

Lecture 06: Factor Pricing

Prof. Markus K. Brunnermeier

Overview

- Theory of Factor Pricing (APT)
 - ➤ Merits of Factor Pricing
 - Exact Factor Pricing and Factor Pricing Errors
 - ➤ Factor Structure and Pricing Error Bounds
 - ➤ Single Factor and Beta Pricing (and CAPM)
 - ➤ (Factor) Mimicking Portfolios
 - ➤ Unobserved Factor Models
 - ➤ Multi-period outlook
- Empirical Factor Pricing Models
 - ➤ Arbitrage Pricing Theory (APT) Factors
 - ➤ The Fama-French Factor Model + Momentum
 - ➤ Factor Models from the Street
 - Salomon Smith Barney's and Morgan Stanley's Model

The Merits of Factor Models

- Without any structure one has to estimate
 - \triangleright J expected returns E[R^j] (for each asset j)
 - > J standard deviations
 - \rightarrow J(J-1)/2 co-variances
- Assume that the correlation between any two assets is explained by systematic components/factors, one can restrict attention to only K (non-diversifiable) factors
 - ➤ Advantages: Drastically reduces number of input variables
 - Models expected returns (priced risk)
 - Allows to estimate systematic risk

(even if it is not priced, i.e. uncorrelated with SDF)

- Analysts can specialize along factors
- ➤ Drawbacks: Purely statistical model (no theory)

(does not explain why factor deserves compensation: risk vs mispricing)

relies on past data and assumes stationarity

Factor Pricing Setup ...

- K factors f₁, f₂, ..., f_K
 - $\geq E[f_k]=0$
 - \triangleright K is small relative to dimension of \mathcal{M}
 - \triangleright f_k are not necessarily in \mathcal{M}
- \mathcal{F} space spanned by f_1, \dots, f_K , e
- in payoffs

$$x_j = E(x_j)\mathbf{1} + \sum_{k=1}^{K} b_{jk}f_k + \delta_j,$$

with $\delta_j \perp \mathcal{F}$, and in particular $E[\delta_j] = 0$.

 \triangleright b_{i,k} factor loading of payoff x_i

...Factor Pricing Setup

• in returns

$$r_j = E[r_j] + \sum_{k=1}^{K} \beta_{jk} f_k + \epsilon_j,$$
 (1)

with $\beta_{jk}=\frac{b_{jk}}{p_j},$ the factor loading of return $r_j,$ and $\epsilon_j=\frac{\delta_j}{p_j}.$

- Remarks:
 - \triangleright One can always choose orthogonal factors $Cov[f_k, f_{k'}]=0$
 - Factors can be observable or unobservable

09:55 Lecture 06 Factor Pricing Slide 06-5

Factor Structure

• Definition of "factor structure:"

$$r_j = E[r_j] + \sum_{k=1}^K \beta_{jk} f_k + \epsilon_j \ (1), \ \text{where}$$

$$\text{cov}(\epsilon_j, \epsilon_i) = 0 \ \text{if} \ i \neq j, \ E[\epsilon_j] = 0 \ \text{and}$$

$$\text{cov}(\epsilon_j, f_k) = 0 \ \text{for each} \ (j, k).$$

• ⇒ risk can be split in *systematic* risk and *idiosyncratic* (*diversifiable*) risk

09:55 Lecture 06 Factor Pricing Slide 06-6

Exact vs. Approximate Factor Pricing

• Multiplying (1) by k_q and taking expectations $1 = E[r_j]E[k_q] + \sum_{k=1}^K \beta_{jk}E[k_qf_k] + E[k_q\epsilon_j].$

Rearranging

$$E[r_j] = \underbrace{\frac{1}{E[k_q]}}_{=:\gamma_0} + \sum_{k=1}^K \beta_{jk} \underbrace{\frac{-E[k_q f_k]}{E[k_q]}}_{=:\gamma_k} \underbrace{\frac{E[k_q \epsilon_j]}{E[k_q]}}_{=:\psi_j[\text{error}]}$$

• Exact factor pricing:

 \triangleright error: $\psi_i = 0$ (i.e. ε_i s orthogonal to k_q)

$$ightharpoonup$$
 e.g. if $k_q \in \mathcal{F}$

Bound on Factor Pricing Error...

- Recall error $\psi_j = -\frac{E[k_q \epsilon_j]}{E[k_q]}$
 - \triangleright Note, if \exists risk-free asset and all $f_k \in \mathcal{M}$, then $\psi_j = -\bar{r}q(\epsilon_j)$.
- If k_q ∈ F, then factor pricing is exact
 If k_q ∉ F, then k_q = k_q^F + η, with η ⊥ F, E[k_qε_j] = E[ηε_j].
 - \triangleright Let's make use of the Cauchy-Schwarz inequality (which holds for any two random variables z_1 and z_2)

$$|E[z_1 z_2]| \le \sqrt{E[z_1^2]} \sqrt{E[z_2^2]}.$$

$$|E[\eta \epsilon_j]| \le \sqrt{E[\eta^2]} \sqrt{E[\epsilon_j^2]} = \sqrt{E[(k_q - k_q^{\mathcal{F}})^2]} \sigma(\epsilon_j).$$

> Error-bound

$$|\psi_j| \leq \frac{1}{E[k_q]} \sigma(\epsilon_j) \sqrt{E[(k_q - k_q^{\mathcal{F}})^2]}.$$

09:55 Lecture 06 Slide 06-8 **Factor Pricing**

Error-Bound if Factor Structure Holds

- Factor structure ⇒ split idiosyncratic from systematic risk
- \Rightarrow all idiosyncratic risk ε_j are linearly independent and span space orthogonal to \mathcal{F} . Hence, $\eta = \sum_j^J a_j \epsilon_j$
- Note $E[k_q \epsilon_j] = E[\eta \epsilon_j] = a_j E[\epsilon_j^2] = a_j \sigma^2(\epsilon_j^2)$
- Error $\psi_j = -\frac{E[k_q \epsilon_j]}{E[k_q]} = -\frac{1}{E[k_q]} a_j \sigma^2(\epsilon_j)$
- Pythagorean Thm: If $\{z_1, ..., z_n\}$ is orthogonal system in Hilbert space, then $||\sum_{i=1}^n z_i||^2 = \sum_{i=1}^n ||z_i||^2$
 - > Follows from def. of inner product and orthogonality

Error-Bound if Factor Structure Holds

Applying Pythagorean Thm to $\eta = \sum_{j}^{J} a_{j} \epsilon_{j}$ implies $\sum_{j}^{J} a_{j}^{2} E[\epsilon_{j}^{2}] = ||\eta||^{2}$ $\sum_{j}^{J} a_{j}^{2} \sigma^{2}(\epsilon_{j}) = ||k_{q} - k_{q}^{\mathcal{F}}||^{2}$ Multiply by $(1/E[k_{q}]^{2})\max_{i}\{\sigma^{2}(\epsilon_{j})\}$ and making use of $\sigma^{2}(\epsilon_{j}) \leq \max_{j}\{\sigma^{2}(\epsilon_{j})\}$

$$\sum_{j}^{J} \psi_{j}^{2} \leq \frac{1}{E[k_{q}]^{2}} E[(k_{q} - k_{q}^{\mathcal{F}})^{2}] max_{j} \{\sigma^{2}(\epsilon_{j})\}.$$

RHS is constant for constant max[$\sigma^2(\epsilon_i)$].

- ⇒ For large J, most securities must have small pricing error
- Intuition for Approximate Factor Pricing: Idiosyncratic risk can be diversified away

One Factor Beta Model...

- Let r be a risky frontier return and set f = r E[r] (i.e. f has zero mean)
 - ightharpoonup q(f) = q(r) q(E[r])
- Risk free asset exists with gross return of \bar{r}

$$> q(f) = 1 - E[r]/\overline{r}$$

- f and r span ${\mathcal E}$ and hence $k_q \in {\mathcal F}$
 - \Rightarrow Exact Factor Pricing

...One Factor Beta Model

• Recall
$$E[r_j] = \underbrace{\frac{1}{E[k_q]}}_{=:\gamma_0 = \bar{r}} + \sum_{k=1}^K \beta_{jk} \underbrace{\frac{-E[k_q f_k]}{E[k_q]}}_{=:\gamma_k} \underbrace{\frac{-E[k_q \epsilon_j]}{E[k_q]}}_{=:\psi_j = 0}$$

- $ightharpoonup E[r_i] = \overline{r} \beta_i \overline{r} q(f)$
- - $\triangleright \beta_i = \text{Cov}[r_i, f] / \text{Var}[f] = \text{Cov}[r_i, r] / \text{Var}[r]$

• If $r_m \in \mathcal{E}$ then CAPM

Mimicking Portfolios...

- Regress on factor directly or on portfolio that mimics factor
 - \triangleright Theoretical justification: project factor on \mathcal{M}
 - ➤ Advantage: portfolios have smaller measurement error
- Suppose portfolio contains shares $\alpha_1, ..., \alpha_J$ with $\sum_j^J \alpha_j = 1$.
- Sensitivity of portfolio w.r.t. to factor f_k is $\gamma_k = \sum_j \alpha_j \beta_{jk}$
- Idiosyncratic risk of portfolio is $v = \sum_{j} \alpha \epsilon_{j}$
 - $ightharpoonup \sigma^2(v) = \sum_i \alpha^2 \sigma(\epsilon_i)$
 - > diversification

...Mimicking Portfolios

- Portfolio is *only* sensitive to factor k_0 (and idiosyncratic risks) if for each $k \neq k_0$ $\gamma_k = \sum \alpha_j$ $\beta_{jk} = 0$, and $\gamma_{k0} = \sum \alpha_j$ $\beta_{jk0} \neq 0$.
- The dimension of the space of portfolios sensitive to a particular factor is J-(K-1).
- A portfolio mimics factor k_0 if it is the portfolio with smallest idiosyncratic risk among portfolios that are sensitive only to k_0 .

Observable vs. Unobservable Factors...

- Observable factors: GDP, inflation etc.
- Unobservable factors:
 - Let data determine "abstract" factors
 - ➤ Mimic these factors with "mimicking portfolios"
 - > Can always choose factors such that
 - factors are orthogonal, $Cov[f_k, f_{k'}]=0$ for all $k \neq k'$
 - Factors satisfy "factor structure" (systemic & idiosyncratic risk)
 - Normalize variance of each factor to ONE
 - ⇒ pins down factor sensitivity (but not sign, one can always change sign of factor)

09:55 Lecture 06 Factor Pricing Slide 06-15

...Unobservable Factors...

- Empirical content of factors
 - $\text{Cov}[\mathbf{r}_i, \mathbf{r}_j] = \sum_k \beta_{ik} \beta_{jk} \sigma^2(\mathbf{f}_k)$
 - $ightharpoonup \sigma^2(r_j) = \sum_k \beta_{jk} \beta_{jk} \sigma^2(f_k) + \sigma^2(\epsilon_j)$
 - $\triangleright \sigma(f_k)=1$ for k=1,...,K. (normalization)
 - ➤ In matrix notation
 - $Cov[r,r'] = \sum_{k} \beta_{k}' \beta_{k} \sigma^{2}(f_{k}) + D,$
 - where $\beta_k = (\beta_{1k}, ..., \beta_{Jk})$.
 - $\Omega = B B' + D$,
 - where $B_{jk}=\beta_{jk}$, and D diagonal.
 - For PRINCIPAL COMPONENT ANALYSIS assume D=0 (if D contains the same value along the diagonal it does affect eigenvalues but not eigenvectors – which we are after)

...Unobservable Factors...

- For any symmetric JxJ matrix A (like BB'), which is semipositive definite, i.e. $y'Ay \ge 0$, there exist numbers $\lambda_1 \ge \lambda_2$ $\ge ... \ge lambda_1 \ge 0$ and non-zero vectors $y_1, ..., y_1$ such that
 - \triangleright y_j is an eigenvector of A assoc. w/ eigenvalue λ_j , that is A y_j = λ_j y_j
 - $\sum_{j}^{J} y_{j}^{i} y_{j}^{i} = 0 \text{ for } j \neq j$
 - $\succ \sum_{j}^{J} y_{j}^{i} y_{j}^{i} = 1$
 - \triangleright rank (A) = number of non-zero λ 's
 - \triangleright The y_i 's are unique (except for sign) if the λ_i 's are distinct
- Let Y be the matrix with columns $(y_1,...,y_J)$, and let Λ the diagonal matrix with entries λ_i then

$$A = Y\sqrt{\Lambda}\sqrt{\Lambda}Y'$$

... Unobservable Factors

- If K-factor model is true, BB' is a symmetric positive semi-definite matrix of rank \$K.\$
 - Exactly K non-zero eigenvalues $\lambda_1, ..., \lambda_k$ and associated eigenvectors $y_1, ..., y_K$
 - $ightharpoonup Y_K$ the matrix with columns given by $y_1, ..., y_K$ Λ_K the diagonal matrix with entries λ_i , j=1,...,K.
 - $BB' = Y_K \sqrt{\Lambda_K} \sqrt{\Lambda_K} Y_K'.$ Hence, $r_j = \sum_{k=1}^K (Y_K \sqrt{\Lambda_K})_{jk} f_k + \epsilon_j$
- Factors are not identified but sensitivities are (except for sign.)
- In practice choose K so that λ_k is small for k>K.

Why more than ONE mimicking portfolio?

- Mimic (un)observable factors with portfolios [Projection of factor on asset span]
- Isn't a *single* portfolio which mimics pricing kernel sufficient ⇒ ONE factor
- So why multiple factors?
 - Not all assets are included (real estate, human capital ...)
 - ➤ Other factors capture dynamic effects
 [since e.g. conditional ≠ unconditional. CAPM]
 (more later to this topic)

Overview

- Theory of Factor Pricing (APT)
 - ➤ Merits of Factor Pricing
 - ➤ Exact Factor Pricing and Factor Pricing Errors
 - ➤ Factor Structure and Pricing Error Bounds
 - ➤ Single Factor and Beta Pricing (and CAPM)
 - ➤ (Factor) Mimicking Portfolios
 - ➤ Unobserved Factor Models
 - ➤ Multi-period outlook
- Empirical Factor Pricing Models
 - ➤ Arbitrage Pricing Theory (APT) Factors
 - ➤ The Fama-French Factor Model + Momentum
 - ➤ Factor Models from the Street
 - Salomon Smith Barney's and Morgan Stanley's Model

APT Factors of Chen, Roll and Ross (1986)

- Industrial production (reflects changes in cash flow expectations)
- 2. Yield spread btw high risk and low risk corporate bonds (reflects changes in risk preferences)
- 3. Difference between short- and long-term interest rate (reflects shifts in time preferences)
- 4. Unanticipated inflation
- 5. Expected inflation (less important)

Note: The factors replicate market portfolio.

09:55 Lecture 06 Factor Pricing Slide 06-21

Fama-MacBeth 2 Stage Method

• Stage 1: Use *time series* data to obtain estimates for each individual stock's β^j

$$R_t^j - R^f = \alpha + \beta^j (R_t^m - R_t^f) + \epsilon_t^j$$

(e.g. use monthly data for last 5 years)

Note: $\hat{\beta}^j$ is just an estimate [around true β^j]

• Stage 2: Use *cross sectional* data and estimated β^js to estimate SML

$$R_{\text{next month}}^{j} = a + b\hat{\beta}^{j} + e^{j}$$

b=market risk premium

CAPM β–Testing Fama French (1992)

- Using newer data slope of SML b is not significant (adding size and B/M)
- Dealing with econometrics problem:
 - $\triangleright \widehat{\beta} j$ s are only noisy estimates, hence estimate of b is biased
 - > Solution:
 - Standard Answer: Find instrumental variable
 - Answer in Finance: Derive $\widehat{\beta}$ estimates for portfolios
 - Group stocks in 10 x 10 groups sorted to size and estimated $\widehat{\beta}^{j}$
 - Conduct Stage 1 of Fama-MacBeth for portfolios
 - Assign all stocks in same portfolio same β
 - Problem: Does not resolve insignificance

- CAPM predictions: b is significant, all other variables insignificant
- Regressions: size and B/M are significant, b becomes insignificant
 - ➤ Rejects CAPM

Book to Market and Size

Small "value" companies have higher returns

Fama French Three Factor Model

- Form 2x3 portfolios
 - ➤ Size factor (SMB)
 - Return of small minus big
 - ➤ Book/Market factor (HML)
 - Return of high minus low
- For $R_t^j R_t^f = \alpha^p + \beta^p (R_t^m R_t^f)$

αs are big and βs do not vary much

(for each portfolio p using time series data)

αs are zero, coefficients significant, high R².

book/market

Slide 06-26

Fama French Three Factor Model

- Form 2x3 portfolios
 - ➤ Size factor (SMB)
 - Return of small minus big
 - ➤ Book/Market factor (HML)
 - Return of high minus low
- For $R_t^j R_t^f = \alpha^p + \beta^p (R_t^m R_t^f)$

αs are big and βs do not vary much

(for each portfolio p using time series data)

 α^{p} s are zero, coefficients significant, high \mathbb{R}^{2} .

Book to Market as a Predictor of Return

Book to Market Equity of Portfolios Ranked by Beta

Adding Momentum Factor

- 5x5x5 portfolios
- Jegadeesh & Titman 1993 JF rank stocks according to performance to past 6 months
 - ➤ Momentum Factor
 Top Winner minus Bottom Losers Portfolios

09:55 Lecture 06 Factor Pricing Slide 06-29

Monthly Difference Between Winner and Loser Portfolios at Announcement Dates

Months Following 6 Month Performance Period

Cumulative Difference Between Winner and Loser Portfolios at Announcement Dates

Months Following 6 Month Performance Period

Morgan Stanley's Macro Proxy Model

- Factors
 - ➤ GDP growth
 - ➤ Long-term interest rates
 - Foreign exchange (Yen, Euro, Pound basket)
 - ➤ Market Factor
 - Commodities or oil price index
- Factor-mimicking portfolios ("Macro Proxy")
 - > Stage 1: Regress individual stocks on macro factors
 - ➤ Stage 2: Create long-short portfolios of most and least sensitive stocks [5 quintiles]
 - Macro Proxy return predicts macro factor

Salomon Smith Barney Factor Model

- Factors
 - ➤ Market trend (drift)
 - > Economic growth
 - ➤ Credit quality
 - >Interest rates
 - >Inflation shocks
 - ➤ Small cap premium

Haugen's view: The Evolution of Academic Finance

Modern Finance

Theme: Valuation Based on Rational Economic Behavior

Paradigms: Optimization Irrelevance CAPM EMH

(Markowitz) (Modigliani & Miller) (Sharpe, Lintner & Mossen) (Fama)

Foundation: Financial Economics

Behavioral Models

Haugen's view: The Evolution of Academic Finance

The New Finance

Theme: Inefficient Markets

Paradigms: Inductive *ad hoc* Factor Models

Expected Return Risk

Foundation: Statistics, Econometrics, and Psychology

09:55 Lecture 06 Factor Pricing Slide 06-35