
CoVaR – Macroprudential regulatoin

ECO 467/FIN 567 - LECTURE 11

Markus K. Brunnermeier (joint with Tobias Adrian)

Current regulation

- 2. Procyclical capital requirements
 - VaR and ratings are countercyclical
- 3. Focus on asset side of the balance sheet
- 4. Differential capital treatment across industries.

Challenges

- Focus on externalities systemic risk contribution
 - Internalize externalities (... just like pollution)
 - Fire-code analogy: fire-protection wall
 - CoVaRⁱ = VaR^{system}|i in distress
- 2. Countercyclical regulation
 - Regulate based on characteristics that give rise to future systemic risk contributions
- 3. Incorporate funding structure
 - asset-liability interaction, debt maturity, liquidity risk
- 4. Objective regulatory criteria across financial institutions
 - Banks, broker-dealers, insurance companies, hedge funds,...
- Bankruptcy procedure, living will, (see Geneva Report)

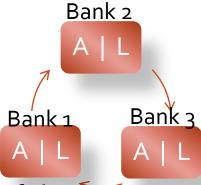
1. Externalities

"stability is a public good"

- Fire-sale externality
 - Maturity mismatch + Leverage
 - Raise new funds
 - Sell off assets (at fire sale prices)

FUNDING LIQUIDITY

MARKET LIQUIDITY

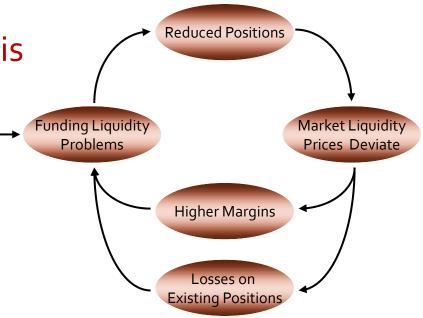

(rollover risk)

Fire-sales depress price also for others

- 2. Hoarding externality
 - micro-prudent response: can be individually rational, but
 - not macro-prudent
- 3. Runs dynamic co-opetition
- 4. Network Externality
 - counterparty credit risk due to interlocking of claims
 - Hiding own's commitment uncertainty for counterparties

Response to current regulation: "hang on to others and take positions that drag others down when you are in trouble" (maximize bailout probability)

become big, interconnected, hold similar positions



2. Procyclicality: Bubbles & Liquidity spirals

Initial Losses

e.g. credit

- Risk builds up during (credit) bubble
 - Why did nobody delever/act against it earlier?
 - Ride bubble: "dance as long as the music plays" Abreu-Brunnermeier (2003)
 - Lack of coordination/synchronization when to go against the bubble
- ... and materializes in a crisis
 - Loss spiral
 - same leverage
 - mark-to-market
 - Margin/haircut spiral
 - delever!
 - mark-to-model

Brunnermeier-Pedersen (2009)

How to measure externalities: CoVaR

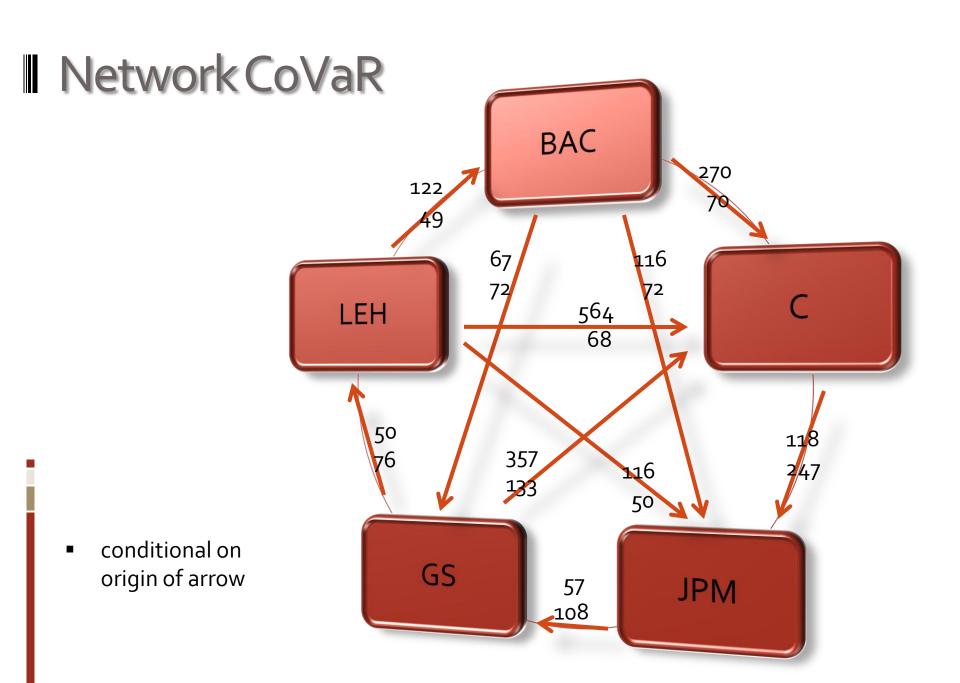
VaR_aⁱ is implicitly defined as quantile

$$\Pr(X^i \le VaR_q^i) = q$$

CoVaR_q^{j|i} is the VaR conditional on institute i (index) is in distress (at it's VaR level)

$$\Pr(X^{j} \le CoVaR_{q}^{j|i} \mid X^{i} = VaR_{q}^{i}) = q$$

q-prob. event


Various conditionings? (direction matters!)

Contribution \(\Delta \coVaR \)

- Q1: Which institutions contribute (in a non-causal sense)
- VaR^{system} institution i in distress
- Exposure ΔCoVaR
 - Q2: Which institutions are most exposed if there is a systemic crisis?
 - VaRⁱ | system in distress
- □ Network ∆CoVaR
 - VaR of institution *j* conditional on *i*

in non-causal sense!

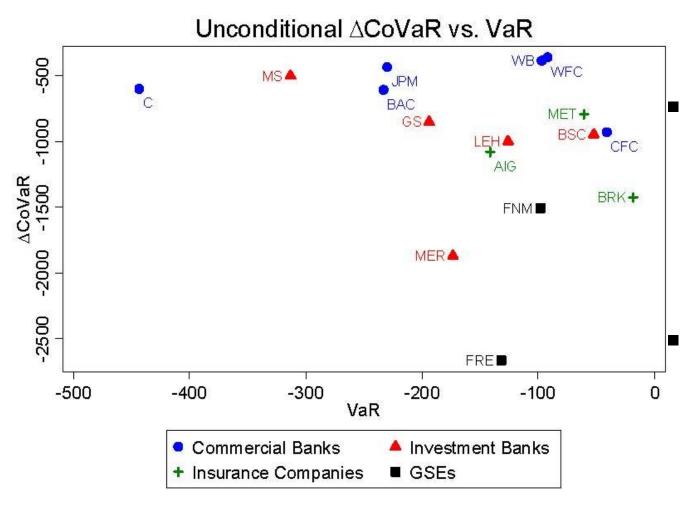
Quantile Regressions: A Refresher

OLS Regression: min sum of squared residuals

$$\beta^{OLS} = \arg\min_{\beta} \Sigma_{t} \quad y_{t} - \alpha - \beta x_{t}^{2}$$

- Predicted value: $E[y | x] = \alpha + \beta x$
- Quantile Regression: min weighted absolute values

$$\beta^{q} = \underset{\beta}{\operatorname{arg\,min}} \Sigma_{t} \begin{cases} q | y_{t} - \alpha - \beta x_{t}| & \text{if} \quad y_{t} - \alpha - \beta x_{t} \geq 0 \\ 1 - q | y_{t} - \alpha - \beta x_{t}| & \text{if} \quad y_{t} - \alpha - \beta x_{t} < 0 \end{cases}$$


• Predicted value:
$$VaR_q \mid x = F_y^{-1}(q \mid x) = \alpha_q + \beta_q x$$

Who should be regulated?

group	examples	macro-prudential	micro-prudential
"individually systemic"	International banks (national champions)	Yes	Yes
"systemic as part of a herd"	Leveraged hedge funds	Yes	No
non-systemic large	Pension funds	No	Yes
"tinies"	unlevered	No	No

- Micro: risk in isolation
- Macro: systemic risk contribution measure, covaR
- Clone property: split i in n identical clones, CoVaRi = n CoVaRc

Δ CoVaR and VaR unrelated in cross-section

VaR does not capture systemic risk contribution Δ CoVaR_{contri}

Data up to 2007/12

How to regulate?

Size limits:

- Problem 1: "too big to fail" # "too systemic to fail"
- split "individually systemic" institution in 10 clones
 - (clones perfectly comove with each other)

"systemic as part of a herd"

Lessons:

- Regulation should provide incentive to be heterogeneous
- Spillover risk measure should satisfy "clone property"
- Problem 2:
 - one-dimensional threshold "bunching" below threshold
- Lesson: Smooth transition -- "have to pay" in leverage ...
- Mix of size, leverage, maturity mismatch, connectedness, risk pockets, crowded trades, business model, ... but what weights?

CoVaR method

- Find optimal mix/trade-offs between size, leverage,, across institutions objective weights
- 2. Countercyclical implementation

forward looking weights

Method:

- Predict ΔCoVaR to frequently observed characteristics
 - Size, maturity mismatch, leverage,
 - special data only bank supervisors have (e.g. crowdedness, interconnectedness measures)
- Step-procedure:
 - Form portfolios
 - Time-varying CoVaR (linked to lagged macro variables: VIX, Repo spread, term spread, credit spread, market return, housing)
 - 3. Predict future CoVaR with size, leverage,...

Step 1: Portfolio sorted on Characteristics

- Individual financial institution have changed the nature of their business over time
- Institutional characteristics matter
- Form quintile portfolios on
 - Size
 - Leverage
 - Maturity Mismatch
 - Book-to- Market
 - Equity volatility... each quarter, according to previous quarter

for each of the following 4 "industries"

 Banks, Security broker-dealers, Insurance companies, Real Estate companies.

Step 3: CoVaR prediction: 1% (quarterly)

Variable	2 Years	1 Year	1 Quarter
$\Delta CoVaR^i$ (lagged)	0.623***	0.706***	0.876***
VaR^i (lagged)	-0.044***	-0.033***	-0.016***
Leverage (lagged)	-0.093***	-0.083***	-0.049***
Maturity mismatch (lagged)	-2.799***	-1.948***	-1.146***
Relative size (lagged)	-0.731	-1.002***	-0.520**
Market-to-book (lagged)	-0.002*	-0.001**	-0.001
Foreign dummy	0.121	0.035	0.632
Commercial Bank FE	3.051***	2.322***	1.290***
Investment Bank FE	-1.103***	-0.732**	-0.109
Insurance Company FE	-2.562***	-2.411***	-0.961***
Constant	-10.168***	-7.568***	-3.325***
Observations	8102	8497	8798
R^2	0.597	0.650	0.800

Result 1: Size-Leverage tradeoff

- Suppose
 - 8 % microprudential capital requirement = leverage < 12.5 : 1</p>
 - Focus on 1% CoVaR, 1 year in the future
- Coefficient on size is -1.002, on leverage -0.083
- An increase in size, say from 1% to 21 % market share (measured in total assets) requires
- Decrease in leverage by (1.002/0.83)*(21%-1%)= 12*20%=2.4 to 10.1 or increase in capital requirements from 8% to roughly 10%

Result 2: MMM-Leverage tradeoff

- Coefficient on MMM is -1.948, on leverage -0.083
- An increase in MMM (=short-term debt to total assets), say from 20% to 30% requires
- Decrease in leverage by (1.948/0.83)*(0.1) = 2.3469 to 10.2 or increase in capital requirements from 8% to 9.85%

Results based on US data

- Suppose
 - 8 % microprudential capital requirement = leverage < 12.5 : 1</p>
 - Focus on 1% CoVaR, 1 year in the future
- Size-leverage tradeoff
 - Small bank with 1% market share has 8% capital requirement
 - Large bank with 21% market share has 10% capital requirement
- Maturity mismatch-leverage tradeoff
 - Bank with 20% MMM has 8 % capital requirement
 - Bank with 30% MMM has 9.85% capital requirement,

where MMM=short-term debt to total assets

Predicting with market variables

COEFFICIENT	2 Years	1 Year	1 Quarter
A C 1/ D (1 1)	0.00***	0 70***	0.04***
$\Delta \textit{CoVaR}$ (lagged)	0.60***	0.79***	0.94***
VaR (lagged)	-1.84	0.05	-0.08
CDS beta (lagged)	-1,727**	787.92	95.37
CDS (lagged change)	1,320	-2,211	-40.26
Implied Vol beta (lagged)	-8.30	-590.28**	-85.78
Implied Vol (lagged change)	-144.60	111.02	234.56***
Constant	-335.30	-147.72	-114.07*
Observations	114	154	184
R-squared	0.36	0.57	0.77

¹⁾ beta w.r.t. first principal component on changes in CDS spreads within quarter

2) panel regression with FE – (no findings with FE+TE)

Countercyclical Regulation

- When market is relaxed
 Strict Laddered Response
 - Step 1: supervision enhanced
 - Step 2: forbidden to pay out dividends
 - See connection to debt-overhang problem)
 - Step 3: No Bonus for CEOs
 - Step 4: Recapitalization within two months + debt/equity swap
- When market is strict
 Relax regulatory requirement

Macro-prudential instruments

- Lean against credit bubbles/buildup of risk
 - + capture externalities
 - Time-varying capital/liquidity requirements Loan-to-Value
 - Dynamic provisioning
 - Pigouvian tax/private insurance scheme
 - Lending criteria
 - Communication policy warnings of risk buildup
 - Coordinate investors to go against a bubble
 - use financial stability reports.
 - Interest rate policy
 - SIV financing would have been much less attractive

Financial versus monetary stability

- When there is a trade-off?
 - Times of "great moderation":
 - Inflation is (seems to be) contained
 - Credit and asset price expansion "credit bubble"
 - Build-up of risk, which will only materialize later
 - After burst,
 - deflationary pressure
 - monetary transmission mechanism can be impaired
 - bailouts + government deficits (potentially leading to long-run inflation?)
 - Should interest rate be increased
 - Price stability (inflation targeting)
 No
 - Financial stability

 Yes
- New rationale for modified monetary aggregates
 - Was the ECB ahead of the Fed?
 - Modify monetary aggregates to reflect new rationale

Conclusion

- Macro-prudential regulation
 - Focus on externalities
 - Measure for systemic risk is needed, e.g. CoVaR
- Countercyclical regulation
 - Find variables that *predict* average future CoVaR
 - Forward-looking measures, spreads, ...
- CoVaR method determines "right" tradeoff across
 - Size, leverage, maturity mismatch, investment vs.
 commercial bank, interdependence measure, ...