Money Illusion and Housing Frenzies

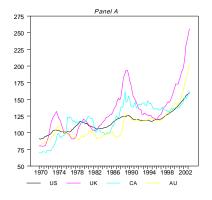
Markus K. Brunnermeier* and Christian Julliard[⋄]

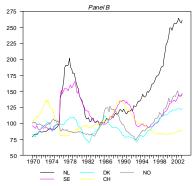
*Department of Economics Princeton University

[⋄]Department of Economics London School of Economics

Harvard University, December, 5th, 2005

House prices in different countries





- What explains these sharp movements?
- Focus: Role of inflation

Decision: Monthly rent versus monthly mortgage payments

```
decline in inflation ⇒ decline in nominal interest rate
```

- \Rightarrow monthly payments decline
- \Rightarrow larger mortgage \Rightarrow higher house prices

```
BUT
```

future mortgage payments are larger in real terms (mortgage is not inflated away.)

Decision: Monthly rent versus monthly mortgage payments

⇒ Example of money/inflation illusion

Decision: Monthly rent versus monthly mortgage payments

⇒ Example of money/inflation illusion

decline in inflation \Rightarrow decline in nominal interest rate i

⇒ monthly payments decline

 \Rightarrow larger mortgage \Rightarrow higher house prices

BUT

future mortgage payments are larger in real terms

Decision: Monthly rent versus monthly mortgage payments

```
⇒ Example of money/inflation illusion
```

- decline in inflation \Rightarrow decline in nominal interest rate i
 - ⇒ monthly payments decline
 - \Rightarrow larger mortgage \Rightarrow higher house prices

BUT

future mortgage payments are larger in real terms (mortgage is not inflated away.)

Decomposing price movements

Stage 1: Focus on price-rent ratio (P_t/L_t)

- abstracts from movements of fundamentals that affect prices and rents symmetrically (demographics, land cost etc.)
- not perfect substitutes: pride of ownership, ...

Stage 2: Decompose price-rent ratio in

- expected return (incl. risk premium)
- expected rent growth rate
- "mispricing"

Inflation effect on each part

Decomposing price movements

Stage 1: Focus on price-rent ratio (P_t/L_t)

- abstracts from movements of fundamentals that affect prices and rents symmetrically (demographics, land cost etc.)
- not perfect substitutes: pride of ownership, ...

Stage 2: Decompose price-rent ratio in

- expected return (incl. risk premium)
- expected rent growth rate
- "mispricing"

Inflation effect on each part

- Money illusion Related literature
- 2 U.K. evidence
 - Real versus nominal A first-cut
 - Decomposing inflation effects
 - Financial frictions
- Cross-country evidence
 - U.S. evidence
- 4 Conclusion

- Money illusion Related literature
- 2 U.K. evidence
 - Real versus nominal A first-cut
 - Decomposing inflation effects
 - Financial frictions
- Cross-country evidence
 - U.S. evidence
- 4 Conclusion

- Money illusion Related literature
- 2 U.K. evidence
 - Real versus nominal A first-cut
 - Decomposing inflation effects
 - Financial frictions
- 3 Cross-country evidence
 - U.S. evidence
- 4 Conclusion

- Money illusion Related literature
- 2 U.K. evidence
 - Real versus nominal A first-cut
 - Decomposing inflation effects
 - Financial frictions
- Cross-country evidence
 - U.S. evidence
- 4 Conclusion

"An economic theorist can, of course, commit no greater crime than to assume money illusion." Tobin (1972)

- Money Illusion:
 Patinkin (1965), Leontief (1936), Fisher (1928)

 "That shirt I sold you will cost me just as much to replace as I am charging you [...] But I have made a profit on that shirt because I bought it for less."
- Recent survey evidence: Shiller (1997a), (1997b)
- Related Psychological Biases:
 Shafir, Diamond, Tversky (1997), ...
- Stock market: Modigliani-Cohn (1979), Asness (2000, 2003), Ritter-Warr (2002), Campbell-Vuolteenaho (2004), Cohen et al. (2005)

"An economic theorist can, of course, commit no greater crime than to assume money illusion." Tobin (1972)

Money Illusion:

Patinkin (1965), Leontief (1936), Fisher (1928)

- Recent survey evidence: Shiller (1997a), (1997b)
- Related Psychological Biases: Shafir, Diamond, Tversky (1997), ...
- Stock market: Modigliani-Cohn (1979), Asness (2000, 2003), Ritter-Warr (2002), Campbell-Vuolteenaho (2004), Cohen et al. (2005)

"An economic theorist can, of course, commit no greater crime than to assume money illusion." Tobin (1972)

Money Illusion:

Patinkin (1965), Leontief (1936), Fisher (1928)

- Recent survey evidence: Shiller (1997a), (1997b)
- Related Psychological Biases:
- Stock market:

"An economic theorist can, of course, commit no greater crime than to assume money illusion." Tobin (1972)

Money Illusion:

```
Patinkin (1965), Leontief (1936), Fisher (1928)
```

- Recent survey evidence: Shiller (1997a), (1997b)
- Related Psychological Biases:
 Shafir, Diamond, Tversky (1997), ...
- Stock market: Modigliani-Cohn (1979), Asness (2000, 2003), Ritter-Warr (2002), Campbell-Vuolteenaho (2004), Cohen et al. (2005)

"An economic theorist can, of course, commit no greater crime than to assume money illusion." Tobin (1972)

Money Illusion:

Patinkin (1965), Leontief (1936), Fisher (1928)

- Recent survey evidence: Shiller (1997a), (1997b)
- Related Psychological Biases:
 Shafir, Diamond, Tversky (1997), ...
- Stock market: Modigliani-Cohn (1979), Asness (2000, 2003), Ritter-Warr (2002), Campbell-Vuolteenaho (2004), Cohen et al. (2005)

- Money illusion Related literature
- 2 U.K. evidence
 - Real versus nominal A first-cut
 - Decomposing inflation effects
 - Financial frictions
- 3 Cross-country evidence
 - U.S. evidence
- 4 Conclusion

A first cut

PV of permanent service flow = $L + \frac{L}{1+r} + \frac{L}{(1+r)^2} + \dots$

$$\frac{P_t}{L_t} = E_t \left[\sum_{\tau=t+1}^{\infty} \frac{1}{(1+r_{\tau})^{\tau-t-1}} \right] \simeq \frac{1}{r}$$

with money illusion

$$\frac{P_t}{L_t} = \tilde{E}_t \left[\sum_{\tau=t+1}^{\infty} \frac{1}{(1+r_{\tau})^{\tau-t-1}} \right] \simeq E_t \left[\sum_{\tau=t+1}^{\infty} \frac{1}{(1+i_{\tau})^{\tau-t-1}} \right] \simeq \frac{1}{i}$$

• Regress P_t/L_t separately on $1/r_t$, $1/i_t$, and π_t .

A first cut

PV of permanent service flow = $L + \frac{L}{1+r} + \frac{L}{(1+r)^2} + \dots$

$$\frac{P_t}{L_t} = E_t \left[\sum_{\tau=t+1}^{\infty} \frac{1}{(1+r_{\tau})^{\tau-t-1}} \right] \simeq \frac{1}{r}$$

with money illusion

$$\frac{P_t}{L_t} = \tilde{E}_t \left[\sum_{\tau=t+1}^{\infty} \frac{1}{(1+r_{\tau})^{\tau-t-1}} \right] \simeq E_t \left[\sum_{\tau=t+1}^{\infty} \frac{1}{(1+i_{\tau})^{\tau-t-1}} \right] \simeq \frac{1}{i}$$

• Regress P_t/L_t separately on $1/r_t$, $1/i_t$, and π_t .

- Regress P_t/L_t separately on $1/r_t$, $1/i_t$, and π_t .
- Persistence of P_t/L_t and regressors might lead to spurious results.
- Regress forecasts error on 1/r, 1/i, and π .

$$\hat{\delta}_{t+1,t+1-s} = \begin{cases} P_{t+1}/L_{t+1} & \text{for } s = 0 \\ P_{t+1}/L_{t+1} - \hat{E}_{t-s} \left[P_{t+1}/L_{t+1} \right] & \text{for } s > 0 \end{cases}$$

where $\hat{E}_{t-s}[P_t/L_t]$ reduced form VAR for P_t/L_t , log gross return, $r_{h,t}$, the rent growth rate Δl_t and the log real interest rate, r_t .

- Regress P_t/L_t separately on $1/r_t$, $1/i_t$, and π_t .
- Persistence of P_t/L_t and regressors might lead to spurious results.
- Regress forecasts error on 1/r, 1/i, and π .

$$\hat{\delta}_{t+1,t+1-s} = \begin{cases} P_{t+1}/L_{t+1} & \text{for } s = 0 \\ P_{t+1}/L_{t+1} - \hat{E}_{t-s} \left[P_{t+1}/L_{t+1} \right] & \text{for } s > 0 \end{cases}$$

where $\hat{E}_{t-s}[P_t/L_t]$ reduced form VAR for P_t/L_t , log gross return, $r_{h,t}$, the rent growth rate Δl_t and the log real interest rate, r_t .

- Regress P_t/L_t separately on $1/r_t$, $1/i_t$, and π_t .
- Persistence of P_t/L_t and regressors might lead to spurious results.
- Regress forecasts error on 1/r, 1/i, and π .

$$\hat{\delta}_{t+1,t+1-s} = \left\{ \begin{array}{ll} P_{t+1}/L_{t+1} & \text{for } s = 0 \\ P_{t+1}/L_{t+1} - \hat{E}_{t-s} \left[P_{t+1}/L_{t+1} \right] & \text{for } s > 0 \end{array} \right.$$

where $\hat{E}_{t-s}[P_t/L_t]$ reduced form VAR for P_t/L_t , log gross return, $r_{h,t}$, the rent growth rate ΔI_t and the log real interest rate, r_t .

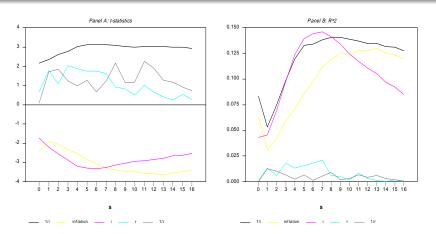
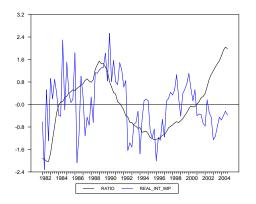


Figure 3: t-statistics and R^2 of univariate regressions of the forecast error $\hat{\delta}_{t+1,t+1-\tau}$ on interest rates and interest rate reciprocals (both nominal and real) as well as inflation.

Price-rent ratio and TIPS implied real interest rates



(standardized series)

- 1 Money illusion Related literature
- 2 U.K. evidence
 - Real versus nominal A first-cut
 - Decomposing inflation effects
 - Financial frictions
- Cross-country evidence
 - U.S. evidence
- 4 Conclusion

Decomposing inflation effects

$$R_{h,t+1} = \frac{P_{t+1} + L_{t+1}}{P_t}$$

Log-linearize around steady state and iterate

$$p_{t}-l_{t} = \lim_{T \to \infty} \left[\sum_{\tau=1}^{T-1} \rho^{\tau-1} \left(\Delta l_{t+\tau} - r_{h,t+\tau} \right) + \rho^{T} \left(p_{t+T} - l_{t+T} \right) \right].$$

- Note if p_t is distorted, then so are all realized $r_{h,t+\tau}$
- Subtract r^f to obtain excess ΔI^e and excess returns r^e
- ullet Take expectations: E (objective), \tilde{E} (subjective)

Taking expectations and assuming that TVCs hold

$$\begin{array}{ll} p_t - \mathit{I}_t &= \sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathit{E}_t \left[\Delta \mathit{I}_{t+\tau}^{e} \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathit{E}_t \left[\mathit{r}_{h,t+\tau}^{e} \right] & \text{rational traders} \\ &= \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{\mathit{E}}_t \left[\Delta \mathit{I}_{t+\tau}^{e} \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{\mathit{E}}_t \left[\mathit{r}_{h,t+\tau}^{e} \right] & \text{irrational traders} \end{array}$$

Hence,

$$p_{t} - l_{t} = \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_{t} \left[\Delta l_{t+\tau}^{e} \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_{t} \left[r_{h,t+\tau}^{e} \right] + \left(\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_{t} \left[\Delta l_{t+\tau}^{e} \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_{t} \left[\Delta l_{t+\tau}^{e} \right] \right)$$

ψ_t -Mispricing measure

$$\psi_t := \sum_{\tau=1}^{\infty} \rho^{\tau-1} \left(\tilde{E}_t - E_t \right) \left[\Delta I_{t+\tau}^e \right]$$

Taking expectations and assuming that TVCs hold

$$\begin{array}{ll} p_t - I_t &= \sum_{\tau=1}^\infty \rho^{\tau-1} E_t \left[\Delta I_{t+\tau}^{\rm e} \right] - \sum_{\tau=1}^\infty \rho^{\tau-1} E_t \left[r_{h,t+\tau}^{\rm e} \right] & {}_{\rm rational \ traders} \\ &= \sum_{\tau=1}^\infty \rho^{\tau-1} \tilde{E}_t \left[\Delta I_{t+\tau}^{\rm e} \right] - \sum_{\tau=1}^\infty \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^{\rm e} \right] & {}_{\rm irrational \ traders} \end{array}$$

Hence,

$$\rho_{t} - I_{t} = \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_{t} \left[\Delta I_{t+\tau}^{e} \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_{t} \left[r_{h,t+\tau}^{e} \right] + \left(\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_{t} \left[\Delta I_{t+\tau}^{e} \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_{t} \left[\Delta I_{t+\tau}^{e} \right] \right)$$

 ψ_t -Mispricing measure

$$\psi_t := \sum_{\tau=1}^{\infty} \rho^{\tau-1} \left(\tilde{E}_t - E_t \right) \left[\Delta I_{t+\tau}^e \right]$$

Taking expectations and assuming that TVCs hold

$$\begin{array}{ll} p_t - \mathit{I}_t &= \sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathit{E}_t \left[\Delta \mathit{I}_{t+\tau}^{\mathrm{e}} \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathit{E}_t \left[\mathit{r}_{h,t+\tau}^{\mathrm{e}} \right] & \text{rational traders} \\ &= \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{\mathit{E}}_t \left[\Delta \mathit{I}_{t+\tau}^{\mathrm{e}} \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{\mathit{E}}_t \left[\mathit{r}_{h,t+\tau}^{\mathrm{e}} \right] & \text{irrational traders} \end{array}$$

Hence,

$$p_{t} - I_{t} = \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_{t} \left[\Delta I_{t+\tau}^{e} \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_{t} \left[r_{h,t+\tau}^{e} \right] + \left(\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_{t} \left[\Delta I_{t+\tau}^{e} \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_{t} \left[\Delta I_{t+\tau}^{e} \right] \right)$$

ψ_t -Mispricing measure

$$\psi_t := \sum_{\tau=1}^{\infty} \rho^{\tau-1} \left(\tilde{E}_t - E_t \right) \left[\Delta I_{t+\tau}^e \right]$$

Example Money Illusion: $\tilde{E}_t [\Delta I_{t+\tau}] = E_t [\Delta I_{t+\tau} - (\pi_{t+\tau} - \bar{\pi})]$

$$\psi_t = -\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\pi_{t+\tau} - \bar{\pi} \right]$$

- Problem: How to construct a proxy for $\tilde{E}_t \mid r_{h,t+\tau}^e \mid$
 - \Rightarrow use linear subjective risk factor λ_t
 - Model $\tilde{E}_t \mid r_{h,t+\tau}^e \mid$ as (and run OLS):

$$\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^e \right] = \underbrace{\alpha + \beta \lambda_t + \xi_t}_{=:\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right]} + \psi_t$$

- Empirical strategy:
 - ① Obtain $\hat{E}\left[\Delta I_{t+\tau}^{e}\right]$ from VAR and $\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_{t}\left[r_{h,t+\tau}^{e}\right]$
 - ② Add controls to remove ξ_t [from OLS-residual $(\xi_t + \psi_t)$]

Example Money Illusion: $\tilde{E}_t [\Delta I_{t+\tau}] = E_t [\Delta I_{t+\tau} - (\pi_{t+\tau} - \bar{\pi})]$

$$\psi_t = -\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\pi_{t+\tau} - \bar{\pi} \right]$$

- Problem: How to construct a proxy for $\tilde{E}_t \mid r_{h,t+\tau}^e \mid$
 - \Rightarrow use linear subjective risk factor λ_t
 - Model $\tilde{E}_t \mid r_{h,t+\tau}^e \mid$ as (and run OLS):

$$\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^e \right] = \underbrace{\alpha + \beta \lambda_t + \xi_t}_{=:\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right]} + \psi_t$$

- Empirical strategy:
 - ① Obtain $\hat{E}\left[\Delta I_{t+\tau}^{e}\right]$ from VAR and $\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_{t}\left[r_{h,t+\tau}^{e}\right]$
 - ② Add controls to remove ξ_t [from OLS-residual $(\xi_t + \psi_t)$]

Example Money Illusion: $\tilde{E}_t \left[\Delta I_{t+\tau} \right] = E_t \left[\Delta I_{t+\tau} - (\pi_{t+\tau} - \bar{\pi}) \right]$

$$\psi_t = -\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\pi_{t+\tau} - \bar{\pi} \right]$$

- ullet Problem: How to construct a proxy for $ilde{\mathcal{E}}_t\left[r_{h,t+ au}^{ ext{e}}
 ight]$
 - \Rightarrow use linear subjective risk factor λ_t GARCH-estimate of cond. volatility of long housing short r^f
 - Model $\tilde{E}_t \left[r_{h,t+\tau}^{\rm e} \right]$ as (and run OLS):

$$\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^e \right] = \underbrace{\alpha + \beta \lambda_t + \xi_t}_{=:\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right]} + \psi_t$$

- Empirical strategy:
 - ① Obtain $\hat{E}\left[\Delta I_{t+\tau}^e\right]$ from VAR and $\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^e\right]$
 - ② Add controls to remove ξ_t [from OLS-residual $(\xi_t + \psi_t)$]

Example Money Illusion: $\tilde{E}_t \left[\Delta I_{t+\tau} \right] = E_t \left[\Delta I_{t+\tau} - (\pi_{t+\tau} - \bar{\pi}) \right]$

$$\psi_t = -\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\pi_{t+\tau} - \bar{\pi} \right]$$

- ullet Problem: How to construct a proxy for $ilde{E}_t\left[r_{h,t+ au}^e
 ight]$
 - \Rightarrow use linear subjective risk factor λ_t GARCH-estimate of cond. volatility of long housing short r^f
 - Model $\tilde{E}_t \left[r_{h,t+\tau}^e \right]$ as (and run OLS):

$$\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^e \right] = \underbrace{\alpha + \beta \lambda_t + \xi_t}_{=:\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right]} + \psi_t$$

- Empirical strategy:
 - **1** Obtain $\hat{E}\left[\Delta I_{t+\tau}^e\right]$ from VAR and $\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^e\right]$
 - ② Add controls to remove ξ_t [from OLS-residual $(\xi_t + \psi_t)$]

Example Money Illusion: $\tilde{E}_t \left[\Delta I_{t+\tau} \right] = E_t \left[\Delta I_{t+\tau} - (\pi_{t+\tau} - \bar{\pi}) \right]$

$$\psi_t = -\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\pi_{t+\tau} - \bar{\pi} \right]$$

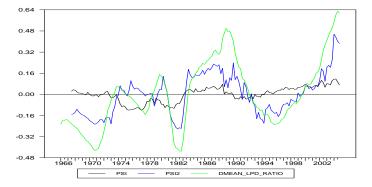
- ullet Problem: How to construct a proxy for $ilde{E}_t\left[r_{h,t+ au}^e
 ight]$
 - \Rightarrow use linear subjective risk factor λ_t GARCH-estimate of cond. volatility of long housing short r^f
 - Model $\tilde{E}_t \left[r_{h,t+\tau}^e \right]$ as (and run OLS):

$$\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^e \right] = \underbrace{\alpha + \beta \lambda_t + \xi_t}_{=:\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right]} + \psi_t$$

- Empirical strategy:
 - ① Obtain $\hat{E}\left[\Delta I_{t+\tau}^{e}\right]$ from VAR and $\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_{t}\left[r_{h,t+\tau}^{e}\right]$
 - 2 Add controls to remove ξ_t [from OLS-residual $(\xi_t + \psi_t)$]

The different measures of mispricing

- \bullet $\,\psi\text{-mispricing}$ measure depends on added controls for $\xi.$
 - $oldsymbol{0}$ ψ with controls (quarterly dummies, VAR(1)-forecast)
 - $\mathbf{Q} \ \psi'$ without controls



ε -Mispricing

ε_t -Mispricing measure (very conservative)

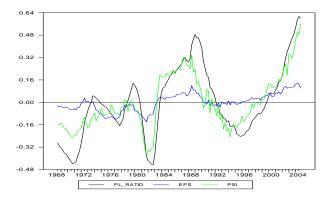
$$arepsilon_{t} := \sum_{ au=1}^{\infty}
ho^{ au-1} \left(ilde{E}_{t} - E_{t}
ight) \left[\Delta I_{t+ au}^{e} - r_{h,t+ au}^{e}
ight]
onumber
onumber$$

$$p_{t} - l_{t} = \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_{t} \left[\Delta l_{t+\tau}^{e} - r_{h,t+\tau}^{e} \right] + \underbrace{E_{t} \left[\lim_{T \to \infty} \rho^{T} \left(p_{t+T} - l_{t+T} \right) \right]}_{=:\varepsilon_{t}}$$

violation of the TVC under the objective measure

ε -Mispricing

- ullet $\varepsilon ext{-Mispricing measure}$
 - non-neglectable
 - martingale property cannot be rejected
 - analysis holds in first differences



Empirical evidence

Dependent Variables:			Regress	ors:		
	π_t		i _t		$\log(1/i_t)$	
	coeff.	R^2	coeff.	R^2	coeff.	R^2
Panel A						
$\hat{\psi}_t$	-4.09 (13.479)	.83	-6.80 (11.765)	.74	.136 (8.020)	.69
$\sum_{ au=1}^{\infty} ho^{ au-1}\hat{\mathcal{E}}_t\Delta I^e_{t+ au}$	-2.58 (2.390)	.12	-3.96 (1.938)	.09	.093 (2.083)	.12
$-\sum_{ au=1}^{\infty} ho^{ au-1} ilde{\mathcal{E}}_t r_{h,t+ au}^e$	1.92 (1.066)	.03	3.581 (1.050)	.03	050 (.595)	.02
Panel B						
$\hat{\psi}_t'$	-6.15 (2.48)	.17	-10.85 (2.66)	.17	.241 (2.82)	.19
$\hat{arepsilon}_t$	-3.90 (7.946)	.65	-6.3 (6.927)	.55	.129 (5.991)	.52

Table 1: Univariate Regressions, Newey-West (1987) corrected t-statistics in brackets.

Empirical evidence

Dependent Variables:			Regress	ors:		
	π_t		i _t		$\log(1/i_t)$	
	coeff.	R^2	coeff.	R^2	coeff.	R^2
Panel A						
$\hat{\psi}_t$	-4.09 (13.479)	.83	-6.80 (11.765)	.74	.136 (8.020)	.69
$\sum_{ au=1}^{\infty} ho^{ au-1}\hat{\mathcal{E}}_t\Delta I^e_{t+ au}$	-2.58 (2.390)	.12	-3.96 (1.938)	.09	.093 (2.083)	.12
$-\sum_{ au=1}^{\infty} ho^{ au-1} ilde{\mathcal{E}}_t r_{h,t+ au}^e$	1.92 (1.066)	.03	3.581 (1.050)	.03	050 (.595)	.02
Panel B						
$\hat{\psi}_{t}'$	-6.15 (2.48)	.17	-10.85 (2.66)	.17	.241 (2.82)	.19
$\hat{arepsilon}_t$	-3.90 (7.946)	.65	-6.3 (6.927)	.55	.129 (5.991)	.52

Table 1: Univariate Regressions, Newey-West (1987) corrected t-statistics in brackets.

Empirical evidence

Dependent Variables:			Regress	ors:		
	π_t		i _t		$\log(1/i_t)$	
	coeff.	R^2	coeff.	R^2	coeff.	R^2
Panel A						
$\hat{\psi}_t$	-4.09 (13.479)	.83	-6.80 (11.765)	.74	.136 (8.020)	.69
$\sum_{ au=1}^{\infty} ho^{ au-1}\hat{\mathcal{E}}_t\Delta I^e_{t+ au}$	-2.58 (2.390)	.12	-3.96 (1.938)	.09	.093 (2.083)	.12
$-\sum_{ au=1}^{\infty} ho^{ au-1} ilde{\mathcal{E}}_t extsf{r}_{ extsf{h},t+ au}^{ extsf{e}}$	1.92 (1.066)	.03	3.581 (1.050)	.03	050 (.595)	.02
Panel B						
$\hat{\psi}_t'$	-6.15 (2.48)	.17	-10.85 (2.66)	.17	.241 (2.82)	.19
$\hat{arepsilon}_t$	-3.90 (7.946)	.65	-6.3 (6.927)	.55	.129 (5.991)	.52

Table 1: Univariate Regressions, Newey-West (1987) corrected t-statistics in brackets.

$$eta|_{\Sigma} \sim N\left(\hat{eta}, \Sigma \otimes \left(X'X\right)^{-1}\right)$$
 $\Sigma^{-1} \sim \text{Wishart}\left(\left(n\hat{\Sigma}\right)^{-1}, n-m\right)$

- lacktriangle Draw covar-matrices $\dot{\Sigma}$ from inverse Wishart with $\dot{\Sigma}$, n and m
- ② Cond. on $\dot{\Sigma}$ draw VAR-coefficients $\dot{\beta} \sim N\left(\hat{\beta}, \dot{\Sigma} \otimes (X'X)^{-1}\right)$
- ③ Use \grave{eta} to construct $\sum_{ au}^{\infty}
 ho^{ au-1}\grave{E}_t\Delta I_{t+ au}^e, \sum_{ au}^{\infty}
 ho_t^{ au-1}\grave{E}_tr_{h,t+ au}^e$, and $\grave{\psi}_t$
- ① Regress $\hat{\psi}_t$, $\sum_{\tau}^{\infty} \rho^{\tau-1} \grave{E}_t \Delta I_{t+\tau}^e$, $\sum_{\tau}^{\infty} \rho_t^{\tau-1} \grave{E}_t r_{h,t+\tau}^e$ on π_t , i_t , $1/i_t$

$$eta|_{\Sigma} \sim N\left(\hat{eta}, \Sigma \otimes \left(X'X
ight)^{-1}\right)$$
 $\Sigma^{-1} \sim \text{Wishart}\left(\left(n\hat{\Sigma}\right)^{-1}, n-m\right)$

- **0** Draw covar-matrices $\hat{\Sigma}$ from inverse Wishart with $\hat{\Sigma}$, n and m
- ② Cond. on $\dot{\Sigma}$ draw VAR-coefficients $\dot{\beta} \sim N\left(\hat{\beta}, \dot{\Sigma} \otimes (X'X)^{-1}\right)$
- ① Use $\hat{\beta}$ to construct $\sum_{\tau}^{\infty} \rho^{\tau-1} \dot{E}_t \Delta l_{t+\tau}^e$, $\sum_{\tau}^{\infty} \rho_t^{\tau-1} \dot{E}_t r_{h,t+\tau}^e$, and $\hat{\psi}_t$
- ① Regress $\hat{\psi}_t$, $\sum_{\tau}^{\infty} \rho^{\tau-1} \dot{E}_t \Delta I_{t+\tau}^e$, $\sum_{\tau}^{\infty} \rho_t^{\tau-1} \dot{E}_t r_{h,t+\tau}^e$ on π_t , i_t , $1/i_t$

$$eta|_{\Sigma} \sim N\left(\hat{eta}, \Sigma \otimes \left(X'X
ight)^{-1}\right)$$
 $\Sigma^{-1} \sim \text{Wishart}\left(\left(n\hat{\Sigma}\right)^{-1}, n-m\right)$

- $oldsymbol{0}$ Draw covar-matrices $\grave{\Sigma}$ from inverse Wishart with $\hat{\Sigma}$, n and m
- ② Cond. on $\grave{\Sigma}$ draw VAR-coefficients $\grave{\beta} \sim N\left(\hat{\beta},\grave{\Sigma}\otimes (X'X)^{-1}\right)$
- ullet Use \dot{eta} to construct $\sum_{ au}^{\infty}
 ho^{ au-1}\dot{E}_t\Delta I_{t+ au}^e, \sum_{ au}^{\infty}
 ho_t^{ au-1}\dot{E}_tr_{h,t+ au}^e$, and $\dot{\psi}_t$
- ① Regress $\hat{\psi}_t$, $\sum_{\tau}^{\infty} \rho^{\tau-1} \dot{E}_t \Delta I_{t+\tau}^e$, $\sum_{\tau}^{\infty} \rho_t^{\tau-1} \dot{E}_t r_{h,t+\tau}^e$ on π_t , i_t , $1/i_t$

$$eta|_{\Sigma} \sim N\left(\hat{eta}, \Sigma \otimes \left(X'X
ight)^{-1}\right)$$
 $\Sigma^{-1} \sim \text{Wishart}\left(\left(n\hat{\Sigma}\right)^{-1}, n-m\right)$

- **1** Draw covar-matrices $\hat{\Sigma}$ from inverse Wishart with $\hat{\Sigma}$, n and m
- ② Cond. on $\dot{\Sigma}$ draw VAR-coefficients $\dot{\beta} \sim N\left(\hat{\beta}, \dot{\Sigma} \otimes (X'X)^{-1}\right)$
- ① Regress $\hat{\psi}_t$, $\sum_{\tau}^{\infty} \rho^{\tau-1} \dot{E}_t \Delta I_{t+\tau}^e$, $\sum_{\tau}^{\infty} \rho_t^{\tau-1} \dot{E}_t r_{h,t+\tau}^e$ on π_t , i_t , $1/i_t$
- Iterate and compute confidence intervals for OLS coefficients and R^2 from their percentiles

$$eta|_{\Sigma} \sim N\left(\hat{eta}, \Sigma \otimes \left(X'X\right)^{-1}\right)$$
 $\Sigma^{-1} \sim \text{Wishart}\left(\left(n\hat{\Sigma}\right)^{-1}, n-m\right)$

- **1** Draw covar-matrices $\hat{\Sigma}$ from inverse Wishart with $\hat{\Sigma}$, n and m
- ② Cond. on $\dot{\Sigma}$ draw VAR-coefficients $\dot{\beta} \sim N\left(\hat{\beta}, \dot{\Sigma} \otimes (X'X)^{-1}\right)$
- **3** Use $\dot{\beta}$ to construct $\sum_{\tau}^{\infty} \rho^{\tau-1} \dot{E}_t \Delta I_{t+\tau}^e$, $\sum_{\tau}^{\infty} \rho_t^{\tau-1} \dot{E}_t r_{h,t+\tau}^e$, and $\dot{\psi}_t$
- **Q** Regress $\hat{\psi}_t$, $\sum_{\tau}^{\infty} \rho^{\tau-1} E_t \Delta I_{t+\tau}^e$, $\sum_{\tau}^{\infty} \rho_t^{\tau-1} E_t r_{h,t+\tau}^e$ on π_t , i_t , $1/i_t$
- (a) Iterate and compute confidence intervals for OLS coefficients and R^2 from their percentiles

$$eta|_{\Sigma} \sim N\left(\hat{eta}, \Sigma \otimes \left(X'X\right)^{-1}\right)$$
 $\Sigma^{-1} \sim \text{Wishart}\left(\left(n\hat{\Sigma}\right)^{-1}, n-m\right)$

- **1** Draw covar-matrices $\hat{\Sigma}$ from inverse Wishart with $\hat{\Sigma}$, n and m
- ② Cond. on $\dot{\Sigma}$ draw VAR-coefficients $\dot{\beta} \sim N\left(\hat{\beta}, \dot{\Sigma} \otimes (X'X)^{-1}\right)$
- **3** Use $\dot{\beta}$ to construct $\sum_{\tau}^{\infty} \rho^{\tau-1} \dot{E}_t \Delta I_{t+\tau}^e$, $\sum_{\tau}^{\infty} \rho_t^{\tau-1} \dot{E}_t r_{h,t+\tau}^e$, and $\dot{\psi}_t$
- **Q** Regress $\hat{\psi}_t$, $\sum_{\tau}^{\infty} \rho^{\tau-1} E_t \Delta I_{t+\tau}^e$, $\sum_{\tau}^{\infty} \rho_t^{\tau-1} E_t r_{h,t+\tau}^e$ on π_t , i_t , $1/i_t$

Robustness analysis - Results

DepVar:	Regressors:						
	π_{t}		i _t		log (1	$/i_t)$	
	coeff.	R^2	coeff.	R^2	coeff.	R^2	
Panel A							
$\hat{\psi}_t$	-3.10 [-7.79,19]	.61 [.03, .92]	-5.28 [-12.63,25]	.57 [.04, .78]	.107 [.01, .25]	.54 [.04, .71	
$\Delta I_{ ext{-terms}}$	-2.6 [-11.8, 9.08]	.27 [0, .85]	-4.01 [-18.1, 13.9]	.20 [0, .64]	.095 [303, .392]	.21 [0, .58]	
− <i>r</i> -terms	$1.81 \\ [-10.41, 9.61]$.10 [0, .64]	3.44 [-15.34, 15.43]	.09 [0, .59]	048 [328, .286]	.07 [0, .44]	
Panel B							
$\hat{arepsilon}_t$	-3.9 [-11.1,19]	.64 [.05, .94]	-6.28 [-17.4,68]	.54 [.05, .75]	.129 [.01, .372]	.52 [.05, .67	

Table 2: Median and 95 percent confidence intervals for slope coefficients and R^2 .

Robustness analysis - Results

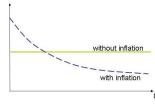
DepVar:	Regressors:							
	π_t		i _t		log (1,	$/i_t)$		
	coeff.	R^2	coeff.	R^2	coeff.	R^2		
Panel A								
$\hat{\psi}_t$	-3.10 [-7.79,19]	.61 [.03, .92]	-5.28 [-12.63,25]	.57 [.04, .78]	.107 [.01, .25]	.54 [.04, .71		
$\Delta I_{ ext{-terms}}$	-2.6 [-11.8, 9.08]	.27 [0, .85]	-4.01 [-18.1, 13.9]	.20 [0, .64]	.095 [303, .392]	.21 [0, .58]		
− <i>r</i> -terms	$1.81 \\ [-10.41, 9.61]$.10 [0, .64]	3.44 [-15.34, 15.43]	. 09 [0, .59]	048 [328, .286]	.07 [0, .44]		
Panel B								
$\hat{arepsilon}_t$	-3.9 [-11.1,19]	.64 [.05, .94]	-6.28 [-17.4,68]	. 54 [.05, .75]	.129 [.01, .372]	.52 [.05, .67		

Table 2: Median and 95 percent confidence intervals for slope coefficients and R^2 .

- Money illusion Related literature
- 2 U.K. evidence
 - Real versus nominal A first-cut
 - Decomposing inflation effects
 - Financial frictions
- Cross-country evidence
 - U.S. evidence
- 4 Conclusion

Tilt effect of inflation

inflation tilts real mortgage repayment scheme



- can't afford initial mortgage payments Lessard-Modigliani + Tucker (1975)
- BUT more flexible mortgage schemes
 - Price level adjusted mortgage (PLAM)
 - Graduate payment mortgage (GPM)
 - Interest only mortgages

are available since 1970's in UK and mortgages became more flexible over the years

PREDICTION OF TILT EFFECT:

• inflation effect less negative over time

Tilt effect - Inflation effect over time

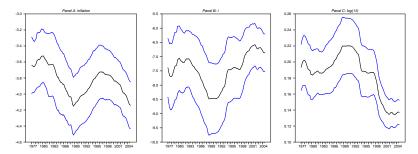


Figure 6: Point estimates and 95 percent Newey and West (1987) corrected confidence bounds of slope coefficients as sample size increases.

• tilt effect is unlikely to explain inflation effect.

locked in low fixed nominal rate on existing mortgage
 ⇒ reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

• for the full sample estimates

$$\psi_t = \hat{a} + \hat{b}_1 d_t i_t + \hat{b}_2 \left(1 - d_t \right) i_t + \hat{e}_t \Rightarrow \hat{b}_1
eq \hat{b}_2$$

- for rolling samples estimates:
 - $Corr[R^2, d_t] > 0$
 - $Corr[R^2, i_t] < 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

locked in low fixed nominal rate on existing mortgage
 ⇒ reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

for the full sample estimates

$$\psi_t = \hat{a} + \hat{b}_1 d_t i_t + \hat{b}_2 (1 - d_t) i_t + \hat{e}_t \Rightarrow \hat{b}_1 \neq \hat{b}_2$$

- for rolling samples estimates:
 - $Corr[R^2, d_t] > 0$
 - Corr R^2 , $i_t < 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

locked in low fixed nominal rate on existing mortgage
 ⇒ reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

for the full sample estimates

$$\psi_t = \hat{a} + \hat{b}_1 d_t i_t + \hat{b}_2 (1 - d_t) i_t + \hat{e}_t \Rightarrow \hat{b}_1 \neq \hat{b}_2$$

- for rolling samples estimates:
 - $\operatorname{Corr}[R^2, d_t] > 0$
 - Corr $[R^2, i_t] < 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

locked in low fixed nominal rate on existing mortgage
 ⇒ reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

for the full sample estimates

$$\psi_t = \hat{a} + \hat{b}_1 d_t i_t + \hat{b}_2 (1 - d_t) i_t + \hat{e}_t \Rightarrow \hat{b}_1 \neq \hat{b}_2$$

- for rolling samples estimates:
 - $\operatorname{Corr}[R^2, d_t] > 0$
 - Corr $[R^2, i_t] < 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

locked in low fixed nominal rate on existing mortgage
 ⇒ reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

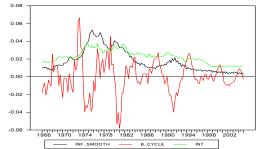
for the full sample estimates

$$\psi_t = \hat{a} + \hat{b}_1 d_t i_t + \hat{b}_2 (1 - d_t) i_t + \hat{e}_t \Rightarrow \hat{b}_1 \neq \hat{b}_2$$

- for rolling samples estimates:
 - $\operatorname{Corr}[R^2, d_t] > 0$
 - $\operatorname{Corr}[R^2, i_t] < 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

Misprincing measures and the business cycle

- During booms (busts) high quality houses appreciate (de-) more than smaller houses
 - house prices reflect all types of dwellings
 - rent index tends to overweigh lower quality dwellings
- → Price-rent ratio might move over business cycle
- Control for business cycle proxy
 - \hat{c}_t Hodrick-Prescott (1997) filter



Misprincing measures and the business cycle

		Regressors:								
Row:	DepVar:	ĉ _t	π_t	i _t	$\log(1/i)$	R^2				
(1)	$\hat{\psi}_{t}$	0.81 (1.959)				.07				
(2)		0.32 (2.135)	-4.00 (13.761)			.85				
(3)		0.378 (2.168)		-6.64 (11.137)		.76				
(5)	$\hat{\psi}_{t}'$	1.11 (0.963)				.01				
(6)		0.36 (0.349)	-5.98 (2.279)			.17				
(7)		0.41 (0.369)	, ,	-10.5 (2.436)		.17				
(9)	$\hat{arepsilon}_t$	0.85 (2.201)				.07				
(10)		0.41 (2.281)	-3.80 (7.801)			.67				
(11)		0.49	, ,	-6.10		4 ₹.57₹ =				

- Money illusion Related literature
- 2 U.K. evidence
 - Real versus nominal A first-cut
 - Decomposing inflation effects
 - Financial frictions
- Cross-country evidence
 - U.S. evidence
- 4 Conclusion

U.S. Decomposition of inflation effects

Dependent Variables:			Regress	sors:		
	π_t		i _t		$\log(1/i_t)$	
	coeff.	R^2	coeff.	R^2	coeff.	R^2
Panel A						
$\hat{\psi}_t$	-6.65 (4.525)	.45	-6.30 (3.182)	.28	.141 (4.256)	.35
$\sum_{ au=1}^{\infty} ho^{ au-1}\hat{E}_t\Delta I_{t+ au}^e$	-2.87 (6.572)	.65	-3.46 (6.170)	.65	.066 (4.693)	.60
$-\sum_{ au=1}^{\infty} ho^{ au-1} ilde{E}_t r^{e}_{h,t+ au}$.76 (.211)	.01	4.65 (1.130)	.05	066 (.734)	.03
Panel B						
$\hat{arepsilon}_t$	-10.2 (5.148)	.48	-6.86 (2.648)	.15	.159 (3.238)	.21

Table 3: Univariate Regressions, Newey-West (1987) corrected t-statistics in brackets.

U.S. Robustness analysis

DepVar:	Regressors:						
	π_t		i _t		log (1	(i_t)	
	coeff. R^2		coeff.	R^2	coeff.	R^2	
Panel A							
$\hat{\psi}_t$	-6.06 [-7.32, -2.76]	.44 [.06, .66]	-5.84 [-7.12, -2.14]	.27 [.03, .66]	.130 [.070, .155]	.35 [.06, .60]	
$\Delta I_{ ext{-terms}}$	-2.86 [-8.17, 1.53]	.59 [.01, .96]	-3.45 [-7.27, -0.53]	.52 [.02, .71]	.066 [.003, .149]	.51 [.01, .70]	
− r -terms	. 44 [-4.84, 3.21]	.01 [0, .09]	4.23 [1.12, 5.82]	.04 [.01, .12]	023 [097, 0]	.07 [0, .15]	
Panel B							
$\hat{arepsilon}_t$	-10.2 [-16.2, -7.25]	.48 [.36, .62]	-6.83 [-10, -4.79]	.15 [.11, .21]	.159 [.115, .25]	.21 [.16, .26]	
					- 1		

Table 4: Median and 95 percent confidence intervals for slope coefficients and R^2 .

- Money Illusion arises if e.g. investors simply compare current rent with current mortgage payment
- Inflation affects house prices
- Rational channels alone do explain inflation effects
 - Low inflation leads to higher expected rent growth
 - Inflation impact on expected housing returns is insignificant
 - Inflation explains substantial part of "mispricing"
- Frictions are unlikely to fully rationalize the empirical findings
 - Tilt effect should decline as mortgages became more flexible
 - Lock-in effect does not arise since mortgages are portable in UK
- ⇒ Evidence in favor of money illusion
- Money illusion and mortgage markets have important implications for monetary economics

- Money Illusion arises if e.g. investors simply compare current rent with current mortgage payment
- Inflation affects house prices
- Rational channels alone do explain inflation effects
 - Low inflation leads to higher expected rent growth
 - Inflation impact on expected housing returns is insignificant
 - Inflation explains substantial part of "mispricing"
- Frictions are unlikely to fully rationalize the empirical findings
 - Tilt effect should decline as mortgages became more flexible
 - Lock-in effect does not arise since mortgages are portable in UK
- ⇒ Evidence in favor of money illusion
- Money illusion and mortgage markets have important implications for monetary economics

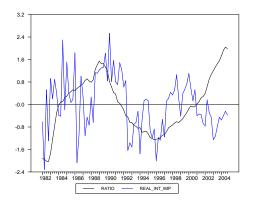
- Money Illusion arises if e.g. investors simply compare current rent with current mortgage payment
- Inflation affects house prices
- Rational channels alone do explain inflation effects
 - Low inflation leads to higher expected rent growth
 - Inflation impact on expected housing returns is insignificant
 - Inflation explains substantial part of "mispricing"
- Frictions are unlikely to fully rationalize the empirical findings
 - Tilt effect should decline as mortgages became more flexible
 - Lock-in effect does not arise since mortgages are portable in UK
- ⇒ Evidence in favor of money illusion
- Money illusion and mortgage markets have important implications for monetary economics

- Money Illusion arises if e.g. investors simply compare current rent with current mortgage payment
- Inflation affects house prices
- Rational channels alone do explain inflation effects
 - Low inflation leads to higher expected rent growth
 - Inflation impact on expected housing returns is insignificant
 - Inflation explains substantial part of "mispricing"
- Frictions are unlikely to fully rationalize the empirical findings
 - Tilt effect should decline as mortgages became more flexible
 - Lock-in effect does not arise since mortgages are portable in UK
- ⇒ Evidence in favor of money illusion
- Money illusion and mortgage markets have important implications for monetary economics

First difference estimation

	Slope coeff.	R^2
U.K	-4.022	.31
	(7.459)	
U.S.	-3.629	.35
	(6.588)	
Australia	-26.21	.85
	(25.82)	

Price-rent ratio and implied real interest rates



(standardized series)

Misprincing measures and the business cycle

	Regressors:									
Row:	DepVar:	ĉ _t	π_t	i _t	$\log(1/i)$	R^2				
(1)	$\hat{\psi}_{t}$	0.81 (1.959)				.07				
(2)		0.32 (2.135)	-4.00 (13.761)			.85				
(3)		0.378 (2.168)	,	-6.64 (11.137)		.76				
(5)	$\hat{\psi}_{t}'$	1.11 (0.963)				.01				
(6)		0.36 (0.349)	-5.98 (2.279)			.17				
(7)		0.41 (0.369)	()	-10.5 (2.436)		.17				
(9)	$\hat{arepsilon}_t$	0.85 (2.201)				.07				
(10)		0.41 (2.281)	-3.80 (7.801)			.67				
(11)		0.49	, ,	-6.10		₹ .57≣ = ·				