Information

- A (finite) set states S, probabilities $\pi_s > 0$ for each $s \in S$, and dates t = 0, 1, ..., T.
- At each date t a collection of subsets of \mathcal{S} , $F_t = \{A_t^1, A_t^2, \cdots A_t^{k_t}\}$, such that $A_t^i \cap A_t^j = \emptyset$ if $j \neq i$ and $\bigcup_i A_t^i = \mathcal{S}$. (Partition)
 - $F_0 = \{S\}.$
 - Each $A \in F_T$ contains exactly one state.
 - $-A_t^i$, $i=1,\ldots,k_t$, are the events at t.
- Information structure: $\mathcal{F} = \{F_0, F_1, \cdots F_T\}.$
- Total recall: If $A \in F_t$, and t' < t there exists an $A' \in F_{t'}$ such that $A \subset A'$.
- Trees

- Stochastic process: A collection of random variables $y_t(s)$ for $t = 0, \dots T$.
- Stochastic process is adapted to \mathcal{F} if for each $A \in F_t$, $y_t(s) = y_t(s')$ for each $s \in A$ and $s' \in A$. $y_t(A) \equiv y_t(s), s \in A$.
- $y \ge 0$ (positive) if $y_t(s) \ge 0$ for each (t,s). y > 0 (positive and non-zero) if $y \ge 0$ and $y \ne 0$. y >> 0 (strictly positive) if $y_t(s) > 0$ for each (t,s).
- For each $j=1,\ldots J$, a security is an adapted dividend process $x_t^j,\ t=1,\ldots T$. The dividend paid at t is received by the agent that held the security from t-1 to t.
- The (ex dividend) price of this security is an adapted process p_t^j .

Strategies

- A strategy consist of J adapted processes h^1, \dots, h^J . h_t^j denotes the amount held from t to t+1 of security j.
- ullet ${\cal H}$ the set of all strategies.
- The dividend of the strategy is the process $z_t^h = (h_{t-1} h_t) \cdot p_t + h_{t-1} \cdot x_t \equiv \sum_{j=1}^{J} [p_t^j (h_{t-1}^j h_t^j) + h_{t-1}^j x_t^j], \text{ for } t \geq 1.$
- z^h is adapted.
- \bullet The cost of strategy h is

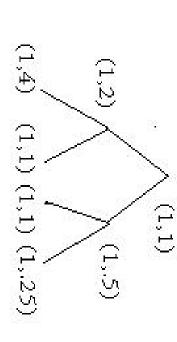
$$z_0^h = p_0 \cdot h_0 \equiv \sum_j p_0^j h_0^j.$$

Marketed subspace

- $\mathcal{M}^p = \{y : y = z^h \text{ for some } h \in \mathcal{H}\}.$
- ullet \mathcal{M}^p is a linear space.
 - Complete markets if any adapted $y \in \mathcal{M}^p$.
 - Incomplete markets.

Dynamic hedging

- No dividends paid until period 2.
- Prices of the two assets in parenthesis in periods 0,1. Dividends in parenthesis in period 2.
- Hedge: $z_0 = z_1 = 0$, $z_2 = (0,1,0,0)$



5

Arbitrage

• The law of one price holds if

$$z^h = z^{h'} \Rightarrow p_0 \cdot h_0 = p_0 \cdot h_0'.$$

- Law of one price ⇔ every portfolio strategy with zero payoff has zero price.
- If the law of one price holds we may define a linear functional $q: \mathcal{M}^p \to R$ defined by: $q(z) = p_0 \cdot h_0$ for any strategy h such that $z^h = z$. q is the payoff pricing functional.
- A strong arbitrage is a strategy h with $p_0 \cdot h_0 < 0$ and $z^h \ge 0$.
- An arbitrage is a strategy h that is either a strong arbitrage or satisfies $p_0 \cdot h_0 = 0$ and $z^h > 0$.

- The payoff pricing functional is strictly positive $(q(z) > 0 \text{ for every } z > 0, z \in \mathcal{M}) \Leftrightarrow$ there is no arbitrage.
- The payoff pricing functional is positive $(q(z) \ge 0)$ for every $z \ge 0$, $z \in \mathcal{M}$ \Leftrightarrow there is no strong arbitrage.
- ullet A one-period strong arbitrage at an event A^i_t at t < T is a portfolio h such that, for each $s \in A^i_t$,

$$[p_{t+1}(s) + x_{t+1}(s)] \cdot h \ge 0,$$
 and $p_t(s) \cdot h < 0.$

- A one-period arbitrage at an event A_t^i at t < T is a portfolio h that is either a one-period strong arbitrage or that $p_t(s) \cdot h = 0$ and $[p_{t+1}(s) + x_{t+1}(s)] \cdot h > 0$.
- No one-period arbitrage ⇔ no arbitrage.

Complete markets

- The immediate successors of an event $A \in F_t$ are all the events $B \in F_{t+1}$ such that $B \subset A$.
- $\iota(A) \equiv$ the number of immediate successors of an event A.
- The one-period payoff matrix in event $A \in F_t$, t < T, is the matrix with entries $p_{t+1}^j(B) + x_{t+1}^j(B)$, for j = 1, ..., J and B an immediate successor of A.
- Markets are complete \Leftrightarrow for all events $A \in F_t$, t < T the one period payoff matrix has rank $\iota(A)$.
- $J \ge \iota(A_t^i)$ whenever t < T.

Event prices

- Given an event $A_t \in F_t$, t > 1, consider a security that has a dividend process y^{A_t} with $y_{\tau}^{A_t}(s) = 0$ if $\tau \neq t$, $y_t^{A_t}(s) = 0$ if $s \notin A_t$, and $y_t^{A_t}(s) = 1$ if $s \in A_t$.
- If complete markets and the law of one price prevails then $q(y^{A_t})$ is called the price of an elementary (Arrow-Debreu) claim associated with A_t , or the price of the event A_t .
- $q(y^{A_0}) = q(y^S) = 1.$

• For any security x^j , we may write:

$$x^j = \sum_t \sum_{A_t \in F_t} x_t^j (A_t) y^{A_t}.$$

$$q(x^{j}) = \sum_{t=1}^{T} \sum_{A_{t} \in F_{t}} x_{t}^{j}(A_{t})q(y^{A_{t}}).$$
 (1)

 \bullet For any strategy h

$$p_0 \cdot h_0 = \sum_{t=1}^{T} \sum_{A_t \in F_t} z_t^h(A_t) q(y^{A_t}).$$

• Suppose you follow strategy of buying an asset at t < T and selling at t + 1. Then:

$$q(y^{A_t})p^j(A_t) = \sum_{\substack{A_{t+1} \subset A_t, A_{t+1} \in F_{t+1}}} q(y^{A_{t+1}})[p^j(A_{t+1}) + x^j(A_{t+1})].$$

Implications of no arbitrage

- An event price vector is a family $q_t(A_t)$ for each $A_t \in F_t$, $0 \le t \le T$, with $q_0(S) = 1$.
- Event prices $q(A_t)$ are compatible with (x, p) if for every j = 1, ..., J and every (t, A_t) , $0 \le t \le T$ and $A_t \in F_t$

$$q_t(A_t)p^j(A_t) = \sum_{t < \tau \le T} \sum_{A_\tau \subset A_t, A_\tau \in F_\tau} q_t(A_\tau)x^j(A_\tau). \tag{2}$$

Equation (2) holds if and only if

$$q_t(A_t)p^j(A_t) = \sum_{A_{t+1} \subset A_t, A_{t+1} \in F_{t+1}} q_{t+1}(A_{t+1})[x^j(A_{t+1}) + p^j(A_{t+1})]$$

Two basic results

- There exists a strictly positive vector of event prices consistent with (x, p) if and only if there is no arbitrage.
- If no arbitrage, markets are complete if and only if there exists a unique positive vector of event prices that are consistent with (x, p).

Risk-free return and discount factors

• If $p_t^j(s) > 0$,

$$r_{t+1}^{j}(s) = \frac{p_{t+1}^{j}(s) + x_{t+1}^{j}(s)}{p_{t}^{j}(s)}$$

is the rate of return between t and t+1 in state s.

- $r_{t+1}^{j}(s)$ only depend on the event $A_{t+1} \in F_{t+1}$ that contains s.
- An asset j is risk free at (t,s) if $r_{t+1}^{\mathcal{J}}(s)$ only depends on the event $A_t \in F_t$ that contains s.

- If no arbitrage, all risk-free assets at a given (t,s) must have the same $\bar{r}_t(s) > 0$.
- If $A_t \in F_t$, let $\bar{r}_t(A_t) = \bar{r}_t(s)$, for any $s \in A_t$.

 $q_t(A_t) = \bar{r}_{t+1}(A_{t+1}) \sum_{A_{t+1} \subset A_t, A_{t+1} \in F_{t+1}} q_{t+1}(A_{t+1})$

• If a risk-free security exists at each (t, s), the discount factor between zero and t in state s is $\rho_0(s) = 1$ and,

$$\rho_t(s) = \prod_{\tau=1}^t (\bar{r}_{\tau}(s))^{-1}, \ t \ge 1$$

- $-\rho_t(s)$ only depends on the event $A_{t-1} \in F_{t-1}$ that contains s.
- $\rho_t(s) = \rho_{t+1}(s)\bar{r}_{t+1}(s)$
- If $A_t \in F_t$ let $\rho_t(A_t) = \rho_t(s)$ for any $s \in A_t$.

An example: model of interest rate

- State $s=(r_0,r_1,\ldots,r_T)$, where r_t is one plus the one period interest rate prevailing at t.
- A one year bond issued at t pays a dividend of 1 at t+1. The price at t is $\frac{1}{r_t(s)}$.
- A τ year zero coupon bond issued at t pays a dividend of 1 at $t + \tau$.
 - A τ year zero coupon issued at t is a τj bond in period t + j.
- $P_t^{\tau}(s)$ the price of a τ year zero coupon bond as of t, $(P_t^0(s)=1)$. If $A_t \in F_t$,

$$\sum_{A_{t+1} \subset A_t, A_{t+1} \in F_{t+1}} P_{t+1}^{\tau-1}(A_{t+1}) q_{t+1}(A_{t+1}).$$

Risk-neutral probabilities

- Assume no arbitrage or equivalently that you have a set of positive state prices, and that at each (t,s) a one period risk free security exists.
- Recall that $\{s\} \in F_T$, and set $q(s) = q_T(\{s\})$.
- Let

$$\pi^*(s) = \frac{q(s)}{\rho_T(s)} > 0,$$

• For every $A \subset \mathcal{S}$ let

$$\pi^*(A) = \sum_{s \in A} \pi^*(s).$$

- If $A_{T-1} \in F_{T-1}$, then $q_{T-1}(A_{T-1}) = \bar{r}_T(s) \sum_{s \in A_{T-1}} q(s)$
- $q_{T-1}(A_{T-1}) = \frac{\rho_{T-1}(s)}{\rho_T(s)} \sum_{s \in A_{T-1}} q(s) =$ • $\rho_{T-1}(A_{T-1}) \sum_{s \in A_{T-1}} \frac{q(s)}{\rho_T(s)} =$ • $\rho_{T-1}(A_{T-1}) \pi^*(A_{T-1}).$
- $\pi^*(A_{T-1}) = \frac{q_{T-1}(A_{T-1})}{\rho_{T-1}(A_{T-1})}$.
- If $A_t \in F_t$ then

$$\pi^*(A_t) = \frac{q_t(A_t)}{\rho_t(A_t)}.$$

- $\pi^*(\mathcal{S}) = \frac{q_0(\mathcal{S})}{\rho_0(\mathcal{S})} = 1$
- π^* is a probability.

• Let $A_t \in F_t$ and $A_{t+1} \subset A_t$, $A_{t+1} \in F_{t+1}$.

$$\pi^*(A_{t+1}|A_t) \equiv \frac{\pi^*(A_{t+1})}{\pi^*(A_t)}$$

 $\pi^*(A_{t+1}|A_t) = \frac{q_{t+1}(A_{t+1})}{q_t(A_t)} \bar{r}_{t+1}(A_{t+1}).$

 $p^{j}(A_{t}) = [\bar{r}_{t+1}(A_{t+1})]^{-1} \times \\ \sum \pi^{*}(A_{t+1}|A_{t})[p^{j}_{t+1}(A_{t+1}) + x^{j}_{t+1}(A_{t+1})],$ where the sum is over all $A_{t+1} \subset A_{t}$ and $A_{t+1} \in F_{t+1}.$

 $p_t^j = \frac{E_t^* [p_{t+1}^j + x_{t+1}^j]}{\bar{r}_{t+1}}$ (3)

• All securities have same expected returns under π^* .

lacktriangle

$$p_0^j = \sum_t E^*(\rho_t x_t^j).$$

- Prices equal discounted expected payoffs.
- Risk-neutral probabilities.

Black-Scholes model

• $\rho_t = (\bar{r})^{-t}$. If A_t is event in which there are exactly ℓ downs between 0 and t,

$$q_t(A_t) = \left(\frac{u - \overline{r}}{\overline{r}(u - d)}\right)^{\ell} \left(\frac{\overline{r} - d}{\overline{r}(u - d)}\right)^{t - \ell},$$

$$\pi^*(A_t) = \left(\frac{u-\bar{r}}{u-d}\right)^{\ell} \left(\frac{\bar{r}-d}{u-d}\right)^{t-\ell}.$$

- European call option with strike K: No dividend before T and if ℓ downs occur until T, dividend at T is $(u^{T-\ell}d^{\ell}-K)^+$.
- Price of option

$$\sum_{\ell=0}^{T} {T \choose \ell} \frac{1}{(\bar{r})^T} (u^{T-\ell} d^{\ell} - K)^{+} \left(\frac{u - \bar{r}}{u - d} \right)^{\ell} \left(\frac{\bar{r} - d}{u - d} \right)^{T-\ell}.$$

A model for interest rates

- $s=(r_0,r_1,\ldots,r_T)$, where r_t is one plus the one period interest rate prevailing at t. Conditional on the interest rate prevailing today, there are two possible interest rates in the next period $i_u>i_d>0$.
- The short rate volatility at t in state s is:

$$\sigma_t(s) = \frac{\ln\left(\frac{i_u}{i_d}\right)}{2}$$

- $\sigma_t(s)$ equals the standard deviation of the log of the short rate that will prevail tomorrow, assuming that the probability that $i_{t+1}=i_u$ conditional on today's rate is .5.
- Probabilities are the risk-neutral probabilities.

• Example: $i_0 = .04$, the price of a two period bond $p^2 = .925$, and $\sigma_0 = 10\%$.

$$r_u = r_d e^{2\sigma_0}.$$

 $p_2 = \left(\frac{1}{1+i_0}\right) \frac{1}{2} \left[\frac{1}{1+i_u} + \frac{1}{1+i_d}\right]$

- Two equations on two unknowns. Solution $r_d = 0.0356, r_u = 0.0435.$
- Suppose $i_{ud}=i_{du}$, and you know the price of a three period bond p^3 . Still need to determine 3 rates and you have only one equation.

• One possible solution:

$$\sigma_1(i_u) = \sigma_1(i_d) = \sigma_1$$
, given.

$$\frac{i_{uu}}{i_{ud}} = \frac{i_{du}}{i_{dd}}.$$

lacktriangle

$$i_{ud} = \sqrt{i_{uu}i_{dd}}.$$

ullet Works for any T.

Security gains as martingales

The gains process of security j is the process given by:

$$g_t^j(s) = p_t^j(s) + \sum_{\tau=1}^t \frac{\rho_\tau(s)}{\rho_t(s)} x_\tau^j(s)$$

The discounted gain process for security j
 is:

$$d_t^j(s) = \rho_t(s)g_t^j(s) = \rho_t(s)p_t^j(s) + \sum_{\tau=1}^t \rho_\tau(s)x_\tau^j(s)$$

$$d_{t+1}^{j}(s) - d_{t}^{j}(s) =$$

$$\rho_{t+1}(s)(x_{t+1}^{j}(s) + p_{t+1}^{j}(s)) - \rho_{t}(s)p_{t}^{j}(s).$$

• Multiplying equation (3) by $\rho_t(s)$, we obtain:

$$E_t^*[\rho_{t+1}(s)(x_{t+1}^j(s)+p_{t+1}^j(s))] = \rho_t(s)p_t^j(s).$$

• Hence:

$$E_t^*[d_{t+1}^j(s) - d_t^j(s)] = 0.$$

$$E_t^*[d_{t+1}^j] = d_t^j.$$

• If $\tau > t$,

$$E_t^*[d_\tau^j] = d_t^j$$

- ullet d^j is a martingale.
- Also works for portfolios of securities.

Forwards

- A payoff W(s) at time T.
- A forward contract is an agreement struck at t < T to pay an amount F_t , the forward price at T in exchange for W. Nothing else is exchanged.

•

$$0 = E_t^*[\rho_T(F_t - W)]$$

• If the discount factor is non-random,

$$F_t = E_t^*[W].$$

- $-F_t$ is a martingale.
- Short rate of interest is deterministic.

Futures

• A futures price process is a process ϕ_t with $\phi_T=W$. A futures contract has a dividend stream that equals $\phi_t-\phi_{t-1}$, for each $t\geq 1$. The price of a futures contract is always zero.

lacktriangle

$$0 = E_t^* [\phi_{t+1} - \phi_t].$$

$$\phi_t = E_t^*[\phi_{t+1}].$$

$$\phi_t = E_t^*[W].$$

• Future price process is always a martingale.

The pricing kernel

• The pricing kernel is a process $k \in \mathcal{M}^p$ such that for any $z \in \mathcal{M}^p$,

$$q(z) = \sum_{t=1}^{T} E[k_t z_t]$$

- If $s \in A_t$ let $k_t(A_t) \equiv k_t(s)$.
- If complete markets,

$$k_t(A_t) = \frac{q_t(A_t)}{\pi(A_t)}$$

• Applying this equation to the strategy "buy security j at t in every $s \in A_t$ and sell it at t+1" we obtain:

$$k_t p_t^j = E_t[k_{t+1}(p_{t+1}^j + x_{t+1}^j)].$$

 $k_t = E_t[k_{t+1}r_{t+1}^j]$

 $k_t = \bar{r}_{t+1} E_t[k_{t+1}].$

 $E_t[k_{t+1}(x_{t+1}^j + p_{t+1}^j - \bar{r}_{t+1}p_t^j)] = 0.$

ullet The process $ilde{g}^j$ defined as:

$$\tilde{g}_t^j(s) = g_t^j(s)k_t(s),$$

is a martingale.

• Also works for portfolios.

Utility maximization

- The consumption process c an adapted process (sometimes assumed non-negative.)
- ullet The utility function u associating to each c a real number.
- ullet A set of tradeable assets and an endowment process w.

$$\max_{c,h} u(c)$$
, subject to

$$c_0 = w_0 - p_0 \cdot h_0$$
 and $c_t = w_t + z_t^h$.

ullet If we have an interior solution then at any state $s\in A_t$

$$p(A_t) = \sum [p(A_{t+1}) + x(A_{t+1})] \frac{\frac{\partial U}{\partial c_{t+1}(A_{t+1})}}{\frac{\partial U}{\partial c_t(A_t)}},$$

where the sum is over all $A_{t+1} \subset A_t$, and $A_{t+1} \in F_{t+1}$.

• If complete markets prevail then the only constraint is $q \cdot c = q \cdot w$.

$$q_t(A_t) = \frac{\frac{\partial U}{\partial c_t(A_t)}}{\frac{\partial U}{\partial c_0}}.$$