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Abstract—Hybrid switched capacitor power converters, such
as the series-capacitor buck (SCB) converter, have intrinsic L-C
resonant dynamics that might influence its control stability and
transient response. This letter presents a systematic approach to
analyzing this intrinsic resonant behavior, which can be classified
into output L-Co resonance and interphase L-CB resonance
based on common-mode and differential-mode decomposition.
The impacts of coupled inductors on the resonant amplitude,
frequency, and settling time during a step line transient are
analyzed. The influence of intrinsic resonance on control stability
is clarified, providing guidance for controller design. A two-phase
SCB prototype was built and tested with discrete and coupled
inductors under different operating conditions. All analysis is
verified by simulation or experimental results.

Index Terms—series-capacitor buck, averaged model, multi-
phase converter, L-C resonance, coupled inductor, control

I. INTRODUCTION

HYBRID switched-capacitor (SC) converters have been
proved attractive for many applications [1]–[6]. They

leverage capacitors to achieve high power density and induc-
tors to realize useful system functions such as soft charging
and voltage regulation. In a hybrid-switched-capacitor con-
verter, many capacitors and inductors may form a multi-
resonant system with sophisticated dynamics. This character-
istic could significantly impact the controller design of hybrid
SC converters, which hasn’t been systematically investigated
in literature. Using the series-capacitor buck (SCB) con-
verter [5]–[7] as an example, this letter presents a systematic
approach to analyzing the intrinsic L-C resonance of hybrid
SC converters and its impacts on control dynamics.

A SCB converter operates similar to a multiphase buck
converter with inputs in series and outputs in parallel [5]. The
reduced equivalent input voltage leads to 1) extended duty
ratio for high voltage conversion ratio, 2) reduced switch volt-
age stress and switching loss, 3) reduced inductor core loss,
and 4) reduced current ripple. An inherent mutual balancing
mechanism also exists, which can achieve automatic capacitor
voltage balancing and inductor current sharing [8]. Previous
large-/small-signal models of the SCB converter [9]–[11]
only explain the overall converter dynamics, and interphase
dynamics were not investigated. [8] unveiled the interphase
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Fig. 1. Circuit topology and operation waveforms of an example two-phase
series-capacitor buck converter with discrete inductors. The maximum switch
voltage stress is labeled in red. Coupled inductors can be utilized to replace
the discrete ones, and phase number can be extended by stacking more series-
capacitor buck cells [10], [11], as indicated by the grey lines and grey dots.

L-C resonance whose damping ratio is proportional to the
conduction-path resistance. However, a well-designed high
efficiency converter with low conduction loss might result
in an underdamped system with long settling time and large
resonant amplitude. Models and design methods for describing
and mitigating the interphase L-C resonance are still needed.

This letter systematically analyzes the interphase L-C reso-
nance in SCB converters and provides comprehensive guide-
lines for controller design. The impact of coupled inductors on
SCB interphase resonance is clarified. All theoretical analysis
are verified by simulation and experimental results.

II. MODELING AND ANALYSIS OF INTRINSIC RESONANCE

This section analyzes the intrinsic L-C resonance by de-
composing disturbance and its response into common-mode
and differential-mode dynamics, streamlining the underlying
mechanisms of SCB converter L-C resonant behaviors. Fig. 1
shows the circuit topology and key operation waveforms of a
two-phase SCB converter. The analysis below starts with using
discrete inductors, and the impacts of coupled inductors are
discussed in Section III. In the SCB topology, the blocking
capacitor (CB) functions as a dc voltage source with vin/2
across it. Switch node voltages step between 0 and vin/2, dou-
bling the duty ratio compared to a regular buck. Two phases
are typically interleaved, and CB is charged and discharged
by the inductor currents of the two phases alternatively as
their high-side switches (S1∼2H ) turn on. Conduction-path
resistances (including switch Rds, capacitor ESR, inductor
winding resistance, etc.) are lumped into an effective resistance
RC in series with CB . The large-signal average model of the
two-phase SCB converter is described in Fig. 2 together with
the modeling equations and their equivalent circuits.
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Fig. 2. Large-signal average model and its equivalent circuit model.
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Fig. 3. Input voltage disturbance and its response decomposed into: (a)
common-mode dynamics; (b) differential-mode dynamics.

The load transient dynamics of a SCB converter is similar
to a multiphase buck converter and has been discussed in [11].
However, the line transient dynamics and their impacts on
flying capacitor voltage and current sharing have not been
systematically explored. The input voltage step change of a
line transient results in blocking capacitor voltage variation
and causes ringing and long settling time, which are the main
focuses of this letter. Similar analysis methods can be applied
to describe the responses to other perturbations, such as duty
ratio change, unbalanced initial conditions, load transients, etc.

Assume d1 = d2 = D, L1 = L2 = L. The input
voltage perturbation ṽin can be decomposed into common
mode {+ ˜vin

2 ,+ ˜vin
2 } and differential mode {+ ˜vin

2 ,− ˜vin
2 } for

the two phases, as illustrated in Fig. 3. The common-mode
perturbations drive the two phases to change in the same
way, while the differential-mode perturbations cause opposite
variations on the two phases. The resulting differential inductor
currents ±∆ĩL

2 are cancelled at the output, so the common-
mode current response is + ĩo

2 for each inductor. The overall
current response of each inductor is:

˜iL1 =
1

2
ĩo +

1

2
∆ĩL, ˜iL2 =

1

2
ĩo −

1

2
∆ĩL. (1)

Apply state-space-averaging, the ṽin-to-ĩo transfer function is:

Gvinio =
ĩo
ṽin

=
D

2Ro +DRC
·

s
ωz

+ 1
s2

ω2
nop

+ s
Qopωnop

+ 1
, (2)

ωnop =

√
2Ro +DRC

RoCoL
,Qop =

√
RoCoL

2Ro+DRC

L+RCRoCoD
,ωz =

1

RoCo
.

(3)
Accordingly, the line transient ṽin-to-ṽo transfer function is:

Gvinvo =
ṽo
ṽin

= Gvinio · Zo, Zo =
Ro

RoCos+ 1
. (4)

Similarly, the ṽin-to-∆ĩL transfer function is:

Gvin∆iL =
∆ĩL
ṽin

=
CB

2D
· s

s2

ω2
nip

+ s
Qipωnip

+ 1
, (5)
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Fig. 4. (a) Response decomposition of common-mode and differential-mode
dynamics for a general M -phase SCB converter (RC is ignored here). (b)
The ˜vin-to-ĩL transfer functions of an example 3-phase SCB converter, where
L = 50 nH, CB1,2 = 30 µF, Co = 100 µF, Ro = 1 Ω, D = 1

6
. All

magnitude dB values are calculated based on SI units in this paper.

ωnip = D

√
2

LCB
, Qip =

1

RC

√
2L

CB
. (6)

It can be seen from (2) and (5) that there exist two types of
intrinsic L-C resonances in SCB converter dynamic responses:

1) Output L-Co resonance with ωnop & Qop: higher Ro

leads to a higher Qop and lower damping ratio.
2) Interphase L-CB resonance with ωnip & Qip: higher RC

results in a lower Qip and higher damping ratio.
Dynamic responses of common-mode variables (e.g., ĩo and
ṽo) will only see the output L-Co resonant pole and their
associated transfer functions (e.g., Gvinio , Gvinvo , and Gdvo )
are the same as of a regular two-phase buck. Contrarily,
responses of differential-mode variables (e.g., ∆ĩL and ṽC)
will only see the interphase L-CB resonant pole, whose
transfer functions (e.g., Gvinvc , Gvin∆iL , and G∆d∆iL ) are
different from the buck converter. According to (1), responses
of ˜iL1/ ˜iL2 contain both common-mode and differential-mode
dynamics and will see both output L-Co and interphase L-CB

resonant poles. The ṽin-to- ˜iL1
/ ˜iL2

transfer functions can be
obtained by combining Gvinio and Gvin∆iL . Same analysis
approach and conclusions also apply to SCB converters with
higher number of phases.

For a general M -phase SCB converter, transfer functions
can be calculated based on state-space modeling as summa-
rized in the Appendix. A more intuitive way of deriving the
response to a perturbation is by superposing the responses to
its common-mode and differential-mode components. Fig. 4a
plots the small-signal average model of an M -phase SCB
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TABLE I
PARAMETERS OF A TWO-PHASE SCB CONVERTER

Vin Vout fsw CB RC Lk Co Ro

12V 1V 1MHz 30µF 3mΩ 50nH 100µF 20mΩ

* Parameters are the same for all calculations and simulations in Sections
III and IV, unless otherwise specified.

converter and its equivalent circuits seen by common-mode
and differential-mode perturbations individually. Denote the
effective perturbations applied to each phase as ṽ1 ∼ ˜vM ,
which can refer to input voltage or converted duty ratio
perturbations (e.g., ṽ1 = ṽin, ṽ2∼M = 0 for the input voltage
perturbation). As shown in Fig. 4a, the common-mode pertur-
bation component ˜vcm ( ˜vcm =

ΣM
k=1ṽk
M ) is effectively applied

to an output L-Co-Ro network with the resonant frequency
of ωnop =

√
M
LCo

. Same for the output load transient that
contains only common-mode perturbation component.

As for differential-mode perturbations, the incurred varia-
tions are canceled at the output, so the output terminals are
effectively shorted in the small-signal average model, resulting
in an equivalent M -level L − CB ladder network. Transfer
function for this L-C ladder circuit can be determined by using
DFFz triangles [12], which contains up to M−1 resonant poles
(assume CB.k are identical):

ωnip.k =
2D√
LCB

sin

(
kπ

2M

)
, k = 1 ∼ M − 1. (7)

Lumping the common-mode and the differential-mode dy-
namic responses yields the overall response. Fig. 4b shows
the ṽin-to-ĩL transfer functions of an example 3-phase SCB
converter, which has two interphase L-CB resonant poles and
one output L-Co resonant pole, as expected.

III. IMPACTS OF COUPLED INDUCTORS

Coupled inductors that exhibit different inductances to
common-mode and differential-mode excitations can improve
inductor current sharing and capacitor voltage balancing
for multiphase hybrid switched-capacitor-magnetic topologies
[13], [14]. This section discusses the impacts of coupled
inductors on intrinsic resonance of the SCB converter. Table I
lists the parameters of an example two-phase SCB for all
calculations and simulations in Sections III and IV, unless
otherwise specified. Fig. 5 shows the large-signal average
model with coupled inductors. LS and LM are self and
mutual inductances in the inductance matrix, and Lk and β
are effective leakage inductance and coupling coefficient as

𝟏

𝑹𝑪

Fig. 6. Bode plots of Gvin∆iL with different coupling coefficients.
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(a) Discrete, β = 0
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Fig. 7. Simulated and calculated ∆iL during a line transient (vin steps from
12 V to 14 V) when using (a) discrete inductors (β = 0) and (b) a coupled
inductor (β = 5).

Fig. 8. Resonant ∆IL amplitude versus 2% settling time (ts) during a unit
vin step change. (D = 1

6
;RC = 3 mΩ.)

defined in [14], [15]. A higher β indicates higher coupling
coefficient for the coupled inductor. When using coupled
inductors, transfer functions Gvinio , Gvinvo , and Gvin∆iL have
the same expressions as in Eqs. (2) – (6) except that the ωn

and Q are changed to:

ωnop =

√
2Ro +DRC

RoCoLk
, Qop =

√
RoCoLk

2Ro+DRC

Lk +RCRoCoD
, (8)

ωnip = D

√
2

(1 + β)LkCB
, Qip =

1

RC

√
2(1 + β)Lk

CB
. (9)
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Accordingly, common-mode or output dynamics will see a
small inductance Lk, while the differential-mode or interphase
dynamics will see a large inductance (1 + β)Lk. If Lk is
fixed (i.e., under the same transient speed), β will only
influence differential-mode dynamics. As shown in Fig. 6,
a larger coefficient β results in a lower interphase resonant
frequency ωnip and a higher quality factor Qip, but the gain
at resonance remains unchanged as 1

RC
. When β increases,

higher Q with narrower high-gain bandwidth may benefit
the line transient response, since a vin step change contains
multiple frequency components. In frequency domain, a vin
step change is ṽin = U

s (U is the step amplitude), and the
∆iL response is ∆ĩL = Gvin∆iL · U

s . Accordingly, its time
domain response is:

∆iL(t) = L−1
{
Gvin∆iL · U

s

}
= A · e−σt sin(ωdt), (10)

A = 2U

√
CB

8(1 + β)Lk −R2
CCB

, σ =
DRC

2(1 + β)Lk
,

ωd =
D

2(1 + β)Lk

√
8(1 + β)Lk −R2

CCB

CB
.

(11)

Fig. 7 shows the simulated and calculated responses of ∆iL to
an input voltage step change, in which the calculated results
match well with the simulated ones, validating the analysis.
The 2% settling time of ∆iL envelop is ts = 4

σ . Fig. 7 also
indicates that using coupled inductors can effectively suppress
the amplitude of interphase resonance for SCB converters with
the tradeoff of increased settling time. This feature fundamen-
tally comes from larger effective inductance (1 + β)Lk for
differential-mode (i.e., interphase) dynamics. The relationship
between the resonant ∆iL amplitudes and the 2% settling
time (ts) during a unit vin step change are plotted in Fig. 8,
which implies: (1) larger CB leads to smaller capacitor voltage
ripple but results in larger resonant current amplitude; (2) as
ts increases, the resonant current amplitude decreases.

IV. INFLUENCE ON CONTROL STABILITY

This section explains the impacts of intrinsic resonance
on control stability when the SCB converter is controlled
in voltage-mode. A typical multiphase PWM voltage-mode

++
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Dynamics

Differential-

Mode

Dynamics

Fig. 10. Block diagram of a SCB converter with typical voltage-mode control.

controller generates identical duty ratio command for each
phase by sensing ṽo. Fig. 10 plots its block diagram. Hs and
Ac are transfer functions for sampling and compensation net-
works respectively. As implied by the equivalent circuit model
in Fig. 2, the identical duty commands will cause common-
mode variations (e.g., ĩo), but will not incur differential-mode
variations (e.g., ∆ĩL and ṽc). Substituting d1 = d2 = D + d̃
into the average model, the d̃-to-ĩo transfer function is:

Gdio =
ĩo

d̃
=

Vin − IoRC

2Ro +DRC
·

s
ωz

+ 1
s2

ω2
nop

+ s
Qopωnop

+ 1
, (12)

where ωz , ωnop, and Qop are for output L-Co-Ro network
and are the same as in (3) or (8). Gdvo = Gdio · Zo.
Since the sensed ṽo is also a common-mode variable, the
overall feedback loop only senses and affects common-mode
dynamics; it will not be influenced by or have impacts on
differential-mode dynamics. Consequently, interphase L-CB

resonance doesn’t affect control stability; stable loop design
only needs to consider the output L-Co resonance, which is
the same as a multiphase buck. Similar conclusions can be
drawn for other control methods that sense the common-mode
dynamics and generate identical commands for all the phases.

Fig. 9 shows the simulated open loop and closed loop
transfer functions for an example SCB converter with a
typical voltage-mode controller. Denote the loop gain as
T = Zo ·Hs ·Ac ·Gdio . Smaller Lk will result in larger ωnop

in the Gdio , allowing to design higher loop-gain bandwidth
to achieve faster transient speed. Responses of ĩo and ṽo are
involved in the loop, so the closed loop gains of Gvinio and
Gvinvo are greatly suppressed; responses of ∆ĩL is not affected
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Fig. 11. Simulated voltage and current responses to a line transient (Vin = 12 V→14 V→12 V) in the case of (a) open loop and (b) closed loop. (β = 0)
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by the loop, so the closed loop gain of Gvin∆iL is unchanged:

(Gvinio)
CL =

Gvinio

1 + T
, (Gvinvo)

CL =
Gvinvo

1 + T
,

(Gvin∆iL)
CL = Gvin∆iL .

(13)

Equation (13) indicates that the voltage-mode control loop
can restrain the output variation, but it cannot suppress the
interphase resonance. Therefore, as shown in Fig. 11, while
the output voltage and current are effectively controlled to
maintain stable against a line transient, the resonance of vc and
∆iL are still left underdamped with high resonance amplitude
and long settling time.

Actively controlling ∆iL resonance with unequal duty ratios
will face more complicate ∆d̃-to-∆ĩL dynamics than that of

the multiphase buck. Substituting d1 = D + 1
2∆d̃ and d2 =

D − 1
2∆d̃ into the average model, the ∆d̃-to-∆ĩL transfer

function can be obtained:

G∆d∆iL =
∆ĩL

∆d̃
= − Io

2D
·

1− s
ωzrhp

s2

ω2
nip

+ s
Qipωnip

+ 1
, (14)

where ωnip and Qip are the same as in (6) or (9), and the
right-half-plane zero is ωzrhp

= 2IoD
(Vin−IoRC)CB

. Fig. 12 plots
the bode plots of G∆d∆iL under different load conditions.
The right-half-plane zero together with the interphase resonant
poles results in a 270° phase reduction. As Io decreases, both
ωzrhp

and the dc gain will reduce towards zero. The dc gain
might even flip the sign due to nonlinear factors at very light
load. All these issues could bring challenges to the active
control of ∆iL and needs to be properly handled.

An alternative way of actively suppressing interphase reso-
nance is to control vc resonance. Similar to (14), the ∆d̃-to-vc
transfer function can be derived as:

G∆dvc =
ṽc

∆d̃
=

Vin

4D
·

1 + s
ωzc

s2

ω2
nip

+ s
Qipωnip

+ 1
, (15)

where ωnip and Qip are the same as in (6) or (9), and
ωzc = DVin

Io(1+β)Lk
. The dc gain of G∆dvc can describe the

impacts of unequal duty ratios on the unbalanced value of CB

steady-state voltage, which could also be caused by resistance
variation between phases [8], phase shift error [13], and source
impedance [16]. Fig. 13 shows the bode plots of G∆dvc , in
which there is no right-half-plane zero and the maximum
phase reduction is 180° under all load conditions, making it
attractive to design a CB voltage control loop for suppressing
the interphase L-CB resonance.

V. EXPERIMENTAL RESULTS

To verify the analysis, a two-phase SCB converter was built
and tested with both discrete and coupled inductors. Fig. 14
shows the overall hardware prototype. An input connector
board (Fig. 14b) for the line transient test is designed, which
can provide an input voltage step change by switching in a
second voltage source ∆v. Fig. 14c annotates the tested SCB
converter. Key component parameters are tabulated in Table II.
The prototype designed herein is to verify the theoretical
analysis. Demonstrating high efficiency or power density is
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2-Phase SCB Discrete Inductor Coupled Inductor

Current

Measurement Loop

Output Cap

Load Resistor

Vin+ -

(c)

Input Cap

Blocking 

Cap

F28379D

Control Card

(a)

Signal Buffer

& Vcc

(b)

Vin

+

-

Vdc

+

-

ΔV

+

-

2-Phase SCB

Input Connector 

Board

Fig. 14. Experimental hardware setup: (a) overall prototype; (b) line transient
input connector board; (c) annotated two-phase SCB converter.

TABLE II
BILL-OF-MATERIAL OF THE TWO-PHASE SCB CONVERTER

Device & Symbol Component Description

Switches, S1H/L ∼ S2H/L Infineon BSC009NE2LS5I
Blocking capacitor, CB KEMET, X7R, 50 V, 4.7 µF × 7

Output capacitor, Co KEMET, X7R, 25 V, 10 µF × 3
Output resistor, Ro TE, thick film, 10 Ω × 2

Discrete inductor Coilcraft SLC1480-441
Coupled inductor Toroidal 22/14/6.4, turns ratio 3:3

Core material: Fair-Rite 79

* Effective capacitances: CB(@ 3 V) = 32.2 µF; Co(@ 0.5 V) = 30 µF.

vsw1 (2V/div)

iL1 (2A/div) iL2 (2A/div)
vsw2 (2V/div)

2μs/div

(a) (b)

vsw1 (2V/div)

vsw2 (2V/div)

2μs/div

iL1 (2A/div) iL2 (2A/div)

Fig. 15. Switch node voltages and inductor currents (as defined in Fig. 1) for
(a) the discrete inductor setup (Lk = 505 nH) and (b) the coupled inductor
setup (Lk = 560 nH, LM = 7.43 µH, and β = 27). Lk and β are measured
for the full path from the switch node to the output.

out of the scope of this paper. Following experiments are
performed as the SCB prototype converts 6-V to 0.5-V and
switches at 300-kHz, unless otherwise specified.

Fig. 15 shows key operation waveforms of the SCB con-
verter. The discrete design contains two standalone inductors,
while the coupled case contains both standalone inductors and
a toroidal coupled inductor. This setup ensures the discrete and
the coupled cases have roughly the same leakage inductance
(or transient di/dt). As shown in Fig. 15, the coupled inductor
can greatly reduce the current ripple while maintaining roughly
the same transient speed for both designs.

With measured Lk and CB , the interphase resonant fre-
quency for the discrete design can be obtained as 9.26-kHz.

Vin (ac) (200mV/div)

vsw1 (1V/div)

iL1 (2A/div) iL2 (2A/div)

100μs/div 40μs/div

ΔiL (1A/div)

Vin (ac) (200mV/div)

(a) (b)

1.4 A

200 mV

Fig. 16. Responses of (a) switch node voltage vsw1, inductor currents iL1∼2,
and (b) inductor current difference ∆iL to the input voltage perturbation at
the interphase resonant frequency ωnip = 9.26 kHz (for the discrete design).

(a) (b)

iL1

iL2

iL1

iL2
6.8A

1.8A

Fig. 17. Simulated line transient responses when using (a) discrete inductors
and (b) the coupled inductor. Vin steps from 6 V to 8 V. Simulations are
based on RC = 1

7
Ω and other prototype circuit parameters.

(a) (b)

Vin (2V/div)

iL1 (2A/div)

iL2 (2A/div)
20μs/div 200μs/div

Vin (2V/div)

iL1 (2A/div)

iL2 (2A/div)

6.3A
1.5A

Fig. 18. Line transient test when using (a) discrete inductors and (b) the
coupled inductor. Vin steps from 6 V to 8 V. The experimental waveforms
match well with the simulation waveforms in Fig. 17.

Fig. 16 shows the responses of inductor currents and switch
node voltage to a 9.26-kHz input voltage perturbation. At
the resonant frequency, a small input voltage perturbation
(200-mV vin(pp)) may incur large resonant inductor currents
(1.4-A ∆IL(pp)), which are oppositely distributed on the two
inductors. Accordingly, the equivalent resistance RC = 1

7Ω. In
practical designs with optimized conduction losses and smaller
RC , the resonant issue will get even worse. Thus, proper input
filters and control methods are needed to prevent interphase
L-CB resonances from causing damages to the devices.

Figs. 17 and 18 show the simulated and the experimental
waveforms of the inductor current response to a line transient
when using different inductor setups. The simulated and the
experimental results have a good match. Compared to discrete
inductors, the coupled inductor can effectively reduce ∆iL,max

at the cost of increased settling time as expected. Based
on (10), the calculated ∆iL,max at the first resonant peak for
the two inductor setups are 6.2 A and 1.8 A. The discrepancy
between calculated, simulated, and experimental results is
mainly due to component value mismatch as well as the
impacts of output L-Co resonance.
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VI. CONCLUSIONS

This letter presents a systematic approach of analyzing the
intrinsic L-C resonant behavior in SCB converters. By decom-
posing disturbance and its response into common-mode and
differential-mode dynamics, the intrinsic resonant behavior can
be classified into output L-Co resonance and interphase L-CB

resonance. Similar analysis approach can be extended to higher
number of phases, enabling a more intuitive understanding
of SCB converter transient and balancing behaviors. The
impacts of coupled inductors is analyzed, indicating that higher
coupling coefficient results in smaller resonant amplitude and
lower resonant frequency with longer settling time. Compre-
hensive guidelines for designing a controller that cover both
input-output dynamics and interphase resonance are provided.
All analysis is verified by simulation or experimental results.

APPENDIX
STATE-SPACE MODEL OF AN M-PHASE SCB CONVERTER

An M -phase SCB converter contains M inductors,
M − 1 blocking capacitors, and one output capacitor, so
there are 2M state variables. Select the state vector as
x =

[
iL1

, iL2
, . . . , iLM

vC1
, vC2

, . . . , vCM−1, vo
]T

, the
input vector as u = [vin], and the output vector as
y =

[
iL1

, iL2
, . . . , iLM

io, vo
]T

. Applying switching-
cycle averaging, the state-space model can be obtained as:

ẋ = Ax+Bu, (16)
y = Ex, (17)

where the coefficient matrix A is:

A =

[
0M×M A12

A21 A22

]
, (18)

and the block matrices A12, A21, and A22 are:

A12 =



−D
L1

0 · · · 0 −1
L1

D
L2

−D
L2

... −1
L2

0
. . . . . . 0

...
... D

LM−1

−D
LM−1

−1
LM−1

0 · · · 0 D
LM

−1
LM


, (19)

A21 =



D
CB1

−D
CB1

0 · · · 0

0 D
CB2

−D
CB2

...
...

. . . . . . 0

0 · · · 0 D
CBM−1

−D
CBM−1

1
Co

1
Co

· · · 1
Co

1
Co


, (20)

A22 =

[
0M−1×M−1 0M−1×1

01×M−1 − 1
CoRo

]
. (21)

The coefficient matrices B and E are:

B =
[
D
L1

01×2M−1

]T
, (22)

E =

 IM×M 0M×M

1, 1, . . . , 1 0, 0, . . . , 0
0, 0, . . . , 0 0, . . . , 0, 1

 . (23)

Accordingly, the transfer functions can be derived as:

GviniLk
=

˜iLk

ṽin
= (E) row k · (sI−A)−1B, (24)

Gvinio =
ĩo
ṽin

= (E) row M+1 · (sI−A)−1B, (25)

Gvinvo =
ṽo
ṽin

= (E) row M+2 · (sI−A)−1B. (26)
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