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Scaling of domain size during spinodal decomposition: Dislocation
discreteness and mobility effects
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In this letter, we examine the effects of discrete mobile dislocations on spinodal decomposition
kinetics in lattice mismatched binary alloys. By employing a novel continuum model, we
demonstrate that the effects of dislocation mobility on domain coarsening kinetics can be expressed
in a unified manner through a scaling function, describing a crossover from t1/2 to t1/3 behavior.
© 2005 American Institute of Physics. �DOI: 10.1063/1.2147732�
Spinodal decomposition is a technologically important
solid-solid phase transformation which is often employed to
strengthen alloys. During this process, domains of differing
composition coarsen through bulk diffusion. A particularly
interesting aspect of this process is the interaction between
dislocations and the evolving microstructure in lattice mis-
matched alloys: The development of the spinodal microstruc-
ture is accompanied by a buildup of elastic coherency
strains, which may be relaxed through the migration of misfit
dislocations to the compositional interfaces.

In this letter, we introduce a phase-field model to de-
scribe discrete dislocations and their interaction with spin-
odal microstructures, and show that it captures basic disloca-
tion behavior such as annihilation and migration to misfitting
compositional interfaces. Then, we employ this model to
simulate the time evolution of spinodal decomposition in bi-
nary alloys in the presence of dislocations and demonstrate
that dislocation effects in intermediate and late-stage coars-
ening kinetics can be described through a single scaling
function. That such a scaling function exists is nontrivial, as
previous work employing a simpler continuum model of the
dislocations has shown that dislocation mobility has unex-
pected effects on phase separation kinetics.1

We begin by describing the continuum phase-field model
used in this study. The free energy is written as a sum of
three terms

F = Fc + Fb + Fcoupl. �1�

Here Fc is the free energy due to the spatially varying com-
position c�r� �relative to the average alloy composition�,
given by

Fc =� dr�−
a

2
c2 +

u

4
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�2

2
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where a=a0�Tc−T� with T as the temperature and Tc as the
critical temperature, while a0, u, and � are positive constants.
Dislocations are treated as continuum fields, and in two spa-
tial dimensions they can be described by a continuous Burg-
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er’s vector density b�r�= �bx�r� ,by�r��. The dislocation free
energy, Fb, is given by

Fb =� dr	�

2
�b�2 +

1

2Y
��2�d�2 + ĉdb2�b2 − b̂0

2�2

+ Ŵ2/2���bx�2 + ��by�2�
 , �3�

where Y and �d�r� denote the Young modulus and Airy stress
function due to dislocation strain fields, respectively. The
first term in this equation describes dislocation core energies,
where � is a constant. The second term accounts for the
nonlocal elastic interactions �i.e., Peach–Koehler forces�2 be-
tween the dislocations. Under mechanical equilibrium condi-
tions, the Airy stress function satisfies �Ref. 3� �4�d
=Y��xby −�ybx�. The last two terms in Eq. �3�, are intro-
duced to impose a “discreteness” condition on b �b2=0 or

b2= b̂0
2� as well as to incorporate dislocation core interactions

on length scales �Ŵ / ��ĉdb̂0
2�, where Ŵ, cd, and b̂0

2 are posi-
tive constants. Finally, the interaction between the composi-
tion and the dislocations arises due to the dependence of the
lattice constant on the composition and its coupling to the
local compression �2�d,4

Fcoupl = �� drc�2�d, �4�

where � is proportional to the misfit.
The dynamics of the composition and dislocation density

satisfy conservation laws. Upon converting to dimensionless
variables through the replacements c→ ��a� /u�1/2c, r
→ ��2 / �a��1/2r, t→ ��2 /��a��t, b→ ��a�3 / �Y�2u��1/2b, and �d

→ �Y�4 /u�1/2�d, the dimensionless dynamical equation for
the composition is given by

�c

�t
= �2

�F
�c

+ �c, �5�

5
while the corresponding one for bx�r� can be written
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the dynamical equation for by follows by replacing bx→by,
�y→−�x, and �x→−�y in Eq. �6�. The dimensionless pa-
rameters are �=�Y1/2 / �a�1/2, 	=��a� /�2Y, mc,g

=�c,g�2Y /��a�2, cd= ĉd�a�7 / �u2Y3�6�, b0= b̂0��a�3 / �Y�2u��−1/2,

and W=Ŵ�a� / �Y1/2�2�. Here, � denotes the composition mo-
bility while �c and �g are the dislocation mobilities in the
climb and glide directions, respectively. Finally, thermal
�Gaussian� fluctuations are represented by �c and �b with
mean 
�c�= 
�bx

�= 
�by
�=0 and variance 
�c

2�=−2A�2��r
−r����t− t�� and 
�bx

2 �= 
�by

2 �=−2mA�2��r−r����t− t��,
where the dimensionless noise strength A�kBTu /	2�a�.

We begin our exploration of the model by demonstrating
that it naturally gives rise to simple discrete dislocation be-
havior. To this end, a stationary lamellar compositional mor-
phology was set up, and the dynamical equations for b�r�,
Eq. �6� were numerically integrated on a 128
128 uniform
grid with �x=1.0 using explicit Euler integration with time
step �t=0.005. Spatial derivatives were obtained through fi-
nite differencing in real space and the Airy stress function
��r� was resolved in Fourier space. The following param-
eters were employed in all of the simulations reported here:
�=1.0, 	=0.2, and W=1.25.

Let us first discuss the effect of b0 on equilibrium dislo-
cation configurations. As depicted in the panels in Fig. 1�a�,
increasing b0 for fixed amount of misfit � leads to the emer-
gence of localized dislocations at the compositional inter-
faces. This results from the interplay between the elastic mis-
fit �which determines the average dislocation density per unit
length along the compositional interfaces� and the disloca-

FIG. 1. �Color online� �a� Equilibrium dislocation density by�r� in a station-
ary compositional morphology for b0=0.75, cd=0.4, A=0.0025 �left panel�,
b0=1.25, cd=0.4, A=0.0025 �middle�, and b0=1.8, cd=0.15, A=0.0025
�right�. Notice the emergence of localized dislocations as b0 increases. �b�
and �c� Panels depict the evolution of by�r� starting form a dislocation pair
with a small ��b�� or large ��c�� initial separation �time increases from left to
right�. The parameters employed were b0=1.8, cd=0.15, A=0. For small
initial separations �b�, dislocations annihilate each other, while for larger
separations �c�, they migrate in opposite directions to the compositional
interfaces.
tion strength through b0.
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In order to further examine effective discrete dislocation
behavior, a pair of dislocations with opposite signs were ini-
tially placed between the two compositional interfaces. In the

FIG. 2. �Color online� Typical configurations for composition c�r� �top
panel�, by�r� �middle panel�, and bx�r� �bottom panel�, during the phase
separation process at dimensionless time t=7500 with dislocation strength
bx,y = ±b0= ±2.0. Dark �light� shades represent large positive �negative� field
values. Notice the accumulation of discrete dislocations at the compositional
interfaces.
absence of thermal fluctuations, we observed either annihila-
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tion of the pair �if the initial separation between the disloca-
tions was small—cf. Fig. 1�b��, or the migration of disloca-
tions in opposite directions to the compositional interfaces �if
the initial separation between the dislocations was suffi-
ciently large—cf. Fig. 1�c��. Indeed, this is what one would
expect from a description based on discrete dislocations.

Having established the basic properties of our model, we
now proceed to discuss the role of dislocations during phase
separation. To this end, we simultaneously integrate the
coupled dynamical Eqs. �5� and �6� on a 256
256 uniform
grid. Figure 2 shows typical composition and dislocation
configurations during the phase separation process at a di-
mensionless time t=7500. The data were obtained for the
parameters mc=mg=2.0, b0=2.0, cd=0.1, and A=0.0025; the
other parameters remain unchanged. For an Al-35 Zn alloy at
T=250 °C, our system size corresponds approximately to
1 �m, while the maximum dimensionless time of Fig. 2 cor-
responds to a time of 200 h. As phase separation proceeds,
dislocations migrate to compositional interfaces to relieve
strain, and a strong coupling emerges between the motion of
the domain walls and the dislocation mobility. This coupled
motion of dislocations and composition leads to a modified
behavior for the domain growth kinetics, which we now
discuss.

As a quantitative measure of the domain growth kinetics,
we have monitored the average domain size R�t�=A /L�t� as
a function of time, where A and L�t� denote the total area and
the total interface length in the system, respectively. As we
have shown elsewhere,1 dislocations with small mobility can
lead to very slow domain growth rates while fast dislocations
accelerate the coarsening kinetics. At late times, spinodal de-
composition is always asymptotically accelerated in the pres-
ence of dislocations with nonzero mobility. We now show
that discrete dislocation effects on the intermediate to late-

FIG. 3. �Color online� Scaled domain size mR for several values of the
dislocation mobility as a function of m3t. The mean-field scaling function
has been shifted by a constant along the m3t axis to clearly indicate scaling.
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time domain growth can be described by a single scaling
function.

A mean-field expression for dislocation mobility effects
on the average domain size R�t� can be derived under the
approximation cd=0, W=0 and 	=0,1 and in the limit mt

1 can be expressed as

d�mR�
d�m3t�

�
�3�1 + �2

8�mR�2 + �3mR�2�1 + �2
. �7�

Thus, Eq. �7� predicts a scaling solution for mR of the form

mR = f�m3t,�� , �8�

where the scaling function f�x ,y� behaves as

f�x,y� � �x1/2y−1 intermediate x

x1/3�1 + y2�1/6 large x .
� �9�

In particular, the scaling form describes a crossover behavior
from R� t1/2 to the asymptotic behavior R� t1/3. The exis-
tence of such a scaling function is demonstrated in Fig. 3,
which plots mR versus m3t obtained from simulations, and
which clearly demonstrates data collapse on a universal
curve at intermediate and late times for several values of
dislocation mobility m. �The scaling function does not de-
scribe the early time behavior, since it was derived with the
assumption of well-defined compositional domains with
sharp interfaces.� The straight lines in Fig. 3 indicate a cross-
over between two scaling regimes with exponents of 1 /2 and
1/3. Thus, mobile dislocations introduce a new scaling re-
gime in spinodal decomposition, characterized by the behav-
ior R� t1/2.

In summary, we introduced a novel continuum model
which captures the basic aspects of discrete dislocation mo-
tion. Numerical exploration of the model reveals that the
effects of mobile dislocations on coarsening kinetics during
spinodal decomposition can be described by a single cross-
over scaling function describing the evolution from a t1/2 to a
t1/3 regime of growth.
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