Optimal Expectations

Markus K. Brunnermeier and Jonathan A. Parker *Princeton University*

2003

Bayesian rationality

Non-Bayesian

rational expectations

Lucas rationality

Bayesian rationality

Non-Bayesian

biases: confirmation, optimism, overconfidence

rational expectations

Lucas rationality


common priors

non-common priors

Harsanyi rationality

Bayesian rationality

Non-Bayesian

Optimal Expectations

Our Goal: Provide structural model of subjective beliefs

- What is the direction of belief distortion?
- When are belief distortions large?
- Provide common framework for different biases

1. Anticipatory utility:

1. Anticipatory utility:

- Agents care about utility flow today AND
- ⇒ happier if more optimistic

1. Anticipatory utility:

- ♦ Agents care about utility flow today AND
- expected utility flows in the future (possibly past)
- ⇒ happier if more optimistic

2. No schizophrenia

- Distorted beliefs distort actions
- ⇒ better outcomes if more rational

1. Anticipatory utility:

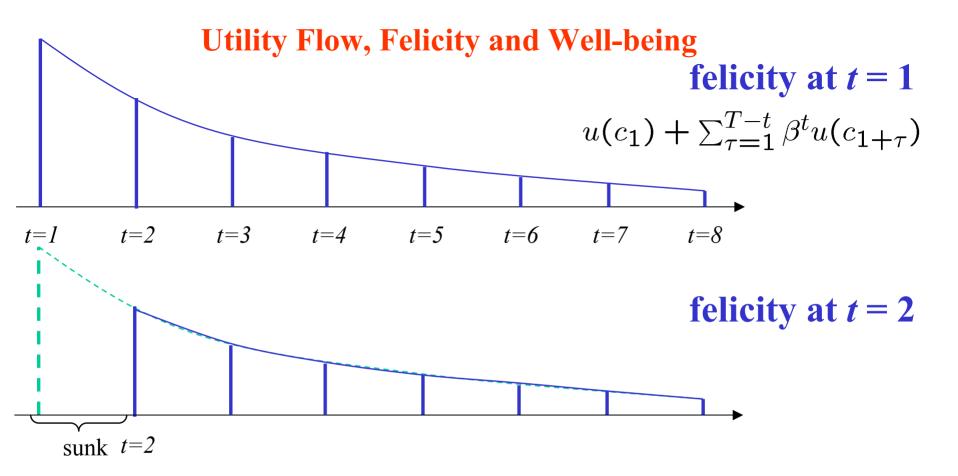
- Agents care about utility flow today AND
- expected utility flows in the future (possibly past)
- ⇒ happier if more optimistic

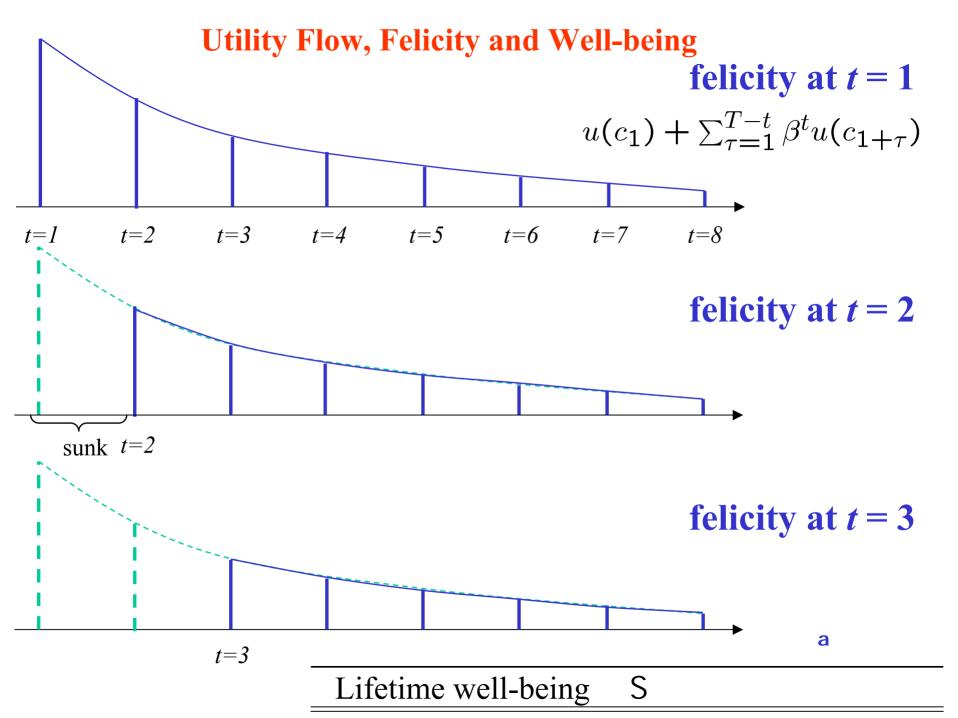
2. No schizophrenia

- Distorted beliefs distort actions
- ⇒ better outcomes if more rational

3. Optimal beliefs balance these forces

♦ Beliefs maximize lifetime well-being

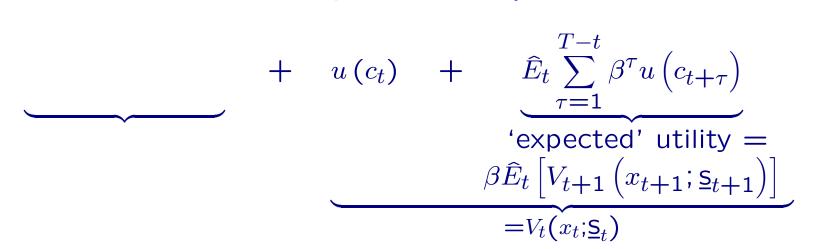

Outline


1.) The General Framework

2.) Applications and Empirical Implications

3.) Conclusion

Utility Flow, Felicity and Well-being felicity at t = 1 $u(c_1) + \sum_{\tau=1}^{T-t} \beta^t u(c_{1+\tau})$ $t=1 \qquad t=2 \qquad t=3 \qquad t=4 \qquad t=5 \qquad t=6 \qquad t=7 \qquad t=8$



Felicity <u>at t</u>:

$$+ u(c_t)$$

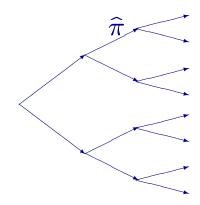
Felicity <u>at t</u>: $+V_t$

 V_t = 'expected' utility from **current and future** consumption

Felicity <u>at t</u>: $M_t + V_t$

$$\underbrace{\sum_{t=1}^{t-1} \delta^{t-r} u\left(c_{t-r}\right)}_{\text{'memory' utility}} + u\left(c_{t}\right) + \underbrace{\widehat{E}_{t} \sum_{\tau=1}^{T-t} \beta^{\tau} u\left(c_{t+\tau}\right)}_{\text{'expected' utility}} + \underbrace{\sum_{t=1}^{t-1} \beta^{\tau} u\left(c_{t+\tau}\right)}_{\text{'expected' utility}} + \underbrace{\sum_{t=1}^{t-t} \beta^{\tau} u\left(c_{t+\tau}\right)}_{$$

 V_t = 'expected' utility from **current and future** consumption M_t = 'memory' utility from **past** consumption


Felicity at \underline{t} : $M_t + V_t$

$$\underbrace{\sum_{t=1}^{t-1} \delta^{t-r} u\left(c_{t-r}\right)}_{\text{'memory' utility}} + u\left(c_{t}\right) + \underbrace{\widehat{E}_{t} \sum_{\tau=1}^{T-t} \beta^{\tau} u\left(c_{t+\tau}\right)}_{\text{'expected' utility}} + \underbrace{\sum_{t=1}^{T-t} \beta^{\tau} u\left(c_{t+\tau}\right)}_{$$

 V_t = 'expected' utility from **current and future** consumption M_t = 'memory' utility from **past** consumption

Stage 2: At each t choose c_t to maximize $V_t + M_t$ given subjective beliefs $\widehat{\pi}\left(s_t|\underline{s}_{t-1}\right)$, state, x_t , and resource constraints.

Stage 1: At t=0 assign optimal beliefs $\hat{\pi}^{OE}\left(s_t|\underline{s}_{t-1}\right)$ (conditional probabilities to each branch of event tree)

that maximize

Lifetime well-being: $W = E\left[\sum_{t=1}^{T} \beta^{t} \left(M_{t} + V_{t}\right)\right]$

Two-period example with consumption at t=2

$$t=1 \qquad t=2$$

$$t=1\text{-self's felicity} \qquad \beta \hat{E}[u(c_2)]$$

$$t=2\text{-self's felicity} \qquad E[u(c_2)]$$

Well-being:
$$W = \beta \hat{E}[u(c_2)] + \beta E[u(c_2)]$$

A. It is optimal

"as if" interpretation Scientific method

A. It is optimal

"as if" interpretation Scientific method

B. Evolution

Happiness may lead to better health or marriage prospects (Taylor and Brown (1988))

A. It is optimal

"as if" interpretation Scientific method

B. Evolution

Happiness may lead to better health or marriage prospects (Taylor and Brown (1988))

C. Parents choose

Parents have the objective of optimal expectations

- 4a.) Portfolio choice
 - ⇒ preference for **skewed** returns

- 4a.) Portfolio choice
 - ⇒ preference for **skewed** returns
- 4b.) General equilibrium
 - ⇒ **endogenous** heterogenous prior beliefs

- 4a.) Portfolio choice
 - ⇒ preference for **skewed** returns
- 4b.) General equilibrium
 - ⇒ **endogenous** heterogenous prior beliefs
- 4c.) Consumption-savings problem with stochastic income
 - ⇒ "unexpected" decline in consumption profile

- 4a.) Portfolio choice
 - ⇒ preference for **skewed** returns
- 4b.) General equilibrium
 - ⇒ **endogenous** heterogenous prior beliefs
- 4c.) Consumption-savings problem with stochastic income
 - ⇒ "unexpected" decline in consumption profile
- 4d.) Optimal timing of a single task
 - ⇒ Planning Fallacy, procrastination, context effect

Setup:

Two period problem:
 invest in period 1, consume in period 2

Setup:

- Two period problem:
 invest in period 1, consume in period 2
- 2. Two assets: a risk-free asset, return R; a risky asset, return R+Z

Setup:

- Two period problem:
 invest in period 1, consume in period 2
- 2. Two assets: a risk-free asset, return R; a risky asset, return R+Z
- 3. Uncertainty: $S \text{ states, } \pi_s > 0 \text{ for } s = 1 \text{ to } S, \ Z_s < Z_{s+1}, \ Z_1 < 0 < Z_S$

Setup:

- Two period problem:
 invest in period 1, consume in period 2
- 2. Two assets: a risk-free asset, return R; a risky asset, return R+Z
- 3. Uncertainty: $S \text{ states, } \pi_s > 0 \text{ for } s = 1 \text{ to } S, \ Z_s < Z_{s+1}, \ Z_1 < 0 < Z_S$
- 4. $c \ge 0$ in all states

Stage 2: Agent
$$\max_{w} \beta \sum_{s=1}^{S} \hat{\pi}_{s} u \left(R + wZ_{s}\right)$$

FOC:
$$0 = \sum_{s=1}^{S} \hat{\pi}_s u'(R + wZ_s) Z_s \qquad \Rightarrow w^*(\hat{\pi})$$

Stage 2: Agent
$$\max_{w} \beta \sum_{s=1}^{S} \hat{\pi}_{s} u \left(R + wZ_{s}\right)$$

FOC:
$$0 = \sum_{s=1}^{S} \hat{\pi}_s u'(R + wZ_s) Z_s \Rightarrow w^*(\hat{\pi})$$

Stage 1: Choose $\hat{\pi}_s$ to maximize lifetime well-being

$$\beta \sum_{s=1}^{S} \hat{\pi}_s u \left(R + w^* Z_s\right) + \beta \sum_{s=1}^{S} \pi_s u \left(R + w^* Z_s\right)$$
 'expected' utility at $t=1$ utility flow at $t=2$

Stage 2: Agent
$$\max_{w} \beta \sum_{s=1}^{S} \hat{\pi}_{s} u \left(R + wZ_{s}\right)$$

FOC:
$$0 = \sum_{s=1}^{S} \hat{\pi}_s u'(R + wZ_s) Z_s \qquad \Rightarrow w^*(\hat{\pi})$$

Stage 1: Choose $\hat{\pi}_s$ to maximize lifetime well-being

$$\underbrace{\beta \sum_{s=1}^{S} \hat{\pi}_{s} u \left(R + w^{*} Z_{s}\right)}_{\text{'expected' utility at } t = 1 + \beta \underbrace{\sum_{s=1}^{S} \pi_{s} u \left(R + w^{*} Z_{s}\right)}_{\text{utility flow at } t = 2$$

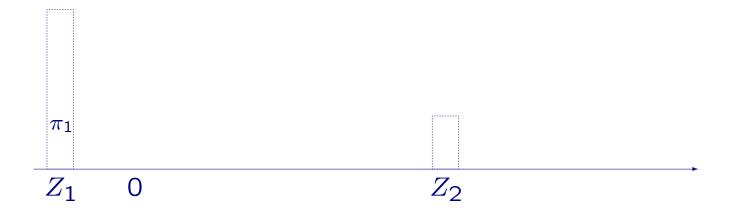
FOC:
$$\underbrace{\beta\left(u_S-u_{s'}\right)}_{\text{marginal 'expected' utility}} = \underbrace{\beta\sum_{s=1}^{S}\pi_su'\left(R+w^*Z_s\right)Z_s\frac{dw^*}{d\widehat{\pi}_{s'}}}_{\text{marginal cost of distortion}}$$

Proposition Excess risk taking due to optimism

Proposition Excess risk taking due to optimism

- (i) Agents are optimistic about states with high portfolio
- (ii) Agents go even more long (short) than agent with RE or even in the opposite direction

```
if E[Z]>0, then w^{RE}>0, and w^*>w^{RE} or w^*<0; if E[Z]<0, then w^{RE}<0, then w^*< w^{RE} or w^*>0;
```


When Do agents buy asset with E[Z] < 0?

Empirical Phenomena: Preference for Skewness

- ♦ Horse race long shots: Golec and Tamarkin (1998)
- ♦ Lottery demand: Garrett and Sobel (1999)
- ♦ Security design: LYONs, EPNs, ELNs, Swedish lottery bonds

Setup:

- \diamond 2 states with payoffs: $Z_1 < 0 < Z_2$,
- \diamond hold mean E[Z] < 0 and variance Var[Z] fixed
- \diamond the higher π_1 , the more skewed (like lottery ticket)

When Do agents buy asset with E[Z] < 0?

Empirical Phenomena: Preference for Skewness

- ♦ Horse race long shots: Golec and Tamarkin (1998)
- ♦ Lottery demand: Garrett and Sobel (1999)
- ♦ Security design: LYONs, EPNs, ELNs, Swedish lottery bonds

16

Setup:

- \diamond 2 states with payoffs: $Z_1 < 0 < Z_2$,
- \diamond hold mean E[Z] < 0 and variance Var[Z] fixed
- \diamond the higher π_1 , the more skewed (like lottery ticket)

Proposition

There exists a $\underline{\pi}$ such that for all $\pi_1 > \underline{\pi}$ (i.e. if returns are sufficiently skewed), OE agent with an unbounded utility function goes long an asset even though its mean payoff is negative.

Proposition

There exists a $\underline{\pi}$ such that for all $\pi_1 > \underline{\pi}$ (i.e. if returns are sufficiently skewed), OE agent with an unbounded utility function goes long an asset even though its mean payoff is negative.

Remarks:

- ♦ there is not much room to distort beliefs.
- shorting becomes very risky.

4b. General Equilibrium

Empirical Phenomena:

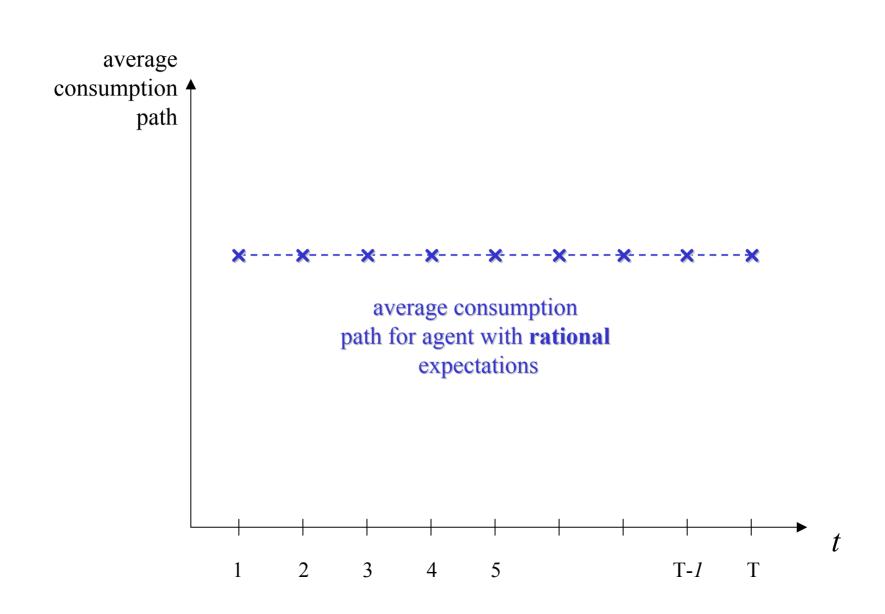
- ⋄ betting & gambling
- high trading volume (stock and FX market)
 - ← endogenous heterogenous prior beliefs
- ♦ home bias puzzle
- ⋄ 'over-investment' in employer's stock

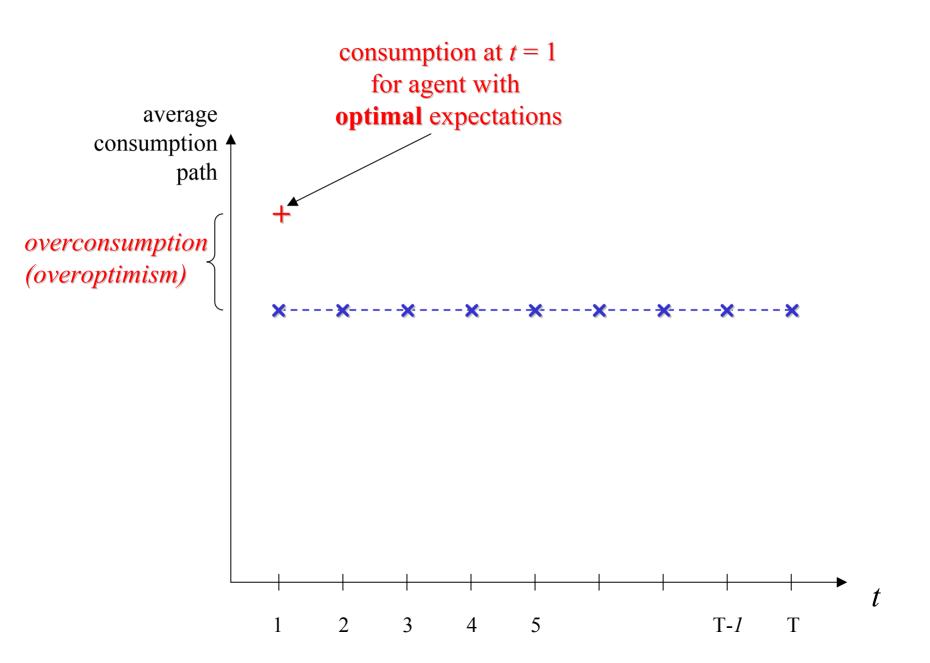
4b. General Equilibrium

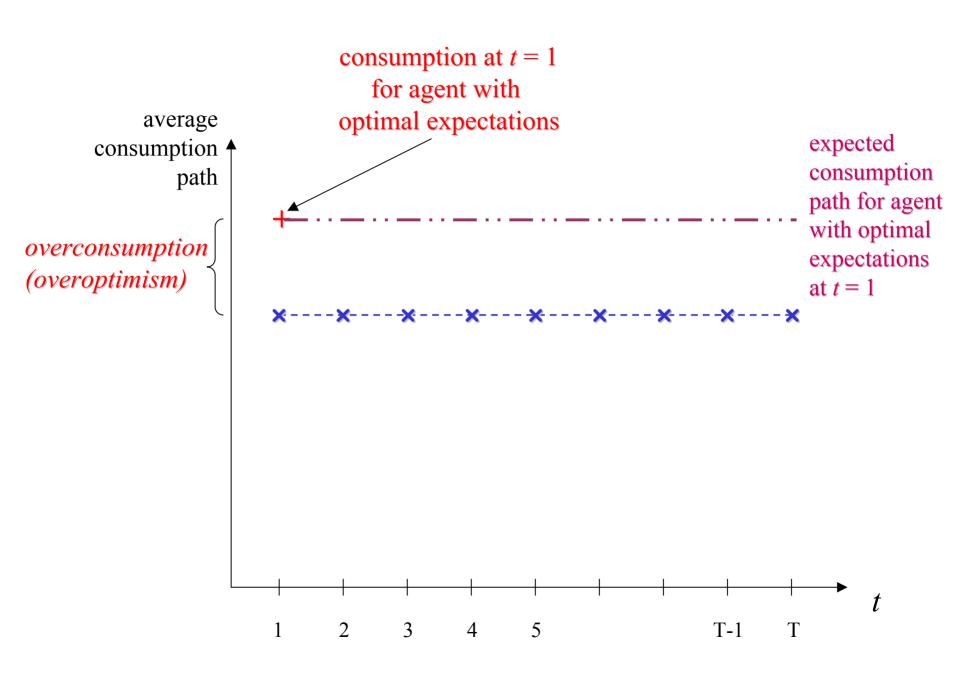
Empirical Phenomena:

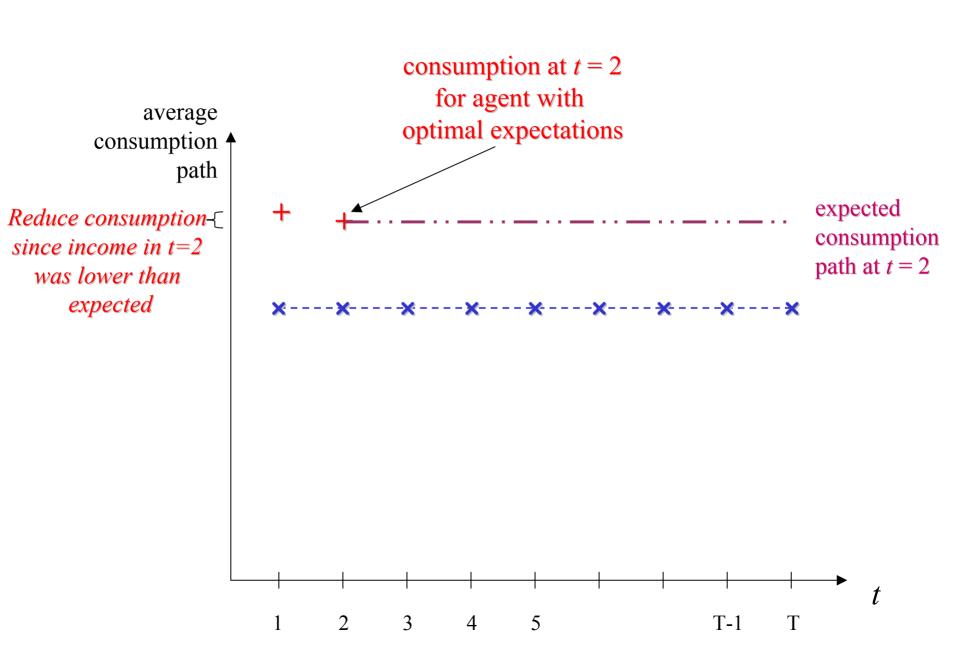
- ⋄ betting & gambling
- high trading volume (stock and FX market)
 endogenous heterogenous prior beliefs
- home bias puzzle
- 'over-investment' in employer's stock

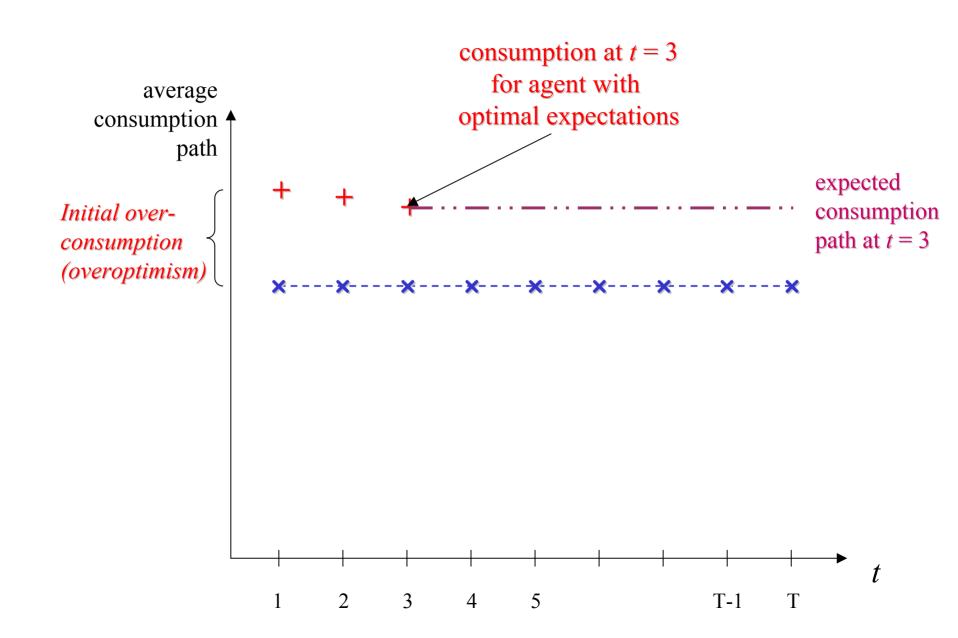
Proposition

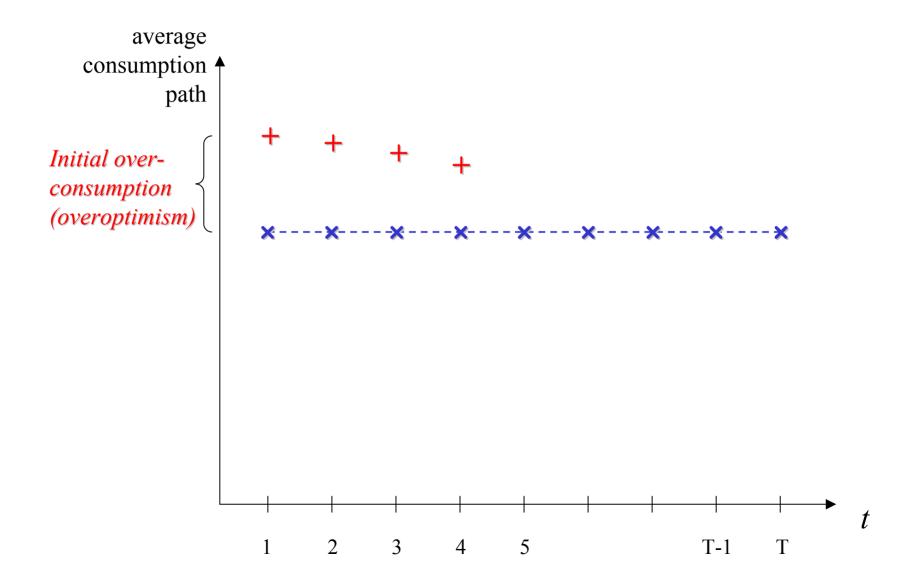

(iii) Heterogeneous prior beliefs

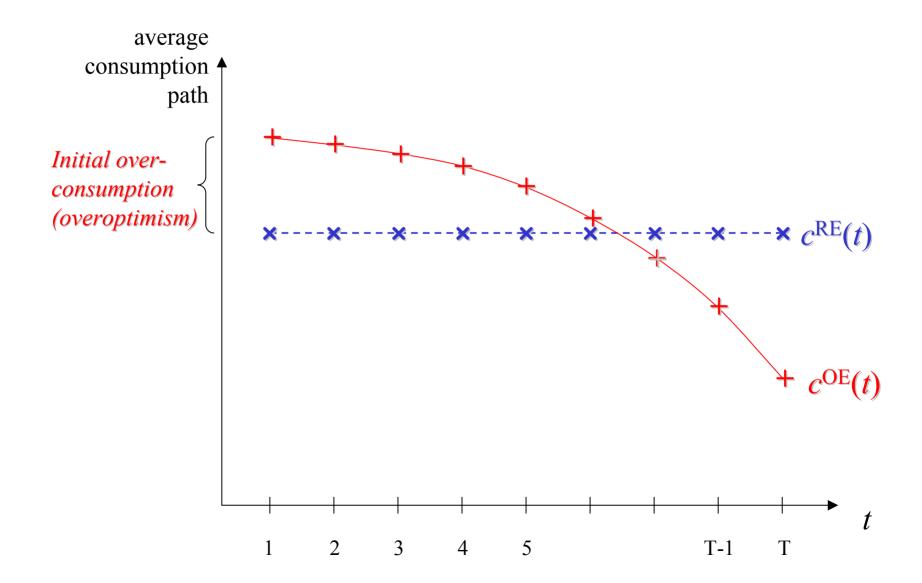

In any equilibrium, each agent bets on a different state i believes in "heads": $\hat{\pi}_1^i > \pi_1, \ \hat{\pi}_2^i < \pi_2, \ w^i < 0, \ c_1^i > c_2^i, \ \text{and} -i$ believes in "tails": $\hat{\pi}_2^{-i} > \pi_2, \ \hat{\pi}_1^{-i} < \pi_1, \ w^{-i} > 0, \ c_2^{-i} > c_1^{-i}$


4c. Consumption and Saving


Empirical Phenomena:


- households expect upward sloping consumption profile (Barsky et al. 1997)
- actual average consumption growth is non-positive
 and profiles are concave (Gourinchas & Parker (2002))





4d. Optimal Timing of a Single Action

Empirical Phenomena:

- planing fallacy: underestimation of time to complete task
 - ⋄ referee report
 - heavy briefcases for weekend
- additional options (even when not chosen) alters choice

Intuition:

 Optimal beliefs' underestimate how difficult it is to do a task tomorrow (relative to today)

4d. Optimal Timing of a Single Action

Empirical Phenomena:

- planing fallacy: underestimation of time to complete task
 - ⋄ referee report
 - heavy briefcases for weekend
- additional options (even when not chosen) alters choice

Intuition:

- Optimal beliefs' underestimate how difficult it is to do a task tomorrow (relative to today)
- Agents plan to undertake task tomorrow, but when tomorrow comes they postpone it again.

4d. Optimal Timing of a Single Action

Empirical Phenomena:

- planing fallacy: underestimation of time to complete task
 - ⋄ referee report
 - heavy briefcases for weekend
- additional options (even when not chosen) alters choice

Intuition:

- Optimal beliefs' underestimate how difficult it is to do a task tomorrow (relative to today)
- Agents plan to undertake task tomorrow, but when tomorrow comes they postpone it again.
- Procrastination due to belief distortion and not preference distortion.

Conclusion

Conclusion

1. Structural model of "priors"

- beliefs are most distorted, when decision errors are small
- ⋄ endogenous heterogenous beliefs ⇒ trade and speculation
- excess risk taking due to optimism
- preference for skewness
- ⋄ realistic consumption profile

Conclusion

1. Structural model of "priors"

- beliefs are most distorted, when decision errors are small
- ⋄ endogenous heterogenous beliefs ⇒ trade and speculation
- excess risk taking due to optimism
- preference for skewness
- ⋄ realistic consumption profile
- 2. Features of procrastination (due to belief distortions)
- ⋄ intertemporal preference reversal, context effect