Institutional Finance

Financial Crises, Risk Management and Liquidity

Markus K. Brunnermeier

Preceptor: Dong Beom Choi

Princeton University

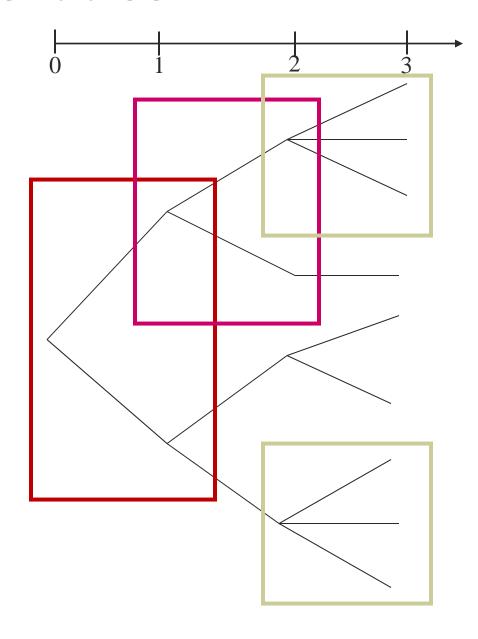
■ Market Making – Limit Orders

- Limit order price contingent order
 - Limit buy order: "buy as soon as price drops to \$x."
 - Limit sell order: "sell as soon as price rises to \$x."
 - Stand ready to trade at a certain price
 - Grant somebody else the option to execute a transaction
- Stop orders
 - Stop sell order: "sell as soon as price drops to \$x." (cut losses!)
 - Stop buy order: "buy as soon as price rises to \$x."
- Market orders non-contingent order

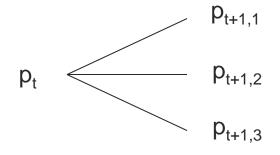
Market Making

Market maker

NYSE: "monopolistic" specialist


(all orders go through him)

NASDAQ: multiple competing "dealers"


O ECNs: (pure electronic limit order book)

- OTC/upstairs mrkt: bilateral relationship
- o Black pools:
 - After various mergers, distinction is less black and white

Event tree

One-period Snapshot

p_{t+1} is random variable

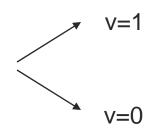
Setting Bid and Ask Prices

1. Market Maker faces only liquidity traders (practice)

- Fundamental stays constant
 - p_t is driven by random liquidity needs of liquidity traders

ask

bid

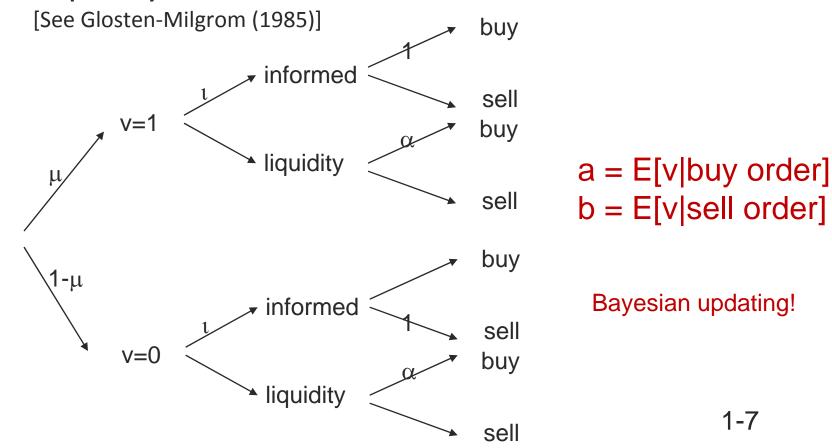


- Fundamental follows random walk
 - $v_{t+1} = v_t + \varepsilon_{t+1}$, where $E[\varepsilon_{t+1}] = 0$
 - Differences:
 - One has to adjust bid and ask price in each period (cancel old limit orders and set new limit orders)
 - Asset volatility
 - What determines bid-ask spread?
 - Monopolistic power of market maker
 (Bertrand competition if there are multiple market makers)
 - Volatility of asset if market makers are risk averse
 - Stochastic process of liquidity traders needs

Setting Bid and Ask Prices

2. Market Maker faces informed traders

- Only informed traders extreme case
 - $\mathbf{v} = 0$ or 1 with equal probability
 - all traders are informed traders (know whether v =0 or 1)



- What is the ask price? What is the bid price? set by uninformed market maker
 - O Suppose ask: $a = \frac{3}{4}$ and bid: $b = \frac{1}{4}$.
 - Does the market make or lose money with a bid ask spread of ½
 - Market Break-Down No Trade!
- Liquidity traders and informed traders [See Glosten-Milgrom (1985)]

Setting Bid and Ask Prices

2. Market maker faces

Liquidity traders and informed traders

Bayesian Updating

Bayes' Rule

$$Pr[x|y] = \frac{Pr[y|x]Pr[x]}{Pr[y]}$$

- Example: a = E[v|buy] = 1*Pr[v=1|buy] + 0*...
 - O Pr [buy | v=1] = $\iota *1 + (1 \iota) \alpha$
 - O Pr [buy | v=0] = $\iota *0 + (1 \iota) \alpha$
 - O Pr [buy]= Pr [buy|v=1] μ + Pr [buy|v=0] (1 - μ)

$$Pr[v = 1|buy] = \frac{Pr[buy|v=1]Pr[v=1]}{Pr[buy]}$$

 $Pr[v = 0|buy] = 1 - Pr[v = 1|buy]$

Noise, noise, noise, ...

- Asymmetric information causes adverse selection
 - Informed traders
 - buy only if asset is undervalued and
 - sell only if asset is overvalued
 - Market maker loses (even with bid ask spread)
 - o noise traders
 - Market makers wins from them (due to bid-ask spread)
- Fellow students might be noise traders ...
 - 1 signal for every 3-4 time of trading (why?)
 - Assuming that others are rational is dangerous: (see e.g. Keynes Beauty contest game)

Profits & Positions in simulations

- Relative profits
 - Market Markers should do well when fundamentals are relatively flat
 - Sim 1, 2, and 3
 - Market takers should do well otherwise
 - Sim 4 (too much gambling on Sim 5)
- Market maker's positions
 - Move against the price ...

■ Where will this head ...

- Only trade after buying and receiving an extreme signal
- No noise traders
- Market makers face more adverse selection and set wider bid-ask spread
- Ultimately, Market Breakdown
 - Nobody bids for market making rights (zero value for privilege)

Example of Market Breakdown

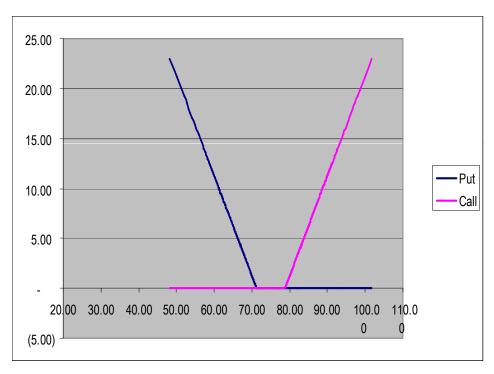
- Risk-neutral competitive market makers
- v is distributed with pdf $f(v) = \frac{2}{(v+1)^3}$ o i.e. cdf is $F(v) = 1 - \frac{1}{(v+1)^2}$ o E[v] = 1, E[v|v > x] = 2x + 1, E[v|v < x] = x/(x+2)
- \blacksquare α = prob. of informed trader
- Noise traders' private valuation has pdf of f(v) (indep. of v).

```
a = E[v|\text{buy order}]
= P(\text{info}) E[v|\text{info buy order}] + P(\text{uninfo}) E[v|\text{uninfo buy order}]
= \alpha E[v|v \ge a] + (1 - \alpha) E[v]
= \alpha (2a + 1) + (1 - \alpha)
```

- Ask price: $a = 1/(1-2\alpha)$, if $\alpha < 1/2$ market breaks down for larger α
 - Homework: Analysis for bid

Hint:
$$b = \frac{-1 + \sqrt{9 - 8\alpha}}{2}$$

Limit order


- Granting an option (selling an option)"pick on me when you want"
 - One has to charge an "option premium"
 - Market making rights are worthless when there are no noise/liquidity traders
 - Lose to informed traders
 - Gain from noise traders

Informed Trading

- Acquiring Information
 - What is the value of information?
- Trading based on Information
 - Trading is limited by
 - Risk-appetite (previous lecture with CARA utility)
 - Price impact
 If I trade more aggressive the market maker will learn my information and adjust the price

Endogenous info acquisition

- Value of signal (conditional on knowing realization)
 - Intermediate signals are worthless
 - Very high (go long) and very low (go short)
 are worth the most.
- Take expectations before knowing signal
- Payoff is very skewed
 only extreme signal
 realizations are valuable

- Value of strangle (put + call) use Black-Scholes
 - More valuable for higher vol.
 (see Excel file)

Price Impact of Informed Trades Strategic Trading: Kyle (1985) model

- asset return $v \sim N(p_0, \Sigma_0)$
- Agents (risk neutral)
 - Insider who knows v and submit market order of size x
 - O Noise trader who submit market orders of exogenous aggregate size $u \sim N(0, \sigma_u^2)$
 - Market maker sets competitive price after observing net order flow X=x+u
- Timing (order of moves)
 - Stage 1: Insider & liquidity traders submit market orders
 - Stage 2: Market Maker sets the execution price
- Repeated trading in dynamic version

■ Kyle (1985) – on one page

Single informed trader

0) Information v := asset's payoff

- 1) Conjecture (pricing rule) $p = \mu + \lambda(x+u)$
- 2) No Updating
- 3) Optimal Demand $\max_{x} E[(v-p)|v]x$ $\max_{x} E[v-\mu-\lambda x|v]x$ FOC: $x=-\frac{\mu}{2\lambda}+\frac{1}{2\lambda}v$ SOC: $\lambda>0$
- 4) Correct Beliefs $\alpha = -\frac{\mu}{2\lambda}, \ \beta = \frac{1}{2\lambda}$

(Competitive) Market Maker

- 0) Information X = x + u batch net order flow
- 1) Conjecture (insider trading rule) $x = \alpha + \beta v$
- **2)** Updating E[v|x+u]
- 3) Price Setting Rule

$$p = E[v|x+u]$$

$$p = E[v] + \frac{Cov[v,x+u]}{Var[x+u]} \{x + u - E[x+w]\}$$

$$p = p_0 + \frac{\beta \Sigma_0}{\beta^2 \Sigma_0 + \sigma_u^2} \{x + u - \alpha + \beta E[v]\}$$

4) Correct Beliefs $\mu = p_0 \text{ Martingale}, \quad \lambda = \frac{\beta \Sigma_0}{\beta^2 \Sigma_0 + \sigma^2}$

Kyle (1985)

Equilibrium:

$$\lambda = \frac{1}{2} \sqrt{\frac{\Sigma_0}{\sigma_u^2}}$$

- Illiquidity
 - decreases with noise trading, σ_{\parallel}^2
 - increases with info-advantage of informed trader, Σ_0

Multi-period version

- Aggressive trading leads to adverse price movement
 - in current trading round
 - In any future trading around (before public announcement)

In sum

- Asymmetric information causes adverse selection
 - Informed traders
 - buy only if asset is undervalued and
 - sell only if asset is overvalued
 - Market maker loses (even with bid ask spread)
 - o noise traders
 - Market makers wins from them (due to bid-ask spread)
- Market breakdown without noise traders
- Value of information
 - is (ex-ante) highest when fundamental volatility is high (since only extreme signals pay off) – strangle analogy