Carry Trades and Currency Crashes

Markus K. Brunnermeier, Stefan Nagel, Lasse Pedersen

Princeton, Stanford, NYU

AEA Meetings, January 2008

Motivation

We study the drivers of risk (and the return) in FX markets:

- "Up by the stairs and down by the elevator"
- Forecasting currency crashes: drivers of conditional FX skewness
- Pricing of currency crashes: option prices
- Co-movements of currencies
- Key drivers:
 - Carry trades
 - Global volatility and/or risk aversion
 - Funding liquidity and unwinding of carry trades

Introduction

Carry Trade

- Violation of UIP "Forward Premium Puzzle" Example: Yen-Aussie carry trade (Nov. 8, 2007)
 - Borrow at 0.87% 3m JPY LIBOR ("funding currency")
 - Invest at 7.09% 3m AUD LIBOR ("investment currency")
 - Hope that JPY doesn't appreciate much (UIP violation)
- Large exchange rate movements without news Example: October 7th/8th, 1998

Background: Literature

- Macro: near-random walk of FX (Messe & Rogoff 1983, Engel & West)
- Funding liquidity constraints of speculators (Brunnermeier and Pedersen 2007; Plantin and Shin 2007)
 - Unwinding of carry trades when funding liquidity dries up
 - Endogenous negative skewness of carry trade returns
 - Excess co-movement of funding currencies (investment currencies)
- Transaction costs (Burnside et al. 2006)

Our Main Results

- FX crash risk increases with
 - interest rate differential (i.e. carry)
 - past FX carry returns
 - speculator carry futures positions
 - and decrease with price of insurance (risk reversals)
- The price of FX crash insurance increases after crash
- An increase in VIX (cf. global risk and risk aversion) leads to unwinding of carry trades
- Investment currencies move together, funding currencies ditto
- Carry trade exposed to and may lead to crash risk limits correcting arbitrage ⇒ "Forward premium puzzle"

Data

Data and Definitions

- FX rates (1986-2006): s_t (in logs) [Datastream]
 - AUD, CAD, JPY, NZD, NOK, CHF, GBP, EUR per USD
- Interest rate differentials (1986-2006): i* i (in logs) [Datastream] 3m-LIBOR
- Foreign currency excess return: $z_t \equiv (i_{t-1}^* i_{t-1}) \Delta s_t$
 - Return from a carry trade where foreign currency is investment currency
 - UIP: $E_t[z_{t+1}] = 0$
- Futures positions of non-commercial traders on the CME (1986-2006): Futures_t [CFTC]
- Risk Reversals (1998-2006): RiskRev_t [JP Morgan]

Data

Summary Statistics

Table 1: Summary Statistics

	AUD	CAD	JPY	NZD	NOK	CHF	GBP	EUR
Panel A: Means								
Δs_t	-0.003	-0.002	-0.003	-0.005	-0.002	-0.004	-0.004	-0.004
Zt	0.009	0.004	-0.004	0.013	0.007	-0.001	0.009	0.003
$i_{t-1}^* - i_{t-1}$	0.006	0.002	-0.007	0.009	0.005	-0.004	0.005	-0.001
Futures	-	0.059	-0.097	-	-	-0.067	0.052	0.031
Skewness	-0.322	-0.143	0.318	-0.297	-0.019	0.144	-0.094	0.131
Risk reversals	-0.426	-0.099	1.059	-0.467	0.350	0.409	0.009	0.329

BNP (2008)

Data

Summary Statistics

Table 1: Summary Statistics (cont.)

	AUD	CAD	JPY	NZD	NOK	CHF	GBP	EUR
Panel B: Standard deviations								
Δs_t	0.049	0.028	0.062	0.050	0.053	0.063	0.049	0.059
Zt	0.050	0.029	0.064	0.053	0.053	0.064	0.049	0.060
$i_{t-1}^* - i_{t-1}$	0.006	0.004	0.005	0.007	0.008	0.006	0.005	0.006
Futures	-	0.248	0.242	-	0.000	0.296	0.272	0.202
Skewness	0.712	0.585	0.627	0.685	0.472	0.438	0.528	0.510
Risk reversals	0.436	0.343	1.204	0.466	0.515	0.550	0.391	0.534

- Use $i_t^* i_t$ to predict
 - FX excess return $z_{t+\tau}$ during quarter t+ au
 - Positive coefficient: carry trade pays off (UIP violation)
 - Futures positions at end of quarter $t + \tau$
 - Positive coefficient: consistent with carry trade activity
 - Skewness of daily z_t within quarter $t + \tau$
 - Negative coefficient: Carry trades are exposed to crash risk

Table 2: z, futures positions, and skewness regressed on $i_t^* - i_t$

	FX excess return	Futures	Skewness
t+1	2.17	8.30	-23.98
	(0.77)	(5.06)	(3.80)
t + 2	2.24	8.09	-23.22
	(0.69)	(5.09)	(3.65)
t + 3	2.24	6.07	-23.59
	(0.69)	(4.69)	(3.82)
t + 4	1.50	6.47	-23.26
	(0.62)	(4.47)	(4.60)
t + 5	1.11	5.92	-23.40
	(0.52)	(3.47)	(5.04)

Notes: Panel regressions (1986-2006) with country-fixed effects and quarterly data. Standard errors in parentheses are robust to within-time period correlation of residuals and are adjusted for serial correlation with a Newey-West covariance matrix with 10 lags.

BNP (2008)

Table 2: z, futures positions, and skewness regressed on $i_t^* - i_t$

	FX excess return	Futures	Skewness
t + 6	0.76	4.75	-22.10
	(0.48)	(2.50)	(4.97)
t + 7	0.68	4.15	-21.20
	(0.48)	(1.83)	(4.05)
<i>t</i> + 8	0.44	2.74	-16.95
	(0.55)	(2.04)	(4.02)
t + 9	0.27	0.44	-12.88
	(0.63)	(2.35)	(3.44)
t + 10	-0.04	-0.90	-11.08
	(0.77)	(3.21)	(3.72)

Notes: Panel regressions (1986-2006) with country-fixed effects and quarterly data. Standard errors in parentheses are robust to within-time period correlation of residuals and are adjusted for serial correlation with a Newey-West covariance matrix with 10 lags.

BNP (2008)

- Consider dynamic relationships between FX excess returns, futures positions, skewness, and interest rate differentials: Vector-Autoregressions
- VAR(3) with $i_t^* i_t$, z_t , Skew_t, Futures_t
 - 1986-2006, quarterly
 - Impulse responses for shocks to $i_t^* i_t$ with Choleski decomposition with ordering $i_t^* i_t$, z_t , Skew_t, Futures_t
 - Bootstrap-after-bootstrap bias-adjusted confidence intervals for impulse response function (Kilian 1998)

Predictable Return and Crash Risk of Carry Trades

Impulse responses for shocks to $i_t^* - i_t$

13 / 23

BNP (2008)

Price of Crash Risk

Table 3: Forecasting crashes and the price of crash risk

	Skewness $_{t+1}$	Skewness $_{t+1}$	RiskRev+
•* •			
$i_t^* - i_t$	-24.74	-29.33	-25.49
	(11.47)	(11.87)	(28.21)
Z _t	-2.98	-1.57	8.47
	(0.79)	(0.73)	(1.62)
Futures _t	0.08	0.14	0.32
	(0.11)	(0.11)	(0.16)
$Skewness_t$	0.20	0.21	0.05
	(0.05)	(0.05)	(0.12)
RiskRev _t		-0.17	
		(0.05)	
R^2	0.21	0.24	0.43

Notes: Panel regressions (1998-2006) with country-fixed effects and quarterly data. Standard errors in parentheses are robust to within-time period correlation of residuals and are adjusted

BNP (2008)

Price of Crash Risk

- Positive interest rate differential predicts negatively skewed physical and risk-neutral distributions of FX returns
 - Consistent with carry trades being exposed to crash risk
- After FX losses, the crash risk is *lower*, but the price of crash insurance is *higher*.
 - Price of crash risk insurance is high when future skewness is low.
 - The price of insurance goes up after an "earthquake," although the risk of another "earthquake" is low
 - Risk premium may be due to slow moving capital

Unwinding of Carry Trades

- Proxy for global volatility and funding liquidity: CBOE VIX index
 - Prior evidence that funding liquidity "dries up" when VIX spikes
- Carry trade variables
 - CRet_t: $z_t \times \text{sign}(i_{t-1}^* i_{t-1})$
 - Negative = Losses on carry trade
 - $\Delta CFut_t$: $\Delta Futures_t \times sign(i_{t-1}^* i_{t-1})$
 - Negative = unwinding of carry trades
 - $\Delta \text{CRiskRev}_t$: $\Delta \text{RiskRev}_t \times \text{sign}(i_{t-1}^* i_{t-1})$,
 - Negative = Insurance against carry trade losses gets more expensive

Unwinding of Carry Trades

Table 4: Sensitivity of weekly carry trade positions, price of skewness insurance, and carry trade returns to changes in VIX

	$\Delta CFut_t$	$\Delta ext{CFut}_{t+1}$	Δ CRiskRev $_t$	Δ CRiskRev $_{t+1}$	CRet _t	$CRet_{t+1}$
ΔVIX_t	-1.55	-1.29	-4.66	-3.48	-0.40	-0.01
	(0.79)	(0.58)	(2.80)	(3.79)	(0.11)	(0.11)
$CFut_{t-1}$	-0.09	-0.11				
	(0.01)	(0.01)				
$CRiskRev_{t-1}$			-0.14	-0.10		
			(0.02)	(0.01)		
R^2	0.05	0.06	0.07	0.03	0.00	0.00

Notes: Panel regressions with country-fixed effects and weekly data. Standard errors in parentheses are robust to within-time period correlation of residuals and are adjusted for serial correlation with a Newey-West covariance matrix with 6 lags. The reported R^2 is an adjusted R^2 net of the fixed effects.

BNP (2008)

Unwinding

Unwinding of Carry Trades - VIX

BNP (2008)

Currency Co-movement

- If FX rates are driven by carry trades, funding currencies move together, and so do investment currencies
 - i.e., the lower the interest rate differential between a pair of currencies, the more their FX rates (relative to USD) should co-move
- Variables
 - Dependent variable is the pairwise correlation of daily log FX rate changes within 13-week (non-overlapping) windows mapped to real line by re-scaling and logistic transformation
 - $|i_1 i_2|$ = absolute pairwise interest rate differential at the start of the 13-week period.
 - $\rho(i_1, i_2) = \text{correlation of 5-day interest rate changes, estimated with overlapping windows, within each 13-week period.$
 - Average ρ(Δs₁, Δs₂) is the cross-sectional average of all pairwise correlations of daily FX rate changes within each non-overlapping 13-week periods.

Currency Co-movement

Table 5: Correlation of FX rate changes and magnitude of interest rate differentials

	(1)	(2)	(3)	(4)
<i>i</i> ₁ - <i>i</i> ₂	-10.49	-6.70	-15.73	-13.22
	(3.69)	(3.54)	(3.90)	(6.34)
$ ho(i_1, i_2)$	0.80	0.28	0.87	0.31
	(0.15)	(0.07)	(0.16)	(0.07)
$\overline{ ho(\Delta s_1,\Delta s_2)}$	2.53	2.55		
	(0.08)	(0.07)		
Time Fixed Effects			Yes	Yes
Country-Pair Fixed Effects				Yes
R^2	0.19	0.36	0.06	0.03

Note: The dependent variable is the pairwise correlation of daily FX rate changes, estimated within non-overlapping 13-week periods. The reported R^2 is an adjusted R^2 net of the fixed effects.

BNP (2008)

Conclusion

Conclusion

- FX crash risk increases with
 - interest rate differential (i.e. carry)
 - past FX carry gains
 - speculator carry futures positions
 - and decrease with price of insurance, risk reversal
- The price of FX crash insurance increases with
 - interest rate differential (i.e. carry)
 - past FX carry losses
 - speculators carry futures positions
- An increase in VIX (cf. global risk or risk aversion) contemporaneously leads to
 - carry unwind
 - carry losses
 - price of insurance increases
- Funding currencies move together, funding currencies ditto

Conclusion, ctd.

Carry trade

- Exposed to crash risk
- Payoff resembles that of selling put options
- Bad payoffs in low liquidity, high volatility states of the world
- Unwinding of carry trades after losses and in these "bad" states
- Results consistent with idea that speculators
 - trade carry partly "correcting" UIP, but only partly because they
 - face crash risk due to their own funding liquidity constraints and other "limits to arbitrage"