INSTITUTIONAL FINANCE

Lecture 05: Portfolio Choice, CAPM, Black-Litterman

OVERVIEW

- Portfolio Theory in a Mean-Variance world
- Capital Asset Pricing Model (CAPM)
- 3. Estimating Mean and CoVariance matrix
- 4. Black-Litterman Model
 - + Taking a view
 - + Bayesian Updating

EXPECTED RETURNS & VARIANCE

Expected returns (linear)

$$\mu_p := E[r_p] = w_j \mu_j$$
, where each $w_j = \frac{h^j}{\sum_j h^j}$

× Variance

$$\begin{split} \sigma_p^2 := Var[r_p] &= w'Vw = (w_1\,w_2) \left(\begin{array}{ccc} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{array} \right) \left(\begin{array}{c} w_1 \\ w_2 \end{array} \right) \\ &= \left(w_1\sigma_1^2 + w_2\sigma_{21} & w_1\sigma_{12} + w_2\sigma_2^2 \right) \left(\begin{array}{c} w_1 \\ w_2 \end{array} \right) \\ &= w_1^2\sigma_1^2 + w_2^2\sigma_2^2 + 2w_1w_2\sigma_{12} \geq 0 \\ &= since \,\, \sigma_{12} \leq -\sigma_1\sigma_2. \quad \text{recall that correlation} \\ &= coefficient \in \text{[-1,1]} \end{split}$$

ILLUSTRATION OF 2 ASSET CASE

- ***** For certain weights: w_1 and $(1-w_1)$ $\mu_p = w_1 E[r_1] + (1-w_1) E[r_2]$ $\sigma_p^2 = w_1^2 \sigma_1^2 + (1-w_1)^2 \sigma_2^2 + 2 w_1(1-w_1)\sigma_1 \sigma_2 \rho_{1,2}$ (Specify σ_p^2 and one gets weights and μ_p 's)
- \times Special cases [w₁ to obtain certain σ_R]
 - + $\rho_{1,2} = 1 \Rightarrow w_1 = (+/-\sigma_p \sigma_2) / (\sigma_1 \sigma_2)$
 - + $\rho_{1,2} = -1 \Rightarrow w_1 = (+/-\sigma_p + \sigma_2) / (\sigma_1 + \sigma_2)$

2 ASSETS ρ = 1

$$\begin{array}{lll} \sigma_p &=& |w_1\sigma_1+(1-w_1)\sigma_2|\\ \mu_p &=& w_1\mu_1+(1-w_1)\mu_2 \end{array} & \text{Hence,} \quad w_1 = \frac{\pm\sigma_p-\sigma_2}{\sigma_1-\sigma_2}\\ \mu_p &=& \mu_1+\frac{\mu_2-\mu_1}{\sigma_2-\sigma_1} \big(\mbox{\Large S} \ \sigma_p \ \mbox{\Large i} \ \ \sigma_1 \big) \end{array}$$

$$\begin{array}{ll} \mbox{\it E}[\mbox{\it r}_2]\\ \mu_p &=& E[\mbox{\it r}_1] \\ \mbox{\it Lower part with ... is irrelevant}\\ \mu_p &=& E[\mbox{\it r}_1] + \frac{E[\mbox{\it r}_2]-E[\mbox{\it r}_1]}{\sigma_2-\sigma_1} (-\sigma_R-\sigma_1) \end{array}$$

The Efficient Frontier: Two Perfectly Correlated Risky Assets

2 ASSETS ρ = -1

For
$$\rho_{1,2}$$
 = -1:
$$\sigma_p = |w_1\sigma_1 - (1-w_1)\sigma_2| \quad \text{Hence, } w_1 = \frac{\pm\sigma_p + \sigma_2}{\sigma_1 + \sigma_2}$$

$$\mu_p = w_1\mu_1 + (1-w_1)\mu_2$$

$$\mu_{p} = \frac{\sigma_{2}}{\sigma_{1} + \sigma_{2}} \mu_{1} + \frac{\sigma_{1}}{\sigma_{1} + \sigma_{2}} \pm \frac{\mu_{2} - \mu_{1}}{\sigma_{1} + \sigma_{2}} \sigma_{p}$$

$$E[r_{2}]$$

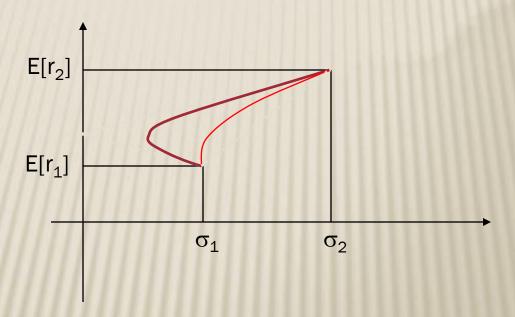
$$slope: \frac{\mu_{2} - \mu_{1}}{\sigma_{1} + \sigma_{2}} \sigma_{p}$$

$$slope: -\frac{\mu_{2} - \mu_{1}}{\sigma_{1} + \sigma_{2}} \sigma_{p}$$

$$\sigma_{1} \qquad \sigma_{2}$$

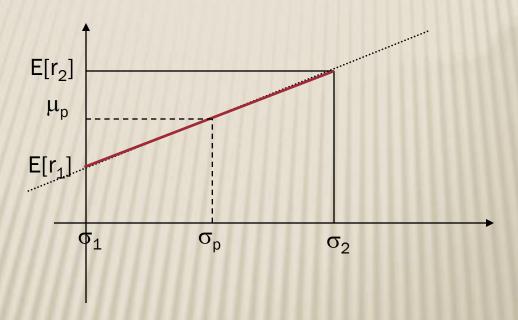
Efficient Frontier: Two Perfectly Negative Correlated Risky Assets

2 ASSETS $-1 < \rho < 1$



Efficient Frontier: Two Imperfectly Correlated Risky Assets

2 ASSETS $\sigma_1 = 0$



The Efficient Frontier: One Risky and One Risk Free Asset

EFFICIENT FRONTIER WITH N RISKY ASSETS

A frontier portfolio is one which displays minimum variance among all feasible portfolios with the same expected portfolio return.
E[r]

$$\min_{w} \frac{1}{2} w^{T} V w$$

$$(\lambda)$$
 s.t. $\mathbf{w}^{\mathrm{T}}\mathbf{e} = \mathbf{E}$

$$(\gamma)$$
 $\mathbf{w}^{\mathrm{T}} \mathbf{1} = \mathbf{1}$

$$\left(\sum_{i=1}^{N} w_i E(\widetilde{r}_i) = E\right)$$

$$\left(\sum_{i=1}^{N} \mathbf{w}_{i} = 1\right)$$

$$\frac{\partial \mathcal{L}}{\partial w} = Vw - \lambda e - \gamma \mathbf{1} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = E - w^T e = 0$$

$$\frac{\partial \mathcal{L}}{\partial \gamma} = \mathbf{1} - w^T \mathbf{1} = 0$$

The first FOC can be written as:

$$Vw_p = \lambda e + \gamma 1$$
 or
 $w_p = \lambda V^{-1}e + \gamma V^{-1}1$
 $e^Tw_p = \lambda(e^TV^{-1}e) + \gamma(e^TV^{-1}1)$

Noting that $e^T w_p = w_p^T e$, using the first foc, the second foc can be written as

$$E[\tilde{r}_p] = e^T w_p = \lambda \underbrace{(e^T V^{-1} e)}_{:=B} + \gamma \underbrace{(e^T V^{-1} 1)}_{=:A}$$

pre-multiplying first foc with 1 (instead of e^T) yields

$$1^{T}w_{p} = w_{p}^{T}1 = \lambda(1^{T}V^{-1}e) + \gamma(1^{T}V^{-1}1) = 1$$

$$1 = \lambda\underbrace{(1^{T}V^{-1}e)}_{=:A} + \gamma\underbrace{(1^{T}V^{-1}1)}_{=:C}$$

Solving both equations for λ and γ

$$\lambda = \frac{CE - A}{D}$$
 and $\gamma = \frac{B - AE}{D}$ where $D = BC - A^2$.

Hence, $W_p = \lambda V^{-1}e + \gamma V^{-1}1$ becomes

$$w_{p} = \frac{CE - A}{D} V^{-1}e + \frac{B - AE}{D} V^{-1}\mathbf{1}$$

$$(\text{vector})$$

$$\lambda \text{ (scalar)} \qquad \gamma \text{ (scalar)}$$

$$= \frac{1}{D} \Big[B \Big(V^{-1} 1 \Big) - A \Big(V^{-1} e \Big) \Big] + \frac{1}{D} \Big[C \Big(V^{-1} e \Big) - A \Big(V^{-1} 1 \Big) \Big] E$$

$$w_p = g + h E$$
 (6.15)

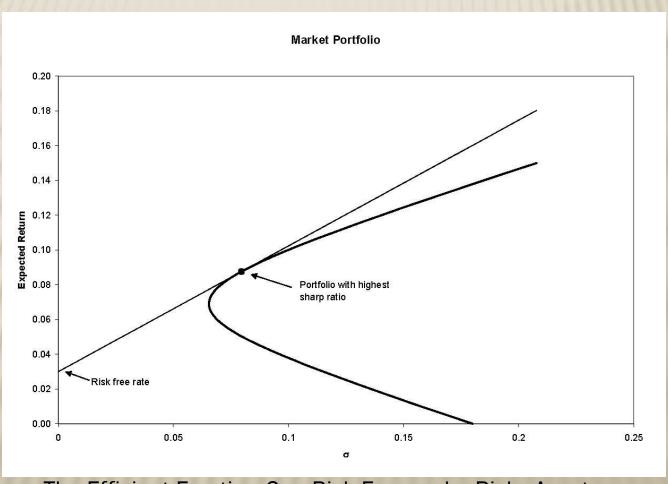
(vector) (vector) (scalar)

linear in expected return E!

If E = 0,
$$w_p = g$$

If E = 1, $w_p = g + h$

Hence, g and g+h are portfolios on the frontier.



The Efficient Frontier: One Risk Free and n Risky Assets

$$\min_{w} \frac{1}{2} w^T V w$$
 s.t. $w^T e + (1 - w^T 1) r_f = E[r_p]$

FOC:
$$w_p = \lambda V^{-1}(e - r_f 1)$$

Multiplying by $(e-r_f \ 1)^{\mathsf{T}}$ and solving for λ yields $\lambda = \frac{E[r_p] - r_f}{(e-r_f \ 1)^T V^{-1} (e-r_f \ 1)}$

$$w_p = \underbrace{V^{-1}(e \ \mathbf{i} \ r_f \mathbf{1})}_{n \times 1} \underbrace{\frac{E[r_p] - r_f}{H^2}}_{\text{where } H = \sqrt{B \ \mathbf{i} \ 2Ar_f + Cr_f^2}}_{\text{is a number}} \ \ \text{is a number}$$

* Result 1: Excess return in frontier excess return

$$Cov[r_q, r_p] = w_q^T V w_p$$

$$= \underbrace{w_q^T(e \mid r_f \mathbf{1})}_{E[r_q] - r_f} \underbrace{\frac{E[r_p] \mid r_f}{H^2}}_{H^2}$$

$$= \underbrace{\frac{(E[r_q] \mid r_f)([E[r_p] \mid r_f)}{H^2}}_{Var[r_p, r_p]} = \underbrace{\frac{(E[r_p] \mid r_f)^2}{H^2}}_{Cov[r_q, r_p]} (E[r_p] - r_f)$$

$$\stackrel{}{=} \underbrace{E[r_q] - r_f}_{E[r_q] - r_f} \underbrace{\frac{(E[r_p] \mid r_f)^2}{H^2}}_{E[r_q] - r_f} (E[r_p] - r_f)$$

$$\stackrel{}{=} \underbrace{\frac{(E[r_q] \mid r_f)^2}{Var[r_p]}}_{E[r_q] - r_f} \underbrace{\frac{(E[r_q] \mid r_f)^2}{Var[r_p]}}_{E[r_q] - r_f} \underbrace{\frac{(E[r_q] \mid r_f)^2}{H^2}}_{E[r_q] - r_f} \underbrace{\frac{(E[r_q] \mid r_f)^2}{H^2}}_$$

Holds for any frontier portfolio p, in particular the market portfolio!

x Result 2: Frontier is linear in (E[r], σ)-space

$$Var[r_p, r_p] = \frac{(E[r_p] \mid r_f)^2}{H^2}$$

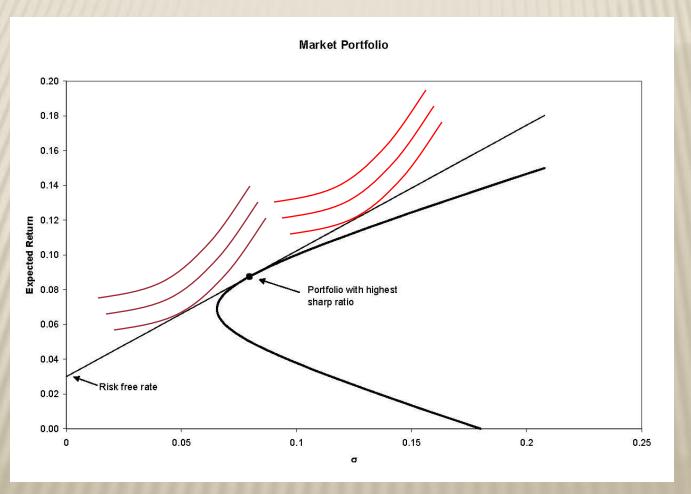
$$E[r_p] = r_f + H\sigma_p$$

$$H=rac{E[r_p]-r_f}{\sigma_p}$$
 where H is the Sharpe ratio

TWO FUND SEPARATION

- Doing it in two steps:
 - + First solve frontier for *n* risky asset
 - + Then solve tangency point
- * Advantage:
 - + Same portfolio of n risky asset for different agents with different risk aversion
 - + Useful for applying equilibrium argument (later)

TWO FUND SEPARATION



Price of Risk = = highest Sharpe ratio

Optimal Portfolios of Two Investors with Different Risk Aversion

MEAN-VARIANCE PREFERENCES

- imes U(μ_p , σ_p) with $\frac{\partial U}{\partial \mu_p} > 0$, $\frac{\partial U}{\partial \sigma_p^2} < 0$
 - + Example: E[W] ; $\frac{\gamma}{2}Var[W]$
- Also in expected utility framework
 - + quadratic utility function (with portfolio return R)

$$\begin{array}{c} \text{U(R)} = \text{a} + \text{b} \, \text{R} + \text{c} \, \text{R}^2 \\ \text{vNM:} \, \text{E[U(R)]} = \text{a} + \text{b} \, \text{E[R]} + \text{c} \, \text{E[R^2]} \\ = \text{a} + \text{b} \, \mu_\text{p} + \text{c} \, \mu_\text{p}^2 + \text{c} \, \sigma_\text{p}^2 \\ = \text{g}(\mu_\text{p}, \sigma_\text{p}) \end{array}$$

- + asset returns normally distributed \Rightarrow R= \sum_{j} w^j r^j normal
 - **x** if U(.) is CARA \Rightarrow certainty equivalent = μ_p $\rho_A/2\sigma^2_p$ (Use moment generating function)

OVERVIEW

- Portfolio Theory in a Mean-Variance world
- Capital Asset Pricing Model (CAPM)
- 3. Estimating Mean and CoVariance matrix
- 4. Black-Litterman Model
 - + Taking a view
 - + Bayesian Updating

2. EQUILIBRIUM LEADS TO CAPM

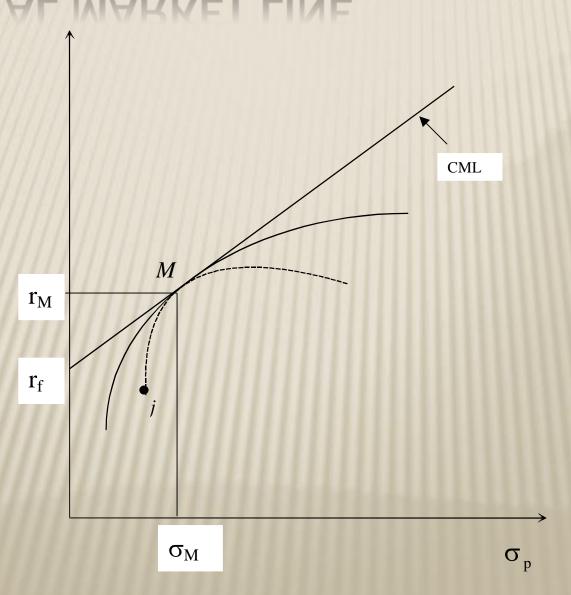
- × Portfolio theory: only analysis of demand
 - + price/returns are taken as given
 - + composition of risky portfolio is same for all investors
- Equilibrium Demand = Supply (market portfolio)
- CAPM allows to derive
 - + equilibrium prices/ returns.
 - + risk-premium

THE CAPM WITH A RISK-FREE BOND

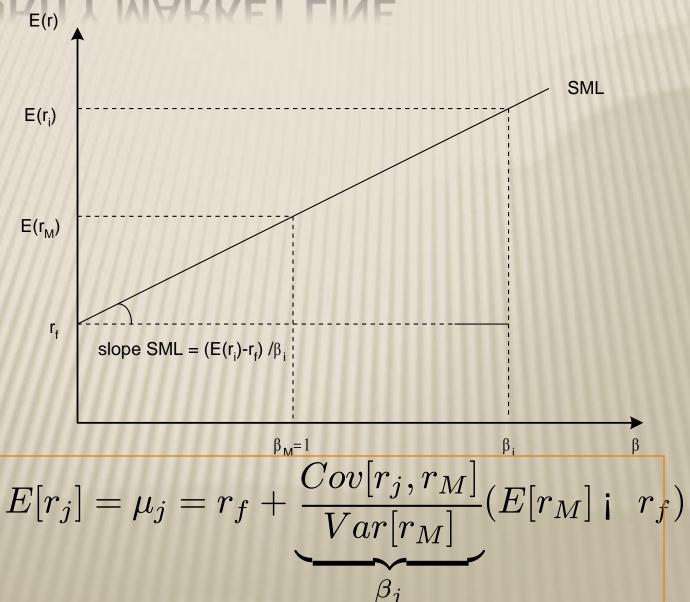
- The market portfolio is efficient since it is on the efficient frontier.
- \star All individual optimal portfolios are located on the half-line originating at point (0, r_f).
- **×** The slope of Capital Market Line (CML): $\frac{E[R_M] R_f}{\sigma_M}$

$$E[R_p] = R_f + \frac{E[R_M] - R_f}{\sigma_M} \sigma_p$$

CAPITAL MARKET LINE



SECURITY MARKET LINE



OVERVIEW

- Portfolio Theory in a Mean-Variance world
- Capital Asset Pricing Model (CAPM)
- 3. Estimating Mean and CoVariance matrix
- 4. Black-Litterman Model
 - + Taking a view
 - + Bayesian Updating

3. ESTIMATING MEAN AND CO-VARIANCE

- Consider returns as stochastic process (e.g. GBM)
- Mean return (drift)
 - + For any partition of [0,T] with N points ($\Delta t = T/N$), N*E[r] = $\sum_{i=1}^{N} \mathbf{r}_{i \wedge t} = \mathbf{p}_{T} \mathbf{p}_{O}$ (in log prices)
 - + Knowing first \mathbf{p}_0 and last price \mathbf{p}_T is sufficient
 - + Estimation is very imprecise!
- × Variance
 - + Var[r]=1/N $\sum_{i=1}^{N} (\mathbf{r}_{i \wedge t} \mathbf{E}[r])^2 \rightarrow \sigma^2$ as N $\rightarrow \infty$
 - + Theory: Intermediate points help to estimate covariance
 - + Real world:
 - x time-varying
 - × Market microstructure noise

3. 1000 ASSETS

- Invert a 1000x1000 matrix
- Estimate 1000 expected returns
- **×** Estimate 1000 variances
- Estimate 1000*1001/2 1000 co-variances

Reduce to fewer factors

... so far we used past data

(and assumed future will behave the same)

OVERVIEW

- Portfolio Theory in a Mean-Variance world
- Capital Asset Pricing Model (CAPM)
- 3. Estimating Mean and CoVariance matrix
- 4. Black-Litterman Model
 - + Taking a view
 - + Bayesian Updating

4. BLACK-LITTERMAN MODEL

- So far we estimated expected returns using historical data.
- We ignored statistical priors:
 - A sector with an unusually high (or low) past return was assumed to earn (on average) the same high (or low) return going forward.
 - We should have attributed some of this past return to luck, and only some to the sector being unusual relative to the population.

EXPECTED RETURNS

- We also ignored economic priors:
 - A sector with a negative past return should not be expected to have negative expected returns going forward.
 - A sector that is highly correlated with another sector should probably have similar expected returns.
 - A "good deal" in the past (i.e. good realized return relative to risk) should not persist if everyone is applying mean-variance optimization.
- What is a good starting point from which to update based on our analysis?

- Bayes' Rule allows one to update distribution after observing some signal/data
 - + from prior to posterior distribution
- Recall if all variables are normally distributed with can use the projection theorem
 - + E.g. prior: $\theta = N(\mu, \tau^2)$; signal/view $x = \theta + \epsilon$, where $\epsilon = N(0, \sigma^2)$
 - Weights depend on relative precision/confidence of prior vs. signal/view (on portfolio)

$$E(\theta \mid x) = \left(\frac{\sigma^2}{\tau^2 + \sigma^2}\right) \mu + \left(\frac{\tau^2}{\tau^2 + \sigma^2}\right) x$$

BLACK LITTERMAN PRIOR

- All expected returns are in proportion to their risk.
 - \rightarrow Expected returns are distributed **around** β_i (E[R_m] R_f)

PROPERTIES OF A CAPM PRIOR

- All expected returns are in proportion to their risk.
 - \rightarrow Expected returns are distributed **around** β_i (E[R_m] R_f)
- Is this a good starting point?
- We can still use optimization
- We don't throw out data (e.g. still can estimate covariance structure accurately)
- It is internally consistent if we don't have an edge, the prior will lead us to holding the market

BLACK-LITTERMAN

- The Black-Litterman model simply takes the starting point that there are no good deals...
- And then adjusts returns according to any "views" that the investor has from:
 - Seeing abnormal returns in the past that expected to persist (or reverse)
 - Fundamental analysis
 - Alphas of active trading strategies
 - "views" concern portfolios and not necessarily individual assets

BLACK LITTERMAN PRIORS - MORE SPECIFIC

See He and Litterman

Suppose returns of N-assets (in vector/matrix notation)

$$r \gg N(\mu, \Sigma)$$

× Equilibrium risk premium,

$$\Pi = \gamma \Sigma w^{eq}$$

where γ risk aversion, \mathbf{w}^{eq} market portfolio weights

Bayesian prior (with imprecision)

$$\mu = \Pi + \varepsilon_0$$
, where $\varepsilon_0 \gg N(0, \tau \Sigma)$

VIEWS

- × View on a single asset affects many weights
- "Portfolios views"
 - + views on K portfolios
 - + P: K x N-matrix with portfolio weights
 - + Q: K-vector of expected returns on these portfolios
- × Investor's views

$$P\mu = Q + \varepsilon_v$$
, where $\varepsilon_v \gg N(0, \square)$

- $oldsymbol{+} \Omega$ is a off-diagonal values are all zero
- + $arepsilon_v$ and $arepsilon_0$ are all orthogonal

BAYESIAN POSTERIOR - REWRITTEN

$$E(\theta \mid x) = \left(\frac{\sigma^2}{\tau^2 + \sigma^2}\right) \mu + \left(\frac{\tau^2}{\tau^2 + \sigma^2}\right) x$$

$$= \left(\frac{1/\tau^2}{1/\tau^2 + 1/\sigma^2}\right) \mu + \left(\frac{1/\sigma^2}{1/\tau^2 + 1/\sigma^2}\right) x$$

$$= \frac{1}{1/\tau^2 + 1/\sigma^2} \left(1/\tau^2 \cdot \mu + 1/\sigma^2 \cdot x\right)$$

- Black Litterman updates returns to reflect views using Bayes' Rule.
- The updating formula is just the multi-variate (matrix) version of

$$E(\theta \mid x) = \frac{1}{1/\tau^2 + 1/\sigma^2} \left(1/\tau^2 \cdot \mu + 1/\sigma^2 \cdot x \right)$$

$$E[R \mid Q] = \left[(\tau \Sigma)^{-1} + P^{T} \Omega^{-1} P \right]^{-1} \left[(\tau \Sigma)^{-1} \Pi + P^{T} \Omega^{-1} Q \right]$$

$$E(\theta \mid x) = \frac{1}{1/\tau^2 + 1/\sigma^2} \left(1/\tau^2 \cdot \mu + 1/\sigma^2 \cdot x\right)$$

$$E[R \mid Q] = \left[(\tau \Sigma)^{-1} + P^T \Omega^{-1} P\right]^{-1} \left[(\tau \Sigma)^{-1} \Pi + P^T \Omega^{-1} Q\right]$$
Scaling term - Total precision

$$E(\theta \mid x) = \frac{1}{1/\tau^2 + 1/\sigma^2} \left(1/\tau^2 \cdot \mu + 1/\sigma^2 \cdot x \right)$$

$$E[R \mid Q] = \left[(\tau \Sigma)^{-1} + P^T \Omega^{-1} P \right]^{-1} \left[(\tau \Sigma)^{-1} + P^T \Omega^{-1} Q \right]$$
CAPM Prior expected returns

BAYESIAN UPDATING IN BLACK

LITTERMAN

$$E(\theta \mid x) = \frac{1}{1/\tau^2 + 1/\sigma^2} \left(\frac{1/\tau^2}{1/\tau^2} \cdot \mu + 1/\sigma^2 \cdot x \right)$$

$$E[R \mid Q] = \left[(\tau \Sigma)^{-1} + P^T \Omega^{-1} P \right]^{-1} \left[(\tau \Sigma)^{-1} \Pi + P^T \Omega^{-1} Q \right]$$

Weighted by precision of CAPM Prior

$$E(\theta \mid x) = \frac{1}{1/\tau^2 + 1/\sigma^2} \left(1/\tau^2 \cdot \mu + 1/\sigma^2 \right)$$

$$E[R \mid Q] = \left[(\tau \Sigma)^{-1} + P^T \Omega^{-1} P \right]^{-1} \left[(\tau \Sigma)^{-1} \Pi + P^T \Omega^{-1} Q \right]$$

Vector of expected return views

$$E(\theta \mid x) = \frac{1}{1/\tau^2 + 1/\sigma^2} \left(1/\tau^2 \cdot \mu + \frac{1/\sigma^2}{1/\sigma^2} \cdot x \right)$$

$$E[R \mid Q] = \left[(\tau \Sigma)^{-1} + P^T \Omega^{-1} P \right]^{-1} \left[(\tau \Sigma)^{-1} \Pi + \frac{P^T \Omega^{-1}}{1/\sigma^2} Q \right]$$
Weighted by precision of views

ADVANTAGES OF BLACK-LITTERMAN

- Returns are only adjusted partially towards the investor's views using Bayesian updating
 - Recognizes that views may be due to estimation error
 - + Only highly precise/confident views are weighted heavily
- Returns are modified in a way that is consistent with economic priors
 - + highly correlated sectors have returns modified in the same way
- Returns can be modified to reflect absolute or relative views
- The resulting weights are reasonable and do not load up on estimation error

OVERVIEW

- Portfolio Theory in a Mean-Variance world
- Capital Asset Pricing Model (CAPM)
- 3. Estimating Mean and CoVariance matrix
- 4. Black-Litterman Model
 - + Taking a view
 - + Bayesian Updating