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Abstract—Frequency-domain analysis is important for small-
signal dynamic studies of power electronics-based power systems. 
However, the frequency-domain model of power electronic system 
needs to be linearized around a specific operating condition. 
Conventional analysis hence requires measurement or 
identification of these frequency-domain models repeatedly at 
many operating points due to the wide operation range of the 
power systems, which brings significant computation and data 
burden. This paper addresses this challenge by developing a deep 
learning approach using multilayer feedforward neural networks 
(FNNs) for frequency-domain modeling of power electronic 
systems, and particularly, focusing on the impedance modeling. It 
can train converter impedance models that are continuous across 
certain ranges of operating points. Distinguished from the prior 
neural network designs relying on trials and errors, this article 
proposes to design the FNN based on latent features of power 
electronic systems, i.e., the number of system poles and zeros. To 
further investigate the impacts of data quantity and quality, 
learning procedures from a small dataset are developed, and 
clustering is used to reveal insights into multivariable sensitivity, 
which helps to improve the data quality. The proposed approaches 
for the FNN design and learning are finally validated by case 
studies on a power electronic converter. 
 

Index Terms—Multilayer perceptron, deep learning, power 
electronics, frequency-domain model, latent features, clustering.  

I. INTRODUCTION 
YNAMIC modeling and analysis is of primary 
importance for stable operation of electric power 
systems. In recent years, with the increased penetration 

of renewable energy sources and the diversity of loads, more 
power electronic converters are integrated in modern power 
systems for flexible and efficient power generation, 
transmission, and utilization [1], [2]. Compared to legacy power 
systems, the control of power electronic systems is more 
distributed and less transparent, which poses more challenges 
to the dynamic modeling and control of modern power systems 
[3]. 

Frequency-domain analysis is an important approach to 
studying the small-signal dynamics of large-scale networked 
power electronic systems. Frequency-domain analysis enables 
black-box modeling of a subsystem at its connection terminals 
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and provides more efficient and insightful analysis compared to 
time-domain simulations [4]-[6]. However, frequency-domain 
models are linearized around specific operating conditions [7]. 
To assure reliable operation of power systems, dynamic 
analysis under a wide range of operating conditions are needed, 
which requires the frequency-domain models under various 
operating conditions. Methods for identifying black-box 
frequency-domain models based on measurement have been 
reported [8]; however, they can only be implemented at a single 
operating condition each time. Whenever the system operating 
condition is changed, the measurement needs to be repeated. 
Therefore, it is desired to obtain a frequency-domain model that 
can cover multiple operating conditions, in order to accelerate 
the dynamic analysis of power systems. Although it is possible 
to acquire such a model through analytical modeling [9], [10], 
it requires detailed and accurate control information, which is 
practically impossible because control algorithms of power 
electronic systems are usually kept confidential by their 
manufacturers.  

Data-driven approaches provide a suitable solution to this 
type of problems. It is worth noting that although parametric 
identification [11] is also a data-driven approach that can derive 
an analytical transfer function model for frequency-domain 
analysis, the identified model is only an s-domain function, 
where s is the Laplace variable, which does not characterize the 
dependence of system operating conditions. The system 
operating conditions are determined by multiple variables; thus, 
the desired model is essentially a multivariable nonlinear 
function. Since the model expression in relation to operating 
conditions is often unknown, there is no deterministic method 
to select a specific parametric nonlinear model for regression 
analysis. In contrast, with sufficiently large network size and 
dataset, neural networks can approximate any continuous 
function [12], which thus provide a promising approach to 
solving this problem. 

There have been recent attempts to apply neural networks 
for frequency-domain modeling of power electronic systems. 
Some studies have developed neural networks to train time-
domain surrogate models and then transform them into the 
frequency domain for further studies; examples include 
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recurrent neural networks [13] and nonlinear autoregressive 
models with exogenous inputs (NARX) [14], [15]. Such models 
show good training performance for time series data, yet the 
time-domain data still needs to be designed carefully to capture 
sufficient frequency-domain dynamics, which makes the model 
training and parameter design more difficult. Another work 
directly considers training the model in the frequency domain 
using feedforward neural networks (FNNs) [16]. However, this 
study oversimplifies the power electronic systems by 
considering the operating-point dependence only related to a 
single variable. The operating points of actual systems are 
generally dependent on multiple variables. Using a single-layer 
FNN requires significant amount of data and the optimal design 
of FNN needs to be found based on trials and errors, which also 
brings much design and training effort. Thus, it is very 
challenging to apply the single-layer FNNs in practical 
applications. 

To deal with the challenges, this work focuses on the 
frequency-domain model training of power electronic systems 
using FNNs. Differing from [16], this work utilizes the 
multilayer FNNs and develops a deep learning approach that 
can be generally applied to any converter system. The unique 
contributions of this work include  
• Designing a multi-layer FNN to train converter impedance 

models based on the system’s latent features. The number 
of layers is determined by the transfer function calculation 
properties, and the number of neurons can be designed 
according to pole and zero numbers, which is much more 
easier than designing a single-layer FNN.  

• Developing learning procedures that can be implemented 
with small datasets, which is also a significant advantage 
compared with using a single-layer FNN. 

• Investigating the benefit of using clustering to improve the 
data quality. 

Section II formulates the learning problem. A method for 
designing the multi-layer FNN based on latent features of the 
converter system is proposed in Section III. Section IV details 
the application of the multi-layer FNN, by developing learning 
procedures based on small datasets and proposing to use 
clustering approach for data quality improvement. Section V 
presents the case studies by training an example converter 
system, to verify the proposed methods. Section VI finally 
concludes this paper.  

II. PROBLEM FORMULATION 

A. Impedance-Based Analysis 
Fig. 1 shows a typical diagram of a modern power system, 

where power electronic converters are pervasive as interfaces 
for various types of energy conversion and energy utilization. 
Power electronic converters can be controlled flexibly, yet their 
control algorithms are in general confidential. To analyze the 
small-signal stability of large-scale power electronics-based 
power systems, frequency-domain modeling by using 
impedance or admittance models, i.e., Z(s) or Y(s), has become 
a trend [17]. Since these models can be rapidly obtained by 
frequency-scan measurement at the points of connection (PoCs) 

of converter systems, they are suitable to analyze such black-
box systems. The admittance model can be calculated by the 
inverse of the impedance model; and thus, the following model 
elaboration will use the impedance model for clarity. 

B. Learning Problem and Assumptions 
The impedance model of a converter system is a linearized 

description of the system under a certain operating condition. A 
power converter can operate under a wide range of operating 
conditions. If the impedance model that covers the range of 
operating conditions can be rapidly estimated with sufficient 
accuracy, the efficiency of system-level stability analysis can 
be improved significantly.  

 
Fig. 1. Power electronics-based power systems. 
 

The impedance model of a converter system can take 
different forms depending on modeling assumptions and 
modeling reference frames [9]. In this work, it is assumed that 
the impedance model is represented at the AC interface of three-
phase converter systems under balanced grid conditions. For 
AC converter systems, the operating condition involves the 
voltage magnitude (V), the active and reactive power flows (P 
and Q) at the PoC. Thus, a general impedance model can be 
represented in the synchronous reference (dq) frame using a 
multi-input multi-output model [7], i.e., 

 . (1) 

where s is the Laplace variable, and V, P, Q are operating points 
under a certain operating condition. s represents the frequency 
dependence because it can be substituted by s=jω to derive the 
frequency-domain model [18].  

It is worth noting that although (1) only gives an example 
using AC impedance representation, the model order and its 
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dependence of operating points can be easily modified to 
characterize DC systems [19]. Moreover, the frequency domain 
model can also be represented by other transfer functions if 
other input-output relationships are of interest. 

Eq. (1) indicates that the impedance model is essentially a 
multivariable nonlinear model, and thus, neural networks can 
be used for learning approximations to this model.  

III. NEURAL NETWORK DESIGN BASED ON LATENT FEATURES 
A neural network design guideline for the converter impedance 

modeling is now proposed based on latent features of the converter 
system.  

A. Input and Output Definition  
To realize a learning task, it is important to define first the 

input and output data. It is known from (1) that the impedance 
model is related to ω, V, P, Q. Thus, these variables can be 
chosen as the input variables, which are real numbers. The 
output is the impedance value, which is a complex number. We 
can define the output to have two dimensions, using real and 
imaginary parts of the impedance value, i.e., the resistance and 
reactance of the electric system, or the magnitude and phase of 
the impedance through a polar transformation. We use the real 
and imaginary parts of the impedance as the data output for the 
following reasons: 
• The frequency-domain analysis is conducted based on 

complex numbers. A learned neural network that can 
predict the real and imaginary parts of impedance models 
is adequate for system stability analysis. 

• The polar transformation from real and imaginary parts into 
magnitude and phase is only for easier visualization of the 
model on a Bode diagram. This transformation involves 
additional nonlinear calculations, which can increase the 
complexity of neural network design and the effort of 
training. 

• The real and imaginary parts of the complex impedance 
values represent the resistance and reactance of the power 
converter system, which shed clear physical insight in 
electromagnetic simulations. 

B. Neural Network Selection and Design 
The converter’s impedance can be uniquely determined by a 

set of input variables, which follows a forward calculation 
process. Further, the input variables are independent of each 
other. Hence, FNN is chosen in this work.  

In principle, a neural network with one hidden layer can 
sufficiently represent any continuous function [12]. However, 
it requires the use of a sufficiently large number of neurons in 
the hidden layer, potentially as large as the number of training 
samples [20], which incurs substantial computation burden in 
training. In contrast, neural networks consisting of more hidden 
layers but smaller number of neurons can achieve better training 
performance with much smaller amount of data, but the 
structure of deep neural networks needs to be properly 
designed.  

Designing optimal FNNs is a non-trivial task and it requires 
complicated sensitivity analysis [21]. It has been realized in 

recent years that if the domain knowledge of the physical 
system can be utilized in the neural network design, we may 
end up with a better designed network, which requires less data 
requirement yet achieves better training performance [22], [23]. 
Since physical systems can usually be decomposed into 
sequential steps, neural networks can achieve good training 
performance if they can be designed following such sequential 
steps [24]. Therefore, the FNN is designed by decomposing the 
learning problem into multiple sequential steps.  

The impedance model is essentially a frequency-domain 
model. Its transfer function order is related to the differential 
equation order of the time-domain model; therefore, the 
frequency-domain model also includes information of the 
physical system. The sequential decomposition is directly 
considered based on transfer function calculation process in the 
frequency domain.  

It is known that any element in the impedance model of (1) 
can be represented by the following general form: 

 
(a) 

 
(b) 

Fig. 2. FNN design based on latent features. (a) impedance 
calculation process decomposed into sequential steps; (b) FNN 
design based on decomposed steps and numbers of latent 
features.  
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 , (2) 

where the polynomial coefficients {ak}, {bk} in the numerator 
and denominator are determined by the operating points 
through unknown nonlinear relationships. By substituting s=jω, 
the impedance value can be calculated by several sequential 
steps, as decomposed in Fig. 2(a). Step 1 calculates all the terms 
in the numerator and denominator regarding different power of 
angular frequency, which is a nonlinear process. Step 2 further 
divides the numerator terms by the denominator (den) and then 
calculates the real and imaginary parts, which is another 
nonlinear process. Step 3 finally calculates the real and 
imaginary parts of the impedance, which is only a linear 
calculation based on the output of Step 2. By decomposing the 
entire process into these sequential steps, the number of latent 
features in the middle of calculations can be determined by the 
number of poles (n) and the number of zeros (m) of the system. 
Step 1 yields (m+n+2) latent features, and Step 2 yields (2m+2) 
latent features.  

Based on the decomposed simple steps and the number of 
latent features, a multilayer FNN can be design as shown in Fig. 
2(b). Although the FNN does not calculate in the same way as 
the original model, as it calculates through weighted sums, 
biases and activation functions, the number of latent features 
can be used as an indicator for designing the number of neurons 
in hidden layers [25]. There are two decomposed nonlinear 
steps, thus, two hidden layers are designed accordingly. In each 
nonlinear step, the number of latent features is no more than 
 . (3) 
Thus, two hidden layers can be simply designed with N neurons 
in each layer. Here, designing both hidden layers with N 
neurons results in more hyper parameters in the FNN, but it in 
turn simplifies the structure design. In actual applications, the 
exact numbers of poles and zeros are unknown because the 
converters are usually black-box systems, which needs a 
“guess”. Considering only one parameter N in the FNN design 
makes it easier to apply this approach for black-box systems. 
Since the two hidden layers represent two nonlinear steps, and 
this is a regression problem where the calculated result in each 
step can be both positive and negative, the hyperbolic tangent 
sigmoid (tan-sig) function is used for activation in hidden 
layers. Step 3 is a linear step, thus the output layer in the neural 
network is designed as a linear layer.  

It is noted that although the number of poles and zeros is 
usually unknown for a black-box converter system, the possible 
range of the pole and zero numbers is limited. A typical 
converter system usually has at most three cascaded control 
loops: outer loop – voltage loop – current loop, and each control 
loop has at most one integrator. The plant of the converter 
system usually has the differential order no more than three. 
Although there can be different combinations of control loops 

and converter plant, the numbers of system poles and zeros are 
still within a certain range. Then, by comparing training 
performance with different values of N within a certain range 
based on trial and error, an optimal N per layer that achieves the 
best training performance can be found for learning a specific 
system.  

C. Optimization Algorithm 
Training a neural network is essentially an optimization 

problem that minimizes the model error, and this in turn can be 
solved by different optimization algorithms. The commonly 
used optimization algorithms for training neural networks can 
generally be classified into two categories which are based on 
gradient descent and Newton’s method, respectively [26], [27]. 
The former is a first-order iterative algorithm, which can find 
the local optimum in the steepest-descent direction. However, 
it requires a careful tuning of learning rate and momentum 
constant throughout the training process for certain problems in 
order to find the global optimum. Moreover, training with the 
gradient descent-based algorithm converges relatively slowly. 
Newton’s method considers both first- and second-order 
derivatives to find the optimum using a quadratic 
approximation, which can better find the global optimum for 
nonlinear problems, but its computational burden is much 
higher.  

The Levenberg-Marquardt algorithm is a method that 
combines features of gradient descent and Newton’s method. It 
acts more like a gradient-descent method when the parameters 
are far from optima and acts more like the Newton’s method 
when the parameters are close to optima [27]. Thus, this 
algorithm can achieve faster convergence than gradient descent, 
but incurs a lower computational burden than Newton’s 
method. It is suitable for learning small-scale systems whose 
neural networks only have a few hundred weights. Therefore, 
the Levenberg-Marquardt algorithm is selected as a candidate 
for optimization in our problem, since the studied system (a 
single converter system) is a small-scale system.  

D. Loss Function 
The mean squared error is used as loss function in this work 

to train the neural network. If the mean square error bound is 
defined as MSE, its relation to the impedance magnitude error 
can be interpreted as follows: 

 . (4) 

For the learning of the impedance model, MSE can be 
defined based on the minimum required magnitude of the 
impedance model for a certain case, to ensure that the error of 
the trained neural network is smaller than an acceptable 
threshold.  

IV. LEARNING PROCEDURES WITH SMALL DATASET  
Effective learning relies on having sufficient data. Learning 

from a sufficiently large dataset is always desirable; however, 
obtaining such a dataset is often difficult in practice. This 
section discusses the data size problem for learning the 
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impedance model of converter systems, by considering as small 
dataset as possible. 

A. Learning Procedure  
The challenge in frequency-domain modeling of converter 

impedances mainly lies in the dependence of operating points, 
thus, impedance data under multiple operating points needs to 
be obtained for learning. However, the amount of data that is 
sufficient for learning a problem is usually unknown before 
learning. Therefore, a learning procedure starting from a dataset 
under a small number of operating points (OPs) is proposed in 
Fig. 3. 

To ensure a good training performance, the total dataset needs 
to be split into a training set, a validation set and a test set [28]. 
The training set is used to train the neural network based on the 
training loss, which is calculated as the MSE of the model. The 
validation set is used to calculate the validation loss, which is 
monitored during the learning process and compared with the 
training loss, to assess whether the training is successful and 
whether the dataset is sufficient. If the validation loss is 
significantly increased during the learning process, it is an 
indication that the training is unstable and the data is 
insufficient. If the training finally ends when reaching the goal 
of MSE, yet the validation loss is much higher than the training 
loss, it is also an indication that the dataset is insufficient and 
needs to be enlarged. Therefore, a threshold ε can be set for the 
ratio of validation loss to training loss, to check whether the 
dataset is sufficient or not, as shown in Fig. 3.  

It is worth noting that although the flowchart in Fig. 3 mainly 
focuses on the dataset regarding change of OPs, it works also 
for the dataset regarding change of frequencies. Here, the 
frequency resolution is not focused upon, since the impedance 
measurement usually scans sufficient frequency points to 
ensure that the frequency dependence is characterized 
sufficiently [8], [16].  

 
Fig. 3 Flowchart for learning from a small dataset of operating 
points.  

B. Clustering for Improving Data Quality  
Since the operating points are determined by multiple 

variables, how to establish a dataset with higher quality 
considering different samples of multiple variables is unclear. 
Thus, the clustering of impedance models is used to identify the 
sensitivity of impedance model to different OP variables.  

Since the impedance model is a frequency-domain model 
represented by data points in a frequency series, which is 
analogous to a time series, the dynamic time wrapping approach 
[29] is used to estimate the distance between two frequency 
series for clustering.  

Moreover, the impedance model is represented by multiple 
elements in a matrix, which include both real and imaginary 
parts. The data used for clustering can be reformulated by the 
frequency series in the following form:  
 , (5) 

where Re{Z} denotes the real part and Im{Z} denotes the 
imaginary part. The real and imaginary data of each impedance 
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element need to be normalized before being put into Zcluster, to 
ensure they are equally considered.  

Then, clustered labels of the impedance data can be shown in 
the multi-dimensional OP space, to compare the sensitivity of 
impedance models to different OP variables. If the impedance 
data is clustered into more clusters in one dimension, it is 
indicated that the impedance is more sensitive to this variable. 
Finally, the data quality can be improved by selecting more 
samples in more sensitive variables and less samples in less 
sensitive variables.   

V. CASE STUDIES 
The proposed FNN design has been tested on a grid-

connected converter system. The impedance data can be 
obtained through virtual measurement in electronic transient 
(EMT) simulation software [16] or calculated analytically if the 
analytical model is available [7]. Since actual impedance 
measurement under a large number of operating points in an 
EMT simulation environment is very time consuming, and the 
measured models have been verified in good agreement with 
the analytical models even through experiments [8], this work 
forms the FNN training based on data obtained from analytical 
calculations.  

The training is conducted in Matlab running on Intel(TM) i7-
12700K CPU @ 4.6 GHz, with parallel computing enabled. 

A. Description of Studied System and the Data Range 
The studied converter system is shown in Fig. 4 with a single-

line representation for the three-phase system. It adopts the 
typical grid-following control, with a phase-locked loop (PLL) 
for voltage synchronization and a current control loop (CCL) 
for current regulation [3]. The electrical system and control 
parameters are listed in Table I.  

 

 
Fig. 4 Studied three-phase converter system with a single-line 
representation. 

 
Table I: System circuit and control parameters 

Parameter Value Parameter Value 
Vg 400V Vdc 700V 
f0 50 Hz fs 10 kHz 
L 5.1 mH S0 3 kVA 

PLL 
bandwidth 200 Hz CCL 

bandwidth 1 kHz 

The frequency points are defined within [1, 5000] Hz, because 
the impedance model is only valid up to half of the switching 
frequency [9]. 100 frequency samples linearly distributed in the 
logarithmic coordinate are considered, because the impedance 
model is calculated based on the power of ω.  

The operating points for the converter system are defined in 
the following ranges, according to the power system operation 
requirement [30]. 

 , (6) 

where p.u. denotes per unit as determined by using the 
converter ratings, |I| represents the converter current magnitude, 
|Vmod| denotes the converter modulation voltage magnitude, and 
Vdc is the DC-link voltage of the converter. Due to physical 
limitations of the converter system, the operating current cannot 
exceed 1.1 p.u., and the modulation voltage cannot exceed 
0.5Vdc, i.e., the modulation index does not exceed one.  

Since the grid-following converter is usually represented in 
admittance form, the following analysis uses admittance data 
for training. The dq-frame admittance has four elements, which 
can be trained using the same approach, thus, the following 
verification mainly takes one element as an example for 
illustration, i.e., Ydq(ω, V, P, Q).  

B. Verification of FNN Design 
To verify the FNN design, a sufficiently large dataset is first 

considered. The OPs are sampled with stepsize 0.02 p.u. for V 
and stepsize 0.2 p.u. for both P and Q. In total, the dataset has 
823 OPs. The total set is then randomly split, 70% of which is 
the training set, 15% of which is the validation set and the rest 
is the test set. Fig. 5 shows the distribution of OPs in the 3-
dimension (3-D) space of V, P, and Q. The FNN design is 
verified in two aspects: 1) FNN structure and optimizer 
comparison; and 2) proposed design compared with trial-and-
error design.  

1) FNN structure and optimizer comparison 
To verify the effectiveness of the FNN structure and the 

optimizer, it is first assumed that the analytical model is known, 
thus the latent features can be used to design N. In this case, the 
analytical model of Ydq(s, V, P, Q) indicates the highest 
pole/zero order of 12, if assuming a third-order Pade 
approximation for the time delay modeling, which is 
sufficiently adequate to model a converter’s dynamics in the 
frequency range of interest [31]. Thus, according to (3), N can 
be selected as 26. 

The training is conducted in Matlab. Several optimizers using 
the following algorithms are considered and compared [32].  
• Variable Learning Rate Gradient Descent (traingdx) 
• BFGS Quasi-Newton (trainbfg) 
• Scaled Conjugate Gradient (trainscg) 
• Levenberg-Marquardt (trainlm) 
The Matlab train function names of these algorithms are 

denoted in the above brackets. These algorithms are compared 
by training the dataset in Fig. 5. The training goal is set to 
achieve the same MSE of 10−10, which means that the absolute 
error of Re{Ydq} or Im{Ydq} is less than 10−5 (−100 dB).  

Fig. 6 shows the training performances with epoch and time 
using the above algorithms, where the right figures are the 
zoomed-in plots of the left figures. The epoch denotes the 
number of iterations that indicates the convergence rate. Time 
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reflects the efficiency of training. For easier comparison, the 
training performance is only displayed within 10000 epochs or 
150 minutes. The gdx algorithm (blue line) converges slowly 
since it is based on the gradient descent. Even with variable 
learning rate and momentum, it can hardly scape from local 
minimum to achieve the training goal. The bfg algorithm (red 
line) considers the Newton’s method, which thus converges 
much faster. However, it may also confront the local-minimum 
problem when the error becomes small. The scg algorithm 
(yellow line) converges slightly slower than the bfg algorithm, 
yet it reduces training time a lot, because it avoids the time-
consuming line search used in the bfg algorithm by scaling the 
step size with a Levenberg-Marquardt based algorithm [33]. It 
reaches the goal after around 144 minutes. However, the scg 
algorithm is still based on the gradient, which also escapes from 
local minima slowly, thus the training becomes more time-
consuming when the error becomes smaller.  The lm algorithm 
(purple line) is the fastest, which achieves the goal only at 
Epoch 287 within 6 minutes. Compared with the scg algorithm, 
the lm algorithm can escape from local minima more easily, as 
shown by its stair-like performance curve. The comparison 
results verify the optimizer selection discussed in Section III-C.  

The training, validation and test performance with the lm 
algorithm is shown in Fig. 7. It can be seen that the validation 
performance is very close to the training performance along 
epochs, indicating that the training is effective. The test 
performance also shows a good prediction. It is also noted that 
the validation check is considered during the training process, 
in order to identify the best fitting point in case it is present 
before the training goal is achieved. However, it can be seen 
that the performance curves are converging until the MSE goal 
is achieved, indicating that the designed multilayer FNN 
structure works successfully in learning this problem. 

 
Fig. 5 Operating point distribution based on a random split of 
the dataset: training data – 70%, validation data – 15%, test data 
– 15%.  

 
Fig. 6 Comparison of different optimization algorithms for 
training Ydq. 
 

 
Fig. 7 Training, validation and test performance with the lm 
algorithm for training Ydq. 

2) Proposed design compared with trial-and-error design 
Although the effectiveness of the proposed FNN design has 

been preliminary verified, it is still unclear if this approach 
really achieves a good design. Therefore, the proposed design 
is also compared with the trial-and-error design. In practice, the 
latent features of pole/zero numbers can be unknown, thus a 
trial-and-error approach by searching N in a certain range can 
also give an optimal design of FNN.  

To indicate a reasonable range of N for the trial-and-error 
design, the pole/zero orders of analytical models are listed in 
the left column of Table II, considering different orders of Pade 
approximation ranging from 0 to 3. The designed N based on 
these latent features are called as Ntheory in the table. In contrast, 
the trial-and-error design searches the FNN’s N around the 
possible range of Ntheory, i.e. [14, 28]. The training stops as MSE 
reaches 10−10, and the training results including end epoch and 
end time are listed in the right column of Table II.  

To clearly show the optimal FNN design based on the trial-
and-error method, the end epoch and end time against the 
FNN’s N changing is plotted in Fig. 8. A smaller end epoch 
indicates that the FNN structure works better in terms of 
convergence. It can be seen that when N is larger than 22, the 
end epoch becomes closer, but the end time becomes longer 
because the increased complexity of FNN also increases the 
computational burden. Thus, considering the tradeoff between 
convergence and training efficiency, an optimal value can be 
found around N=22 in this case. Existing analytical model-
based studies also show that usually a third-order Pade 
approximation is adequate for modeling time delay [31]. 
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Although the optimal N is found slightly lower than the Ntheory 
indicated by the analytical model based on a third-order Pade 
approximation, this is reasonable, because when we design 
Ntheory using (3), we use more latent features, which may lead to 
more conservative design and end up with a more complex 
FNN. But the resulting optimal N is still very close to the 
suggested order based on the analytical model with a third-order 
Pade approximation, which can verify that the proposed FNN 
design based on latent features almost achieves an optimal 
design.  

Table II  Training results with different N 
Analytical model Training results 

Pade 
approx. 
order 

Highest 
pole/zero 

order 

Ntheory FNN 
N 

End 
epoch 

End 
time 
(min) 

0 6 14 14*14 814 1:31 
- - - 16*16 474 1:15 
1 8 18 18*18 958 3:31 
- - - 20*20 606 3:02 
2 10 22 22*22 256 1:57 
- - - 24*24 363 4:27 
3 12 26 26*26 287 5:29 
- - - 28*28 298 7:26 

 
It is worth noting that although the exact pole/zero order of 

the transfer function may be unknown in practice, a reasonable 
range of the zero/pole order can also be estimated. Then, an 
optimal N for the FNN design can still be searched for within 
this range.    

C. Verification of Learning Flowchart from Small Dataset 
To verify the learning flowchart in Fig. 3, three datasets are 

used to train Ydq, by varying number of samples in operating 
points, as shown in Fig. 9. These datasets are listed as follows: 
• Dataset A considers a stepsize of 0.05 p.u. in V and a 

stepsize of 0.5 p.u. in P/Q, resulting in 49 OPs.  
• Dataset B considers a stepsize of 0.04 p.u. in V and a 

stepsize of 0.4 p.u. in P/Q, resulting in 106 OPs.  
• Dataset C considers a stepsize of 0.03 p.u. in V and a 

stepsize of 0.3 p.u. in P/Q, resulting in 244 OPs.  

The performance of Ydq with the three datasets is displayed in 
Fig. 10. From the very large ratio of validation loss to training 
loss, it can be seen that  Dataset A is not sufficient to train a 
good model. If the data is increased to 106 OPs, the validation 
loss becomes much closer to training loss, resulting in a ratio 
around 1.26 at the end of training. Even though the test loss is 
a bit higher, these loss performance curves show a similar trend 
of convergence, indicating that the training is effective. The 
slight error difference in the test performance can be easily 
compensated by setting a smaller training goal in MSE. When 
the dataset is further increased to 244 OPs, the validation loss 
becomes smaller than the training loss with a ratio of 0.88, 
which implies that the data is more sufficient for training. 
Therefore, the ratio of validation loss over training loss can be 
used as an indicator for dataset selection. In this case, if 
considering a threshold of ε = 1.5 for the ratio of validation loss 
over training loss, it can be found that using a dataset around 
100 OPs is already acceptable for training Ydq.  

D. Verification of Clustering for Improving Data Quality 
The dataset increasement in Fig. 9 considers the sample 

increasement in each dimension equally. However, this may not 
lead to the best data quality. How clustering can help improve 
the data quality is verified in this part. 
 

It is worth noting that to conduct an effective clustering, a 
sufficient amount of data is still needed. Thus, such clustering 
analysis can be done when data can be more easily acquired 
from analytical models or simulation models. Then, the 
sensitivity conclusion drawn from the clustering can still be 
helpful for guiding data collection from actual measurements. 

 

 
Fig. 8 Training results of Ydq based on trial-and-error design of 
FNN considering different N. 
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(c) 

Fig. 9 Datasets considering different samples of operating 
points. (a) Dataset A with 49 OPs; (b) Dataset B with 106 OPs; 
(c) Dataset C with 244 OPs. 
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Fig. 10 Training, validation and test performance for training 
Ydq with different datasets. (a) Dataset A with 49 OPs; (b) 
Dataset B with 106 OPs; (c) Dataset C with 244 OPs. 
 

The clustering is applied based the dataset of 823 OPs shown 
in Fig. 5. Since the OPs can influence all the elements in the 
admittance matrix, the clustering is implemented based on Ydd, 
Ydq, Yqd, and Yqq. The number of clusters is taken to be 20 for 
clustering, which is sufficiently large to compare the 
multivariable sensitivity relationship. Fig. 11 shows the 
clustered Bode diagrams using Ydq as an example and the 
clusters in the 3-D OP space. Each cluster is denoted by one 
color. It can be seen from Fig. 11(b) that the admittance data is 
clustered into more clusters in the dimension of Q and fewer 
clusters in the dimension of V, indicating the variable sensitivity 
ranking from high to low as: Q > P > V.  

Thereafter, the dataset is increased based on Dataset A, by 
selecting different samples in V, P, and Q. Four new datasets 
that have close numbers of OPs are compared, which are listed 
as follows:  
• Dataset D only increases the stepsize in V to 0.03 p.u. and 

keeps the same stepsizes in P and Q as Dataset A, resulting 
in 89 OPs.  

• Dataset E only increases the stepsize in P to 0.3 p.u. and 
keeps the same stepsizes in V and Q as Dataset A, resulting 
in 91 OPs.  

• Dataset F only increases the stepsize in Q to 0.3 p.u. and 
keeps the same stepsizes in V and P as Dataset A, resulting 
in 92 OPs.  

• Dataset G considers a stepsize of 0.07 p.u. in V, a stepsize 
of 0.4 p.u. in P and a stepsize of 0.3 p.u. in Q, resulting in 
86 OPs. This data selection is based on the variable 
sensitivity ranking from clustering analysis.  
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(b) 

Fig. 11 Admittance clustering results. (a) Clustered Bode 
diagrams of Ydq; (b) Clusters in the 3-D OP space. 
 

The performance results of training Ydq with Datasets D-G are 
compared in Fig. 12. It can be seen that by increasing the OPs, 
the ratios of validation loss to training loss have all been 
reduced compared with Fig. 10(a). Increasing Q samples 
achieves better training performance than increasing V or P 
samples, because it reduces the ratio of validation loss over 
training loss more. This verifies the variable sensitivity ranking 
result concluded from clustering. Furthermore, when Dataset G 
takes the variable sensitivity ranking into account to select the 
OP samples, the data has the highest quality, which results in 
the lowest ratio of validation loss over training loss as 0.824. It 
is thus verified that the clustering can facilitate data selection 
with higher quality. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12 Training, validation and test performance for training 
Ydq with different datasets with similar sizes. (a) Dataset D by 
increasing V samples; (b) Dataset E by increasing P samples; 
(c) Dataset F by increasing Q samples; (d) Dataset G by 
selecting samples in V, P, Q based on variable sensitivity 
ranking.  

E. Summary and Discussion 
According to the above studies, the suggested procedures for 

FNN design of converter admittance model training are listed 
as follows:  
• The optimal number of hidden neurons of the FNN can be 

found first based on searching over N within a reasonable 
range, which is found as N=22 for this studied case.   

• The sufficient number of OPs for effective training can be 
found based on the flowchart of Fig. 3, which is around 100 
OPs in this case.  

• The clustering may further help improve the data quality by 
selecting the number of variable samples based on the 
variable sensitivity ranking, which is Q>P>V for this case.  

Considering the above findings, all the admittance elements 
of the converter are finally trained based on a dataset of 116 
OPs, with a stepsize of 0.05 p.u. in V, a stepsize of 0.4 p.u. in P 
and a stepsize of 0.3 p.u. in Q. The training goal of each 
admittance element is MSE<10−12. The trained FNN model is 
compared with the analytical model in Fig. 13 using two 
randomly selected OPs, which are not included in the dataset. 
The good agreement shows that the trained FNN model can 
well predict the features of admittance models under a wide 
range of OPs through learning from a limited dataset.  
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(a) 

 
(b) 

Fig. 13 Verification of FNN models for all the admittance 
elements on Bode diagrams. (a) First randomly selected OP; (b) 
Second randomly selected OP.  

Through the case study, it has been shown that to train an 
accurate impedance model for a converter system does not 
requires huge amount of data (OPs to hundred level can be 
sufficient). This makes it feasible for power system operators to 
apply this approach for model identification of black-box 
converter systems.  

It is worth mentioning that the trained FNN impedance model 
is only valid for the certain converter with fixed control 
structure and parameters. Although in reality, the power system 
may be integrated by a large number of power converters, 
usually for a single application, e.g., in a wind or solar power 
plant, the converters are manufactured by the same vendor, 
thus, the converter control structure and parameters are the 
same. It enables to aggregate a large power plant using one 
equivalent power converter at its point of connection to the 
power system. This is also how transmission system operators 
require converter models from vendors for the system-level 
dynamic studies [34]. Therefore, the developed FNN 

impedance model for a single converter system is readily 
applicable for transmission-level converter system modeling 
and dynamic analysis.  
 

VI. CONCLUSION 
This paper has introduced a deep learning approach based on 

multilayer FNNs for the frequency-domain modeling of power 
electronic systems. In addition to basic implementations, it has 
addressed several important concerns for practical applications, 
including 
• How to design and optimize the structure of FNN based on 

the latent features of the system; 
• How to select a small yet high-quality dataset that achieves 

good learning performance. 
Although this work has primarily developed the modeling 

approach at the converter level, the method establishes a 
knowledge base for applying deep learning in frequency-
domain dynamic studies of converter-based power systems. 
Case studies have confirmed the effectiveness of proposed 
methods and design procedures for practical scenarios.  
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