigated.

The book contrasts different market microstructure models that demonstrate how asymmetric information affects asset prices and traders’ information inference. Optimal trading strategies are illustrated using dynamic models. These models provide a theoretical explanation for technical analysis and illustrate why some investors “chase the trend”. The reader is then introduced to herding models and informational cascades which might arise in a setting where agents’ decision making is sequential. The insights derived from herding models are used to provide rational explanations for stock market crashes. Models in which all traders are induced to search for the same piece of information are then presented to provide a deeper insight into Keynes’ comparison of the stock market with a beauty contest. The book concludes with a brief summary of bank runs and its connection to financial crises.

JEL Classification: D82, D83, D84, G12, G13, G14

Keywords: asymmetric information, bubbles, technical analysis, herding, stock market crashes, Keynes’ beauty contest
Contents

0 Preface 1

1 Information, Equilibrium, Efficiency Concepts 7
 1.1 Modeling Information 8
 1.2 Rational Expectations and Bayesian Nash Equilibrium 18
 1.2.1 Rational Expectations Equilibrium 19
 1.2.2 Bayesian Nash Equilibrium 20
 1.3 Allocative and Informational Efficiency 25

2 No-Trade Theorems, Asset Pricing, Bubbles 33
 2.1 No-Trade Theorems 33
 2.2 Competitive Asset Prices and Market Completeness 40
 2.2.1 Static Models 40
 2.2.2 Dynamic Models 46
 2.3 Bubbles 48
 2.3.1 Growth Bubbles 49
 2.3.2 Information Bubbles 55

3 Market Microstructure Models 59
 3.1 Simultaneous Move Models 64
 3.1.1 Competitive Rational Expectations Equilibria 64
 3.1.2 Strategic Share Auctions 70
 3.2 Sequential Move Models 76
 3.2.1 Screening Models à la Glosten 76
 3.2.2 Sequential Trade Models à la Glosten and Milgrom 83
 3.2.3 Signaling Models and Kyle-Models 87

4 Dynamic Models, Technical Analysis and Volume 93
 4.1 Technical Analysis 94
 4.1.1 Technical Analysis - Evaluating New Information 95
 4.1.2 Technical Analysis about Fundamental Value 97
CONTENTS

4.2 Serial Correlation and Infinite Regress 107
4.3 Competitive Multi-Period Models ... 110
4.4 Inferring Information from Volume ... 122
4.5 Strategic Multi-Period Kyle Models .. 127

5 Herding and Informational Cascades .. 137
 5.1 Herding Due to Payoff Externalities 137
 5.2 Herding Due to Information Externalities 138
 5.2.1 Exogenous Sequencing .. 139
 5.2.2 Endogenous Sequencing, Real Option, Strategic Delay 143
 5.3 Reputational Herding and Anti-Herding 147
 5.3.1 Exogenous Sequencing .. 147
 5.3.2 Endogenous Sequencing .. 152

6 Crashes, Investigative Herding, Bank Runs 153
 6.1 Stock Market Crashes .. 154
 6.1.1 Crashes in Competitive REE Models 156
 6.1.2 Crashes in Sequential Trade Models 164
 6.1.3 Crashes and Frenzies in Auctions 170
 6.2 Keynes’ Beauty Contest, Investigative Herding 174
 6.2.1 Unwinding Due to Short Horizons 176
 6.2.2 Unwinding Due to Risk Aversion 182
 6.2.3 Unwinding Due to Principal-Agent Problems 187
 6.3 Firms’ Short Termism .. 193
 6.4 Bank Runs and Financial Crisis .. 195
List of Figures

1.1 Inference Problem from Price Changes 31
2.1 Common Knowledge Events ... 35
2.2 Aumann’s Agreement Theorem .. 36
3.1 Price Schedules under Uniform and Discriminatory Pricing 81
3.2 Tree Diagram of the Trading Probabilities 84
6.1 Frenzy in Auctions .. 173
Chapter 0

Preface

Motivation

A vast number of assets changes hands every day. Whether these assets are stocks, bonds, currencies, derivatives, real estate or just somebody’s house around the corner, there are common features driving the market price of these assets. Asset prices fluctuate more wildly than the prices of ordinary consumption goods. We observe emerging and bursting bubbles, bullish markets, and stock market crashes. There are many questions that fascinate academics and professionals as well as laymen. Why do bubbles develop and crashes occur? Can price history provide us some hint about future price developments? Does technical or chart analysis make sense? Why is the trading volume in terms of assets so much higher than real economic activity? Can people’s herding behavior be simply attributed to irrational panic? Going beyond positive theory, some normative policy issues also arise. What are the early warning signals indicating that a different policy should be conducted? Can a different design of exchanges and other financial institutions reduce the risk of crashes and bubbles?

If financial crises and large swings in asset prices only affect the nominal side of the economy, there would not be much to worry about. However, as illustrated by the recent experiences of the Southeast Asian tiger economies, stock market and currency turmoil can easily turn into full-fledged economic crises. The unravelling of financial markets can spill over and affect the real side of economies. Therefore, a good understanding of price processes is needed to help us foresee possible crashes.

The distinguishing feature of assets is that they entail uncertain payments, most of which occur far in the future. The price of assets is driven by expectations about these future payoffs. New information causes market participants to re-evaluate their expectations. News about a companies’ future dividend prospects changes the investors’ expected value of stocks or bonds, while news of a country’s economic prospects affects currency
exchange rates. Depending on their information, market participants buy or sell the asset. In short, their information affects their trading activity and, thus, the asset price. Information flow is, however, not just a one-way street. Traders who do not receive a piece of new information are still conscious of the fact that the actions of other traders are driven by their information set. Therefore, uninformed traders can infer part of the other traders’ information from the movement of an asset’s price. Past price processes can be studied to infer even more of the information held by other traders. Therefore, technical analysis might not be as unreasonable as some earlier theoretical papers had suggested.

In recent years, the academic literature has taken giant strides towards improving our understanding of the price process of assets. This book offers a detailed and up-to-date review of the recent theoretical literature in this area. It provides a framework for understanding price processes and emphasizes the informational aspects of asset price dynamics. The survey focuses exclusively on models that assume that all agents are rational and act in their own self-interest. It does not cover models which attribute empirical findings purely to the irrational behavior of agents. New future research can be expected which incorporates carefully selected behavioral aspects into formal models. However, models with rational traders, as covered in this survey, will always remain the starting point of any research project.

Structure of the Survey

The main aim of this survey is to provide a structural overview of the current literature and to stimulate future research in this area.

Chapter 1 illustrates how asymmetric information and knowledge in general is modeled in theoretical economics. Section 1.1 also introduces the concept of higher order knowledge which is important for the analysis of bubbles. Prices are determined in equilibrium. There are two different equilibrium concepts which are common in market settings with asymmetric information. The competitive Rational Expectations Equilibrium (REE) concept has its roots in the general equilibrium theory, whereas the strategic Bayesian Nash Equilibrium concept stems from game theory. The book compares and contrasts both equilibrium concepts and also highlights their conceptual problems. This survey also introduces the informational efficiency and allocative efficiency concepts to the reader.

The first section of Chapter 2 provides a more tractable notion of common knowledge and the intuition for proofs of the different No-Trade theorems. The No-Trade theorems state the specific conditions under which differences in information alone do not lead to trade. A brief introduction of the basics of asset pricing under symmetric information
is sketched out in Section 2.2 in order to highlight the complications that can arise under asymmetric information. In an asymmetric information setting, it makes a difference whether markets are only “dynamically complete” or complete in the sense of Debreu (1959), i.e. completely equitizable. Market completeness or the security structure, in general, has a large impact on the information revelation of prices. Section 2.3 provides definitions of bubbles and investigates the existence of growth bubbles under common knowledge. It then illustrates the impact of higher order uncertainty on the possible existence of information bubbles.

The third chapter illustrates different market microstructure models. In the first group of models, all market participants submit whole demand schedules simultaneously. The traders either act strategically or are price takers as in the competitive REE. The strategic models are closely related to share auctions or divisible goods auctions. In the second group of models some traders simultaneously submit demand/supply schedules in the first stage and build up a whole supply schedule in form of a limit order book. In the second stage a possibly informed trader chooses his optimal demand from the offered supply schedule. A comparison between uniform pricing and discriminatory pricing is also drawn. Sequential trade models à la Glosten and Milgrom (1985) form the third group of models. In these models, the order size is restricted to one unit and thus the competitive market maker quotes only a single bid and a single ask price instead of a whole supply schedule. In the fourth group of models, the informed traders move first. The classical reference for these models is Kyle (1985).

Chapter 4 focuses on dynamic models. Its emphasis is on explaining technical analysis. These models show that past prices still carry valuable information. Some of these models also explain why it is rational for some investors to “chase the trend”. Other models are devoted to the informational role of trading volume. The insiders’ optimal dynamic trading strategy over different trading periods is derived in a strategic model setting.

Chapter 5 classifies different herding models. Rational herding in sequential decision making is either due to payoff externalities or information externalities. Herding may arise in settings where the predecessor’s action is a strong enough signal such that the agent disregards his own signal. Informational cascades might emerge if the predecessor’s action is only a noisy signal of his information. Herding can also arise in Principal-Agent models. The sequence in which agents make decisions can be either exogenous or endogenous.

Herding models provide insights that help explain stock market crashes. Stock market crashes are explained in Section 6.1. In a setting with widely dispersed information, even
relatively unimportant news can lead to large price swings and crashes. Stock market crashes can also occur because of liquidity problems, bursting bubbles, and sunspots. Traders might also herd in information acquisition if they care about the short-term price path as well as about the long-run fundamental value. Under these circumstances all traders will try to gather the same piece of information. Investigative herding models provide a deeper understanding of Keynes’ comparison of the stock market with a beauty contest. Section 6.3 deals with short-termism induced by the stock market. The survey concludes with a brief summary of bank runs and its connection to financial crises.

Target Audience

There are three main audiences for whom this book is written:

1. **Doctoral students** in finance and economics will find this book helpful in gaining access to this vast literature. It can be used as a supplementary reader in an advanced theoretical finance course which follows a standard asset pricing course. The book provides a useful framework and introduces the reader to the major models and results in the literature. Although the survey is closely linked to the original articles, it is not intended to be a substitute for them. While it does not provide detailed proofs, it does attempt to outline the important steps and highlight the key intuition. A consistent notation is used throughout the book to facilitate comparison between the different papers. The corresponding variable notations used in the original papers are listed in footnotes throughout the text to facilitate cross-reference.

2. **Researchers** who are already familiar with the literature can use this book as a source of reference. By providing a structure for this body of literature, the survey can help the reader identify gaps and trigger future research.

3. **Advanced undergraduate students** with solid microeconomic training can also use this survey as an introduction to the key models of the market microstructure literature. Readers who just want a feel for this literature should skim through Chapters 1 and 2 and focus on the intuitive aspects of Chapter 3. The dynamic models in Chapter 4 are more demanding, but are not essential for understanding the remainder of the survey. The discussion of herding models in Chapter 5 and stock market crashes and the Keynes’ Beauty Contest analogy in Chapter 6 are accessible to a broad audience.

Acknowledgements

I received constructive comments and encouragement from several people and institutions while working on this project. The book started taking shape in the congenial atmosphere of the London School of Economics. Sudipto Bhattacharya planted the seeds of this project in my mind. Margaret Bray, Bob Nobay and David Webb provided encouragement throughout the project. I also benefited from discussions with Elena Car-

The completion of the book was greatly facilitated by the intellectually stimulating environment at Princeton University. Ben Bernanke, Ailsa Röell and Marciano Siniscalchi provided helpful comments. The students of my graduate Financial Economics class worked through draft chapters and provided useful feedback. Ümit Kaya, Jiro Kondo and especially David Skeie deserve special mention for thoroughly reviewing the manuscript.

Economists at various other institutions also reviewed portions of the manuscript. In particular, I thank Douglas Gale, Bruce Grundy, Dirk Hackbarth, Thorsten Hens, David Hirshleifer, John Hughes, Paul Klemperer, Jonathan Levin, Bart Lipman, Melissas Nicolas, Marco Ottaviani, Sven Rady, Jean Charles Rochet, S. Viswanathan and Ivo Welch while still retaining responsibility for remaining errors. I appreciate being notified of errata; you can e-mail me your comments at markus@princeton.edu. The corrections can be found at my homepage http://www.princeton.edu/~markus.

Phyllis Durepos assisted in the typing of this manuscript; her diligence and promptness are much appreciated. Finally, enormous gratitude and love to my wife, Smita, for her careful critique and editing of every draft of every chapter. Her unfailing support made this project possible.

Princeton, February 2000