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This supplement is organized as follows. Section S1 contains auxiliary results used in Ap-
pendix A of the main text. Section S2 contains auxiliary results on local polynomial regression.
Section S3 proves theorems in Appendix B. Section S4 derives critical values for one-sided confi-
dence intervals and gives tables of one- and two-sided critical values. Finally, Section S5 presents
the results of a Monte Carlo study.

The following additional notation, which is also used in the appendix in the main text,
is used throughout this supplement. For a sample {Z;} , and a function f on the sample
space, E,f(Z;) = LY, f(Z;) denotes the sample mean, and G,f(Z;) = /n(E, — E)f(Z;) =
VnlE.f(Z;) — Ef(Z;)] denotes the empirical process. We use ¢V ' and t A t' to denote element-

wise maximum and minimum, respectively. We use e, to denote the kth basis vector in Euclidean

space (where the dimension of the space is clear from context).

S1 Auxiliary Results

This section contains auxiliary results that are used in the proof of Theorem 3.1 in Appendix A
of the main text, and in the proofs of the results from Appendix B of the main text given later in

this supplement.

*email: timothy.armstrong@yale.edu
femail: mkolesar@princeton.edu
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S1.1 Tail Bounds for Empirical Processes

We state some tail bounds based on an inequality of Talagrand (1996) and other empirical process
results. Throughout this section, we consider a class of functions G on the sample space R%* with
an ii.d. sample of random variables Zi, ..., Z,. We assume throughout that G has a polynomial
covering number in the sense that, for some B,W, N;1(4,Q,G) < Be W for all finitely discrete

probability measures Q, where Nj is defined in, e.g., Pollard (1984), p. 25.

Lemma S1.1. Let G be a subset of G such that, for some envelope function G and constant g, |¢(Z;)| <
G(Z;) < gas. forall g € G. Then, for some constant K that depends only on G,

1 t2
P |su Gn Zi ZK EGZZ‘2 t §Kex - =
(Qg’ sl 2 Ky EG )H) p( KE[G(L-)Z]+g{ﬁ[c<zz->2]+t}/ﬁ)

Proof. We apply a result of Talagrand (1996) as stated in Equation (3) of Massart (2000). The
quantity v from that version of the bound is, in our setting, given by v = Esup s Y;'1(8(Zi) —

Eg(Z;))?> which, as shown in Massart (2000, p. 882), is bounded by (see also Klein and Rio, 2005)

sup E3(2) ~ Eg(Z)]*) + 328E sup i[g(zn — Eg(Z)].
8€ g€G i=

Q

By Theorem 2.14.1 in van der Vaart and Wellner (1996),
n
Esup ) [¢(Zi) — Eg(Zi)] < nKiy/E[G(Z)?, (1)
geG i=1

for a constant K; that depends only on G. Combined with the fact that E{[g(Z;) — Eg(Z;)]*} <
E[G(Z;)?], this gives the bound

v < nE[G(Z;)?] +32gK1v/n\/ E[G(Z))]2.

Applying the bound from equation (3) of Massart (2000) with these quantities gives

P <\/ﬁsup Gug(Zi) > Kiv/ny/E[G(Z)]2 + r>

g€g
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Q

<P (ﬁsqung upzn: (Z)] +r>

g€y geg i=1

1 r2
<K2eXP< Kz nE[G <zi>2]+3zg1<1\/ﬁﬁs[c<zi>]2+gr>’

where the first inequality follows from (1). Substituting r = /nt gives

(SUP Gng(Zi) > K14/ E[G(Z;)]* + f)
g€g

1 12
= faew <—1<2 E[G(Z:)7] + 323Ky WG(ZJJZ/ﬁw/ﬁ) ’

which gives the result after noting that replacing K; on the left hand side as well as K; and
32K;K; on the right hand side with a larger constant K decreases the left hand side and increases

the right hand side, and applying a symmetric bound to inf,.; G, <(Z;). O

Lemma S1.1 gives good bounds for ¢ just larger than /E[G(Z;)]?, so long as \/E[G(Z;)]?//n
is small relative to E[G(Z;)]? (i.e. so long as E[G(Z;)]?n is large). We now state a version of this

result that is specialized to this case.

Lemma S1.2. Let G be a subset of G such that, for some envelope function G and constant g, |¢(Z;)| <
G(Z;) < gas. forall g € G. Then, for some constant K that depends only on G,

a2
p (SUE Gng(Zi)| 2 ﬁﬂ) < Kexp <_K>

g€g
forall V> E[G(Z;)?] and a > 0 with a +1 < \/V/n/3.

Proof. Substituting t = rV1/2 into the bound from Lemma S1.1 gives, letting K; be the constant

K from that lemma,

1 r?V
P Gn2(Z)| > (K V72| <K (— )
(Zl;lg| g( )|_( 1+7’) ) = K exp K1V+§{V1/2+1’V1/2}/\/ﬁ

For g(1+7) < \/nV'/2, this is bounded by Kj exp ( ) Setting 2 = Ky + r and noting that
Kiexp ( g) < Ky exp (——) for a large enough constant K, (and that g(1+a) < /nV1/2
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implies g(1 +a — K1) < \/nV1/2) gives the result. O

S1.2 Tail Bounds for Kernel Estimators

We specialize some of the results of Section S1.1 to our setting. We are interested in functions of
the form g(x,w) = f(w, h,t)k(x/h), where h varies over positive real numbers and ¢ varies over
some index set T.

We assume throughout the section that k(x) is a bounded kernel function with support
[—A, A], with k(x) < By < oo for all k. We also assume that X; is a real valued random vari-

able with with a density fx(x) with fx(x) < fy < coall x.

Lemma S1.3. Suppose that {(x,w) — f(w,h,t)k(x/h)|0 < h < h,t € T} is contained in some larger
class G with polynomial covering number, and that, for some constant By, |f(W;, h, t)k(X;/h)| < By for
all h < hand t € T with probability one. Then, for some constant K that depends only on G,

a2

<)

p( sup  |Guf (Wi, Dk(X;/h)| zanAWf;/zhm) < Kexp(
0<h<hteT

foralla > 0witha+1 < Al/zf;/zﬁl/znl/z.

Proof. The result follows from Lemma S1.2, since B/I(|X;| < Ah) is an envelope function for

f(Wi, h, t)k(X;/h) as h and t vary over this set. O

Lemma S1.4. Suppose that the conditions of Lemma S1.3 hold, and let a(h) = 2+/Kloglog(1/h) where
K is the constant from Lemma S1.3. Then, for a constant ¢ > 0 that depends only on K, A and f,

P (\an(wi, h, O)k(X;/h)| > a(h) /2B, AY2FY? some (loglogn)/(en) <h <T, t € T)

< K(log2) ™2 ) k2.

(2h)"1<2k<c0

Proof. Let H* = (2-(+1) 2-k) Applying Lemma S1.3 to this set, we have

P (|an(wi, b, Ok(Xi/h)| > a(h)h/2B;AY2Fy? some h € HE, t € T)

<P ( sup  [Guf (Wi, b, )k(X;/h)| > a(27F)2-(k0/2B AL/2F ) 2)
0<h<2kteT
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—kyn—1/2]2
< Kexp (_[51(2%2]) = Kexp <—210g10g2k> = Kexp (—2log(klog2)) = K[klog2] >

so long as 271/2a(27%) +1 < A1/27§/22*k/2n1/2, where the first inequality follows since a(h) >
a(27%) and h > 2= +D for h € HE.
Now, 2-1/2a(2%) +1 < AV2Fy/227%/21/2 will hold iff. [2-1/2a(27F) + 1]2¢/2 < AV2F/*u1/2,

If 2F < en/loglogn for some & > 0, we will have a(27%) < 2,/Kloglog[en/loglogn], so that

[271/2q(27F) +1]2%/2 < {271/2. 2, /Kloglog[en/ loglog n] + 1}+/en/ loglog n. For large enough
n, this is bounded by 4v/Ken, which is less than A1/ 271(/2711/ 2 for € small enough as required.

Thus, for e defined above,

p (|an(Wi,h,t)k(Xi/h)\ > a(h)hl/zBfAl/zf;/z some (loglogn)/(en) <h <h,te T)

< y P ( sup  [Guf(Wy b, k(X;/h)| > a(2 k)2~ (H0 /2B A1/2F ) 2)
(2h)~1<2k<2¢en/ loglogn 0<h<2kteT
< K(log2)™ ) k2,
(2h)~1<2k<2en/ loglogn
which gives the result. O

Using these bounds, we obtain the following uniform bound on G, f(W;, h, t)k(X;/h).
Lemma S1.5. Under the conditions of Lemma S1.4,

|Grf (Wi, h, t)k(X;/h)|
(loglogh—1)1/2p1/2

= 0p(1).

sup
(loglogn)/(en) <h<hteT

Proof. Given & > 0, we can apply Lemma S1.4 to find a 6 > 0 such that

sup |an(W,-, h:tl)kl(/fll//’/;)| < 2\/27KBfA1/27¥2
(loglogn)/(en)<h<éteT (loglog h—1)1/2h

with probability at least 1 — K(log2) 2 L(25)1<2k<oo k=2 > 1 —¢/2. For this choice of 6,

|an(Wi, h,t)k(X;/h)|
(loglog h=1)1/2p1/2

sup = Op(1)

S<h<hteT
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by Lemma S1.3. Thus, choosing C large enough so that C > 2+/2KB fAl/ 2]7;/2 and

Guf (Wi, KX/ )] _
(loglogh=1)1/2p1/2 =

sup
S<h<hteT

with probability at least 1 — e/2 asymptotically, we have

|an(wil h, t)k<XZ/h>‘ <C

Sup (loglog h—1)1/2p1/2 =

(loglogn)/(en)<h<hteT

with probability at least 1 — e asymptotically. O

S$1.3 Gaussian Approximation

This section proves Theorem A.2 in Appendix A.4, which gives a Gaussian process approximation
for the process IF,, (1) defined in that section.

For convenience, we repeat the setup here. We show that ﬁGnYik(Xi /h) = ﬁ Y, Yik(Xi/h)
is approximated by a Gaussian process with the same covariance kernel. We consider a general
setup with {(X;, ;) }", i.i.d., with X; > 0 a.s. such that X; has a density f5(x) on [0,%] for some
X > 0, with f¢(x) bounded away from zero and infinity on this set. We assume that Y; is bounded
almost surely, with E(Y;|X;) = 0 and var(Y;|X; = x) = fg(x)~!. We assume that the kernel func-
tion k has finite support [0, A] and is differentiable on its support with bounded derivative. For
ease of notation, we assume in this section that [ k(u)*du = 1. The result applies to our setup
with Y; given in (10) in Appendix A in the main text and X; given by |X;]|.

Let

Theorem A.2. Under the conditions above, there exists, for each n, a process H, (/) such that,

conditional on (Xl, eeey Xn), H,, is a Gaussian process with covariance kernel

cov (Hy (i), Hy (1)) = ——— /k(x/h)k(x/h’)dx
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and

sup [IF1,(h) ~ H(h)] = Op ((nh,) " log(nh, )]/
h,<h<x/A

for any sequence h, with nh, /loglogh,' — .

We now prove the result. Let G(x) = % Y% <x Y;. With this notation, we can write the process

IF,,(h) as

A

H,(h) =

Vik(X:/h) = \\/g /k(x/h) a6 (x).

Let §(x) = + Xg <, fx(Xi) ™' In Lemma S1.6 below, a process B, (t) is constructed that is a Brow-
nian motion conditional on Xj, ..., X, such that B,(ng(x)) is, with high probability conditional
on Xi,...,X,, close to nG(x). By showing that ¢(x) is close to x with high probability and using
properties of the fluctuation of the Brownian motion, it is then shown that B, (ng(x)) can be ap-
proximated by B, (nx), so that IFl,,(h) is approximated by the corresponding process with G(x)
replaced by B, (nx)/n.

Formally, let B, (t) be given by the (conditional) Brownian motion in Lemma S1.6 below, and

define

H, (h

\ﬁ/kx/h dB,, ().

Note that H, (h) = ﬁ [ k(x/h)dB,(x) (where B, (x) = B,(nx)/+/n is another Brownian motion
conditional on Xj, ..., Xn), so that, conditional on (Xl, .. ,Xn), H, is a Gaussian process with

the desired covariance kernel.

Let Ry ,(x) = nG(x) — B, (ng(x)) and Ry, (x) = B,(ng(x)) — B, (nx). Then

A, (1) — H,(h /k (x/h) dRy,(x /k (x/h) dRan(x).

=Vl o

Using the integration by parts formula, we have, for j = 1,2 and Ah <X,

\ﬁ/k (x/h)dR;,(x) = Rf'”(‘y%km) - \/17171 :; Rj,n(x)k’(x/h)%dx
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The first term is bounded by W, and the second term is bounded by

T (ofiPAh‘Rfﬂ“”) <0335A ‘k’“‘”)

(see Bickel and Rosenblatt, 1973, for a similar derivation). By boundedness of k'(u), it follows

that both terms are bounded by a constant times \/% SUPo<y<An ‘Rj,n (%)},

. : [Rin()] [Rin(®)]
su H,(h) —H,(h)| <K su sup jn( <K L .
@nghg%//a [E () hnghsgm ]; o<x<An Vnh ;Z% o<x<z V/nl[(x/A)Vh,]
for some constant K. Thus, the result will follow if we can show that sup,_,_ - % and
== n(xVh,

‘RZ,n (X)| 1
SUPo< <% WIETN) converge to zero at the required rate.
—=n

|R1n ()]
n(xVh,)
with this construction, using an approximation of Sakhanenko. Denote the the empirical cdf of

Xiby Fy(x) =2y I(X; < x), and let X (1) be the kth smallest value of X;.

We first construct B, (t) and show that supy_ - 4%, 4 converges to zero quickly enough

Lemma S1.6. Under the conditions of Theorem A.2, one can construct variables Z,...,Z, such that

Zi|(Xy, ..., Xn) ~ N(0, fx(X;)™") and

{

with probability one, where €(K) is a deterministic function with e(K) — 0 as K — oo.

Lz- Yy

Xi<x Xi<x

> Klog [nFg(x) +2] some0<x <X

Xlr---/Xn) S 8(1()

Proof. Using a result of Sakhanenko (1985) as stated in Theorem A of Shao (1995), we can con-
struct Z4,...,Z, such that

Xi<x Xi<x

Eexp (/\A sup

OSXSX(k)

where A is a universal constant and A is any constant such that AE[exp(A|Y;|)]Y;]%|X;] < E[Y?|X/].

Let Y be a bound for Y;. Then AE[exp(A|Y;])|Y;[?|Xi] < Aexp(AY)YE[|Y;|?|X;], so the inequality

holds for any A with Aexp(AY)Y < 1. From now on, we fix A > 0 so that this inequality holds.
Letting f . be a lower bound for fx(x) over 0 < x <X and applying Markov’s inequality, the
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above bound gives

P ()\A sup Z Zi — Y| >t

OSXSX(k) Xi<x X;<x

<
< exp(—t)Eexp (AA sup

Xy, .. .,Xn> <exp(—t)(1+ )\i;k).

Xl,...,f(n>
5(1,...,5(”)

n
< ZP AA  sup Z;— Y; ZAAKlogk‘Xl,...,Xn
k=2 OSXSX(k) Xi<x Xi<x

Thus,

some (0 < x<%x

Zi— Y Y,

Xi<x Xi<x

sup
OSXSX(M

> Klogksome2 <k <n

(VAN
o)
RS

<Y MR AfR) < Y MR AL,
k=2 o k=2 o

which can be made arbitrarily small by making K large. O

Embedding } x - Z; in a Brownian motion, we can restate the above construction as follows:

with probability at least 1 — K(¢) conditional on X3, ..., X,
[nG(x) — Bu(ng(x))| < Klog[nFg(x) +2]all0 < x <x

where B, (t) = B, (t; Xy,...,X,) is a Brownian motion conditional on Xj,...,X,. Let 75( be an

upper bound for the density of X; on [0, X].

Lemma S1.7. Under the conditions of Theorem A.2, for any n > 0,

F(x) < fx- (1+7)(x Vh,)

forall 0 < x < X with probability approaching one.
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Proof. By Lemma S1.5,

wap YD) “Fe(| _ o)

n<x<x /xloglogx~t

Thus,

P(x) — Fy(x)] _  ilfg(x) - Fy(x)| y/xloglogx !

sup = sup

h,<x<x x h,<x<% xloglogx—! /nx

Moo log x—1 \/loglogh,!
:(’)p< sup Vloglogx™! ) =0Op (g &2 ) =op(1)

h, <x<z Vnx nh

n

where the last step follows since nh, / loglogh, ' . Thus, for any 1 > 0, we have, with

probability approaching one,

A

Ff((x) < A)N((xvhn> < FX(x\/hn) + <77J7X)(xvhn) < ]7)? ’ <1+77)(xvhn)

for all x. O

Combining these two lemmas, we have, for large enough n,

lim sup P <|né(x) — B, (ng(x))| > Klog [2”75((’( Vh,) —|—2} some 0 < x < f)

< ¢(K) 4 limsup P (ﬁx(x) > fg2(x \/hn)) < ¢(K).
n
Since this can be made arbitrarily small by making K large, it follows that

}n@(x) _ Bn(ng(x))‘ o, ( log {ZWFX(X Vh,) +2] ) _ o <log(nhn)> ’

sup

0<x<¥ Vn(xVh,)

sup
0<x<x ”(x \ hn) nhn
which gives the required rate for Ry ,(x).
Define the function LL(x) = loglog x for loglogx > 1 and LL(x) = 1 otherwise. Given K, let
B, (K) be the event that

[ng(x) —nx| < K\/n(x Vh,)LL(x/h,) all0 < x <X,

510



and let C,(K) be the event that

B (t') —Byu(t)] < K\/(\t/ —t|V1)-log(tVt v2)all0<tt < oo

Lemma S1.8. On the event B, (K) N C,(K), for large enough n,

[Rau(x)]
n(xV hy)

< K¥*(nh,)"'/* - {log 2 + log|niz, ] }'/2

< K¥2[n(x v )| VHLL(x/ )}V - {log 2 + log[n(x v B,)] /2

forall0 < x <Xx.

Proof. On this event, for all 0 < x < X and large enough n,

[Ra,n(%)] = By (ng(x)) — Bn(nx)| < sup [Bu(t) — By (nx)]|
|t—nx|<Ky/n(xVh,)LL(x/h,)

< sup Ky/ (1t = nx| V1) loglt v (nx) v 2]
|t—nx|<K+/n(xVh,)LL(x/h,)

< K\/K\/n(x VI, LL(x/1,) -log[2n(x V h,)]

— K324 (x v b, )V LL(x/B,) 1/ - {log 2 + log[n(x V I, ) }V/2

O]

Lemma S1.9. Under the conditions of Theorem A.2, for any € > 0, there exists a K such that P(B,(K)) >

1 — e for large enough n.

Proof. Let X% = (2Fh,,2¥1h,] N [0,%]. We have, for k > 2,

p <|n (x) —nx| > K\/n(x\/hn)LL(x/hn) some x € Xk>

<P (sup G, f (X)) '(X; < x)| > Ky/2kR,, - LL(Zk)>
2 k 2
< Cexp <—I<Lé(2)> < Cexp (—Iéloglog(Zk)> = C[klogZ]_%2
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for some constant C by Lemma S1.3. Thus,

P <]n§(x) —nx| > K\/n(x\/hn)LL(x/hn) some 45, < x < x) <C Z[klogZ]’KZ/C
k=2

which can be made arbitrarily small by making K large. Note also that

P <|ng(x) —nx| > K\/n(x V h,)LL(x/h,) some 0 < x < 4hn)

gp( sup (G f(%) (X, < v) >K¢E>,

0<x<4h,

which can also be made arbitrarily small by choosing K large by Lemma S1.3. Combining these

bounds gives the result. O

Lemma S1.10. Under the conditions of Theorem A.2, for any € > 0, there exists a K such that with
probability one for all n, P(C,(K)|X1,...,Xy) > 1—¢

Proof. We have

=P (\Bn(t/) —Bu(t)| > K\/(|t— V1) -log(tV#V2) some0 <tt < oo>

= (|]Bn(t+s) — B, (t)| > K\/(s\/l) -log[(t+5s) V2] some 0 <s,t < oo>

< i iP <]IBn(t—|—s) —B,(t)] > K\/(s V1) -log[(t+s) V2] some (s,t) € Sk,g>
k=0£=0

where Sy p = {(s,t)[{ <s <{+1,({V1)k <t < (£V1)(k+1)}. Note that

P <\IBn(t+s) — B, ()| > K\/(s V1) -log[(t+s) V2] some (s,t) € Sk/(>

<P <]IBn(t—|—s) — B, ()] > K\/(ﬁ\/ 1) -log{[(¢V 1)k + ¢] v 2} some (s,t) € Sk,g>

P <]IBn(t +5s) — B, ()] > K\/(é\/ 1) -log{[(¢V 1)k + £] V 2} some (s,t) € Solg>

<P (]IBn(t)\ > (K/Z)\/(é\/l)-log{[(ﬁ\/l)k—}—ﬁ] V2}some0<t< (£V1)+£+1>

<4p <\Bn((£\/1)+€+l)\ > (K/2)1/ (6 V1) -Tog{[(£ v 1)k + (] vz})
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1 1(K/2)2(¢v1)-log{[({V1)k+£]Vv2}
S‘*'m‘exp(‘z Vi) +0+1 >
2 o )
< 4-% -exp <—(K/2) : g{[(i“)kj%] v2}> =4. %-{[(Evnkw] v 2} K/

The third line follows since B, (t) has the same distribution as B, (f + (¢ V 1)k). The fourth line
follows since, if |B,(t +s) — B, (t)| > C for some C and (s, t) € Sy ¢, we must have |B,(t)| > C/2
for some 0 < t < (¢ V 1)+ £+ 1. The fifth line follows from the reflection principle for the
Brownian motion (see Theorem 2.21 in Morters and Peres, 2010). The sixth line uses the fact that
P(Z>x) < —x%/2) for x > 1and Z ~ N(0,1).

Thus,

5= p(

P (}Bn(t’) —IBn(t)| > K\/(lt —t|Vv1)-log(tVt' V1) some0 <t t < oo>

gii — { (0 1)k + €] v 2} K724,

This can be made arbitrarily small by making K large. O

Theorem A.2 now follows since, for any constant ¢ > 0, there is a constant K such that
SUP, <j<z/A [, (h) — H, (h)]| is less than K{(lognh,)(nh,) '/ + (nh,)"'/*[log(nh,)]"/*} with
probability at least 1 — ¢ asymptotically.

S1.4 Calculations for Extreme Value Limit

This section provides the calculations for the asymptotic distribution derived in Theorem A.3 in
Section A.5 of the appendix.
As described in the proof of Theorem A.3, we use Theorem 12.3.5 of Leadbetter et al. (1983)

applied to the process X(t) = H(e'), which is stationary, with, in the case where k(A ) #0,a=1
f[k’(u)qu k(u)du]

and C = Tk du (A) and, in the case where k(A) =0, « =2 and C = TR0 dn . In the
notation of that theorem, we have
e2! [ k(ue')k(u)du
r(t) = cov (X(s),X(s+1t)) = ffk(u)z »

t—o00

Since r(t) is bounded by a constant times e2' - ¢!, the condition 7(t) log t 0 holds, so it
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remains to verify that r(t) = 1 — C|t|* 4+ o(|t|*) with « and C given above.

Since k(ue')k(u) has a continuous derivative with respect to t on its support, which for t > 0 is
[—Ae™, Ae], it follows by Leibniz’s rule and symmetry of k that, for t > 0 4 [ k(ue')k(u) du =
—2Ae 'k(A)k(Ae™") + [ K (ue')k(u)ue' du for t > 0. Thus, for t > 0,

d b zt i J k(ue')k(u) du + %e%tfk(uet)k(u)du
ar, ) = fk )2 du
B et [<2Ae~tk(A)k(Aet) + [ K (ue)k(u)uet du] + et [ k(uet)k(u)du
B J k(u)?du '
Thus,
d ., _ —2Ak(A? + [K(w)k(u)udu+ 5 [k(u)>du  —Ak(A)?
Er( ) - [ k(u)?du [ k(u)?du

where the last step follows by noting that, applying integration by parts with k(u)u playing the
part of u and k' (u)du playing the part of dv,

/k WK ()u du = | /k u) + K (u)u] du
— 2k(A)PA — / k()2 du — / k(u)K' () du
so that [ k(u)k'(u)udu = k(A)2A — 1 [ k(u)*du. For the case where k(A) # 0, it follows from
this and a symmetric argument for t < 0 thatr(f) =1—C|t| —o(]t]) for C = TR0 ( ) - as required.
For the case where k(A) = 0, applying Leibniz’s rule as above shows that r(t) is dlfferentiable
with,
o) = e%tfk’(uet)k(u)uet du + 3 fk(uet)k(u)du.
S k(u)?du
Thus, 7' (0) = 0 (using the integration by parts identity above) and r(t) is twice differentiable
with
, 1t% [ K (ue'k(u)ue! du + 3 (% [ k(ue)k(u) du + [ K (ue')k(u)ue' du + fk(uet)k(u)du>
t) =e2 .
) =e J k(u)?du
We have
/k/ ue ) k(u)ue' du = /k’ “tdo
dt
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= /k/(v)k’(ve_t)(—ve_t)ve_tdv— /k’(v)k(ve_t)ve_tdv

and % [ k(ue'k(u) du = [ K (ue')k(u)ue' du, so this gives

— (K () (ue Hu2e 2t du — L [ k' (uek(u)uet du

o [ K (uet)k(u)uet du + 3 fk(uet)k(u)du.

¢ [ k(u)?du

N~

+

Thus,
o0y = W00 du b5 [ () du
T k(u)? du

Since, by the integration by parts argument above, ; [ k(u)?du = 3 [k(u)?>du — § [ k(u)*>du =
— [k(u)k' (u)udu — % [ k(u)?du, this is equal to

— [ (w)ul? du — [k(u)k' (wyudu — 3 [k(u)>du [ [K(w)u+ %k(u)}z du

[ k(u)?du B J k(u)?du

which gives the required expansion with C given by one half of the negative of the above display

and « = 2.

S1.5 Delta Method

We state some results that allow us to obtain influence function representations with the necessary
uniform rate for differentiable functions of estimators. These results amount to applying the delta
method to our setting and keeping track of the uniform rates.

Let A(h) be an estimator of a parameter B(h) € R% with influence function representation

1 n

for some function g and a kernel function k, where ¢g(W;, h)k(X;/h) has mean zero and

sup;, <5 [Riu(h)| = op(1/4/log logh,'). Let g be a function from R% to R% and consider
the parameter 6(h) = g(B(h)) and the estimator 8(h) = g(B(h)).
Let V(h) be an estimate of Vg(h) = }Eyg(W;, h)ypg(Wi, h)'k(X;/h)?, the (pointwise in k)
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asymptotic variance of (h). A natural estimator of the asymptotic variance Vy(I) of 8 is

Lemma S1.11. Suppose that B(h) is bounded uniformly over h < h,, where h, = O(1) and

(i) For large enough n, g is differentiable on an open set containing the range of B(h) over h < hy, with

Lipschitz continuous derivative Dy.

(ii) g and k are bounded, k has finite support, and the class of functions (w, x) ~— g(w, h)k(x/h) has

polynomial uniform covering number.
(iii) | X;| has a bounded density on [0, hy] for large enough n.

Then, if nh,,/ (loglogn)® — oo,

sup_|V/h(0(01) —0(0) ~ —— éDg<ﬁ<h>>¢ﬁ<wi,h>k<xi/h>' — o (1 / \/1ogloghn1) .

h,<h<h,

If, in addition, sup, .5 | Vg(h) — Vg(h)|| 50, then, for some constant K and some Ry, (h) with

SUpPy, <n<h, \/ﬁmmz(hﬂ = Op(1),

A

Vo(h) — Vo(h)|| <K

Vg(h) = Vg(h)|| + Ru2(h)

for all h,, < h < hy, with probability approaching one.
Proof. By a first order Taylor expansion, we have, for some * (k) with ||*(h) — B(h)| < ||B(h) —
B,
Vnh(8(h) = 6(h)) = Vnh(g(B(h)) — g(B(h))) = VnhDg(p" ())(
1 n
= Dg(ﬁ*(h))ﬁ l; Yp(Wi, m)k(Xi/h) + Dg(B* (1)) Ry, (h)

o~y
~
=
S—
|
=
—~
=
S—
S—

1 & 1 &

= o L DB (Wi, k(X /) + (DB () = Dy (B} 3 (W h)k(Xi/ 1)
+ Dy (1) R ()
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Applying Lemma A.2, (k) — B(h) is Op(y/loglogh~—1/+/nh) uniformly over h, < h < h, and
\/%Z?:l (Wi, h)k(X;/h) is Op(y/loglogh~1) uniformly over h, < h < hy. so that, by the
Lipschitz condition on Dy, the second term is Op(loglogh~!/+/nh) uniformly over h, < h < Ny,

which is 0p(1/4/loglogh, ') uniformly over h, < h < h, since \/nh,/(loglogh,)/? — co. The
last term is op(1//loglogh, h uniformly over i, < h < h, by the conditions on Ry ,(h), the
uniform consistency of B(h) and the Lipschitz condition on Ds.

For the second claim, note that

Vo — Vo = Dy(B(h))Vp(h)Dg(B(h))" — Dy(B(h))Vs(h) Dg(B(h))'

= [Dy(B(h)) — Dg(B(h))]Vp(h) Dy (3( )) Dy (B(H))[V(h) = Vs(h)|Dg(B(R))
+ Dy (B(h)) Vp(h)[Dg(B(h)) — Dg(p

The first and last terms converge at a /loglogh~1/+/nh rate uniformly over h, < h < h, by
Lemma A.2 and the Lipschitz continuity on Ds. The second term is bounded by a constant times
[Vg(h) — Vg(h)|| uniformly over i, < h < h with probability approaching one by the uniform
consistency of B(h) and the Lipschitz continuity of Ds. O

S1.6 Sufficient Conditions Based on Non-normalized Influence Function

In some cases, it will be easier to verify the conditions for an influence function approximation
to v/nh(A(h) — 6(h)) rather than the normalized version v/nh(8(h) — 6(h))/(h). The following

lemma is useful in these cases.
Lemma S1.12. Suppose that the following conditions hold for some (W, h).
1. Ep(W;, h)k(X;/h) = 0 and k is bounded and symmetric with finite support [—A, A.

2. |X;| has a density fix| with fix(0) > 0, §(W;, h)k(X;/h) is bounded uniformly over h < h,
and, for some deterministic function ((h) with £(h)loglogh™! — 0as h — 0, the following ex-
pressions are bounded by £(t): |fix|(t) — fix|(0)], |E [{(W;, 0)||X;| = t] — E [{(W;,0)||X;| = 0] |,
foar [§(W,, 0)[1Xi| = £] — var [H(W;, )] [Xi| = 0] | and |(B(W,, £) — B(W,, 0))k(X;/h)].

Let 0?(h) = goar(p(Wi, h)k(X;/h)) for b > 0 and let 0*(0) = var [{(W;,0)||X;| = 0] fix|(0) -
[ ok(u)?du. Let (Wi, h) = §(W;, h)/o(h) so that joar[p(W;, h)k(X;/h)] = 1. Suppose that
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var [P(W;,0)]|X;| = 0] > 0. Then the above assumptions hold with ¢ replaced by y for h small enough
and with £(t) possibly redefined.

Proof. First, note that the only condition we need to verify is the one that involves |[¢(W;, h) —
P(W;,0)]k(X;/h)|, since the remaining conditions are only changed by multiplication by a con-
stant when ¢ is replaced by ¢. Note that

72 (h) — oar(P(W;, O)K(Xi/ 1)) = L oar(P(W;, IK(Xe/R) — oar (F(W, O)k(Xi/h)) =

%var{[lp(wi,h) — B O (X / 1)} + 25 co0 (W, ) — BN O) k(X /), B, O)k(Xi/1)).

Since [(Y(W;, h) — Pp(W;,0))k(X;/h)| < L(h)I(|X;| < Ah), $(W;, h)k(X;/h) and §(W;, 0)k(X;/h)
are bounded, the last two terms are bounded by a constant times ¢(h)+EI(|X;| < Ah), which is
bounded by a constant times ¢(/) by the assumption on the density of |X;|.

Thus, let us consider

1var(lp(wi,0)k(xi /h))

=5 | oar [PV 0)I1X4] = ] K(e/ 2 i (x) dx + oar {E [(W5 0) 1] (Xs/ )}

Arguing as in the proof of Lemma A.6 (using the fact that E(W;, h)k(X;/h) = 0 and taking
limits), it can be seen that E [()(W;,0)|| X;| = 0] = 0 under these conditions. Thus, the last term
is bounded by ¢(Ah)*}Ek(X;/h)?. The first term is equal to var($(W;,0) | |X;| = 0) fix|(0) -
[ o k(u)? du plus a term that is bounded by a constant times ((A#).

It follows that, letting 02(0) = var [{(W;,0)||X;| = 0] fix(0) [~ k(u)*du as defined above,
we have, for some constant K, |02(h) — 0?(0)| < K¢(Ah). Thus,

[ (Wi, 1) — (Wi, 0)k(Xi/h))|

1 7, - ~
< 0y IIBWa ) = O, O)JK(X /1) + (Wi WX/ ) ‘a _ L

The first term is bounded by a constant times ¢(/) by assumption. The last term is bounded by a

constant times |¢?(h) — ¢%(0)|, which is bounded by a constant times ¢(Ah) as shown above. [J
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S2 Local polynomial estimators: regression discontinuity/estimation

at the boundary

This section gives primitive conditions for smooth functions of estimates based on local polyno-
mial estimates at the boundary, or at a discontinuity in the regression function. The results are
used in Section S3 below to verify the conditions of Theorem 3.1 for the applications in Section 4
in the main text. Throughout this section, we consider a setup with {(X;, Y/)'}/, ii.d. with X;
a real valued random variable and Y; taking values in R?*. We consider smooth functions of the
left and right hand limits of the regression function at a point, which we normalize to be zero.

Let (Buj1(h), Bujo(h)/h, ..., Bujri1(h)/H") be the coefficients of an rth order local polyno-
mial estimate of E[Y;;|X; = 0] based on the subsample with X; > 0 with a kernel function
k*. Similarly, let (Byj1(h),Bej2(h)/h, ..., Bejrr1(h)/h") be the coefficients of an rth order local
polynomial estimate of E[Y;;[X; = 0_] based on the subsample with X; < 0, where the polyno-
mial is taken in |X;| rather than X; (this amounts to multiplying even elements of B,; by —1).
The scaling by powers of h is used to handle the different rates of convergence of the different
coefficients. Let p(x) = (1,x,x%,...,x"), and define Bu,j = (Bu,]’,1(h),,8u,j,2(h), . ..,Bll,j,;/+1(h)) and
Boj = (Boji(h),Boja(h), ..., Bejre1(h)). Let p(x) = (1,x,x2,...,x")". Then B, ; minimizes

n

Y (Vi — p(1Xi/h]) Buj)*1(X; > 0)k*(X;/h)

i=1
and B ; minimizes

n

> (Yij = p(IXi/ h])'Buj)*I(Xi < 0)K*(Xi/h).

i=

—_

Define

Ty (h) = LEp(1X;/h)p(|1X:i/h])'k* (Xi/B)[(X; > 0),

To(h) = REp(IXi/h) p(IXi/h])'k* (Xi/h)I(X; < 0),

Lu(h) = 25 Xy p(1Xa/ R p(1Xi /1)) k= (Xi /) 1(X; > 0) and
e(h) = o5 iy p(IXa/RD) p(1X /1)) (Xi /1) I(X; < 0).
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Let piy o = [y u'k*(u) du, and let M be the matrix with i, jth element given by ji- i j_».

Let &, (h) = (Biau(h),...Brayu(h)) and &e(h) = (Bi1e(h),...Bra,¢(h)), and similarly for
ay(h) and ay(h) (ie. a, and a; contain the constant terms in the local polynomial regressions
for each j). Let a(h) = (&y,(h)’,&¢(h)") and a(h) = (ay(h),ap(h)"). We are interested in 6(h) =
g(a(h)) for a differentiable function g from R*" to IR, and an estimator 8(h) = ¢(a(h)). We
consider standard errors defined by the delta method applied to the robust covariance matrix
formula obtained by treating the local linear regressions as a system of 2dy weighted least squares
regressions. Let v,(h) = €T, (h)~! and let v,(h) = ¢{Ty(h)~L. Let 0,(h) = ejl'y(h)~! and let
vy(h) = e\ Ty(h) 71 Let ¥ (X;, Y;, h) be the (2dy) x 1 random vector with jth element given by

va () p(1Xi /1) [Yij — p(IXi/h]) Bu,; (W] 1(X; = 0) ifj=1,....,dy,

ve(R)p(1Xi/ b)) [Yij-a, — p(IXi/h]) Beja, (]I(X; <0) if j=dy+1,...,2dy.

$aj(Xi, i, h) =

Let ¥, (X;, Y;, h) be defined analogously,

B (X0 Yi ) = Du(h)p(|1Xi/ ) [Yij — p(‘Xi/hD/ﬁu,jA(h)]I(Xi >0) ifj=1,...,dy,
0o (W) p(1Xi/B)[Vij—ay, — p(I1Xi/B]) Bejay, (M)]I(X; <0) if j=dy+1,...,2dy.
Let
Va(h) = %E%(Xi, Y, 1) a (X, Yi, h)' K (X; /1)
and let

N 1_ . A
Va(h) = - Entpa(Xi, Y;, 1) u (X;, Y, h)'K* (X;/h)>.
Let 0(h) = Dg(a(h))Vu(h)Dg(a(h)), and o(h) = Dg(a(h))Va(h)Dg(a(h))', where Dy is the
derivative of g.

We make the following assumption throughout this section. In the following assumption, ¢(t)
is an arbitrary nondecreasing function satisfying lim, o ¢(t) loglogt~! = 0.
Assumption S2.1. (i) X; has a density fx(x) with |fx(x) — fx—| < £(x) for x < 0and |fx(x) —

fx+| < l(x) for some fx 4 > 0and fx_ > 0.
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(ii) Y; is bounded and, for some matrices ¥ and ¥, and vectors fi_ and i, ¥(x) = var(Y;|X; = x)
and ji(x) = E(Y;|X; = x) satisfy ||Z(x) — Z4|| < £(x) and ||fi(x) — fiy || < £(x) for x > 0 and
1£(x) = Z-|| < £(x) and ||fi(x) = fi-|| < £(x) for x <O0.

(iii) k* is symmetric with finite support [— A, A, is bounded with a bounded, uniformly continuous first

derivative on (0, A), and satisfies [ k(u)du # 0, and the matrix M is invertible.

(iv) Dy is bounded and is Lipschitz continuous on an open set containing the range of a(h) over hy, for

n large enough.
(v) Dgu(a(0))E1 Dy (a(0)) > 00r Dgy((0))E_Dg,u(€) > 0.
(vi) hy, = O(1) and nh,,/ (loglogn)® — oo
Theorem S2.1. Under Assumption S2.1, Assumptions 3.1 and Assumption 3.2 hold with k(u) =
et M~ p(|u|)k*(u) and ¢ defined below so long as nh,/(loglogh,')® — co and hy, is small enough
for large n.
Throughout, we assume that 1, is small enough so that || T, (k) || and || T¢(#)~!|| are bounded

uniformly over h < h, for large enough n (this will hold for small enough &, by Lemma S2.4

below).

Lemma S2.1. Suppose that Assumption S2.1 holds. Then

A

sup —— 2, () — 1, (1) = Op(1),

I, <h<h, V/1oglogh—1
vnh
SUp  —
h, <h<F, V/loglogh

ﬁu]( ) ,Bu,j(h)

A

Bu(n)™ = Tu(n) | = 02(1),

o
loglogh~1

1
I

sup
h,<h<h,

ExTu () p(Xe/ MK (Xe/ 1) [Y; — p(Xi/ ) B(W)]1(X; > o>H — 0p(1),

and

I, <h<h \/10;%/1:7 Hﬁu] 'B“rf(h)H = Op(1)

for each j. The same holds with 1(X; > 0) replaced by 1(X; < 0), T, replaced by Ty, T, replaced by T,

etc.
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Proof. The first display follows from Lemma A.2. For the second display, note that f'(h)~! —
L(h)~t = =T(m) 1 ((h) =T (W)L (k) so [T (1)~ =T () ~H| < ()M IIT () = T () |[IT ()~
|T(h)~1| is bounded by assumption and ||T'(k)~!|| is Op(1) uniformly over h, < h < h, by this
and the first display in the lemma. For the third display, note that

Buj(h) = Buj(n) = Euh) ™ L Eup(Xe/ WK (e /W) [Yi = p(X /1Y BR]I(X; > 0).

Thus, letting B = —LE,T,(h) " 1p(X;/h)k*(X; /h)[Y; — p(X:/h) B()|I(X; > 0),

nh
loglogh=!

N

,Bu,j(h) - :Bu,](h)BH

vnh
< sup ———
by <h<fin V loglogh
vnh 1
su

s T & Eap (XK (XWX, = p( /) BLICX, > 0).
hy<h<h,

sup
h, <h<hy,

A

()~ — Fu(h)‘lu

The first term is Op(1) by the second display in the lemma. The second term is Op(1) by
Lemma A.2. The last display in the lemma follows from the third display and Lemma A.2. [

Applying the above lemma, we obtain the following.

Lemma S2.2. Under Assumption S2.1,

n

&(h) —a(h) — L Y (X, Yi,h)k*(Xi/h)H = Op(1)

nh =

nh

Sup loglogh—1

h,<h<hy

and

n,<h<h, V1oglogh™!

A

V() — Va()| = Op(1).

Proof. The first claim follows by Lemma S2.1. The second claim follows by using the fact that
V. (h) is a Lipschitz continuous function of the § and ? terms and terms that can be handled with

Lemma A.2. O
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Lemma S2.3. Suppose that Assumption S2.1 holds. Then

A 1 & _
sup Vnh||0(h) —60(h) — — Y Dg(a(h))pa(X;, Yi,h)k*(Xz-/h)H = op (1/\/logloghn1>
h,<h<h, Vnh iS5
and
nh
sup M3 () — ()| = 0p(1).
n,<h<h, Vloglogh™!
Proof. By Lemma S2.2,
1 n
sup ||Vnh(&(h) —a(h)) — Yo (X, Yi, h)k* (X;/h)
by, <h<hy vinh iS5
= Op < sup (loglogh™) /\/ﬂh) = Op ((1oglogh,;1) /\/nhn> = op <1/\/logloghn1>
h<h<hy
since (loglogh,*)3/2//nh, — 0. Thus, the result follows by Lemma S1.11. O

Let m;j(x,h) = p(x/h)'B,;j(h) for x > 0and m;(x,h) = p(x/h)'Bgj-a, (h) for x < 0. Let Dy, (a)
be the row vector with the first dy elements of D¢(«), and let Dy /(«) be the row vector with the

remaining dy elements. With this notation, we have

Dg(a(h))u(Xi, Yi, h)
= {1(X; > 0)vy(h)p(|X;/1]) Dgu(a(h)) + I(X; < O)ve(h)p(|X;/h|) Dy p(a(h))} [Y: — m(X;, 1))

Let 9,,i(h) = 4EY;ip(|Xi/h))k*(Xi/h)[(X; > 0) and 7,,¢(h) = {EY;p(|X:/h)k*(Xi/h)I(X; < 0).
Let 7,,;(0) be the (r +1) x 1 vector with gth element given by fx . fi4 jp 4. Let ,,;(0) be the
(r+1) x 1 vector with gth element given by fx, fi_ jpix+ . Let a(0) = (f,, fi’_)" (it will be shown
below that limy,_,qa(h) = a(0)).

We now verify the conditions of the main result with k(1) = e{M~1p(|u|)k*(u) and

o Dg(a(h))ya(Xi, Yi h)
YW t) = NI /R ()
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for h > 0 and

1

$(W;,0) = o5 [Daa@(O)fich (% = 1) 1(Xi 2 0) + D (w(0) fe (% = ) 1(X; < 0)]

where 02(0) = limy,_, 0?(h) (this choice of ¥(W;,0) will be justified by the calculations below).

Lemma S2.4. Under Assumption S2.1, for some constant K,

ITu(h) = fx,+- M| < KE(AR),
ITe(h) — fx, M| < KE(Ah),
[7vu(h) = 7 (0)|| < KE(AR),
and —|[ve(h) = 1(0)[| < KE(AR).

Proof. We have

Tui(h) = L EYyp (X RK (XM 2 0) = 1 [~ ) pGe/mK (x/h) ) d

= /xo_oo i (uh) p(u)k* (u) fx (uh) dx.

Thus, by boundedness of k*, the quantity [|v,,(h) — 7,,(0)| is bounded by a constant times
SUPg< < an |7 (x) fx(x) — fiy jfx,+|, which is bounded by a constant times {(Ah) by assumption.

Similarly,

Ty jm(h) = %E(Xi/h)j+m*2k*(Xi/h)I(Xl- >0) =+ / ioo(x/h)”mzk*(x/h) fx(x) dx

h
= /Oo w2k (u) fx (uh) du,
x=0

80 |Tujm(h) — fx,+ M| is bounded by a constant times sup_, . 4, |fx(x) — fx,+| < ¢(Ah). The

proof for I'; and 7y, is similar. O

Note that B,,;(h) = Tu(h) Yy j(h) — MY, e, o i) = fi4j(1,0,...,0) as h — 0,
where the last equality follows since M~ (1, pig- 1, .. ., pig+,)" is the first column of MM = I,
(the second through rth elements of B, ; are given by the corresponding coefficients of the local

polynomial scaled by powers of h, so this is a result of the fact that the coefficients of the local
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polynomial do not increase too quickly as 1 — 0). By these calculations and Lemma S2.4, we

obtain the following.
Lemma S2.5. Under Assumption S2.1, for some constant K and h small enough,

|Buj(It) = fis;(1,0,...,0)'| < KE(AR),
and — |Byj(h) —fi_j(1,0,...,0)'| < KC(Ah).

Proof. The result is immediate from Lemma S2.4, the fact that |T,(k)~!|| and ||T,(h)~!| are
bounded uniformly over small enough / (which follows from Lemma S2.4 and invertibility of M)
and fact that the function that takes I' and v to I' !y is Lipschitz over T and -y with ! and v
bounded. O

Note that, since «(h) is made up of the first component of each of the B, (k) and B ;(h)
vectors, the above lemma also implies that |a(h) — «(0)| < K¢(Ah) for «(0) defined above. For
convenience, let us also define B,,;(0) and B;;(0) to be the limits of B,;(h) and B ;(h) derived

above.
Lemma S2.6. Under Assumption S2.1, for some constant K and h small enough,
Iva(t) — ML < KO(AR)  and [lue(h) — & M7UFL | < KE(AR).

Proof. The result is follows immediately from Lemma S2.4 and the the fact that ||T, (k)| and

|T¢(h)~t|| are bounded over small enough . O
Lemma S2.7. Under Assumption S2.1, for some constant K and h small enough,
|[o () (Wi, h) — o (0) (Wi, 0)]k(X;/h)| < KE(AR).
Proof. We have
[ (h)p (Wi, h) — o (0)ip (Wi, 0)] k(Xi/ 1) = Dg(a(h))¢u(Xs, Yi, h)K* (Xi /1)

— [Dgul@(O)) £ (Y = i) I(Xi = 0) + Dy ((0)) f - (¥i = p-)1(X; < 0)] -

eyM ™ p(| X/ b))k (Xi/h)
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= Dg((h))pa(Xi, Yy, )k (Xi/h) — Dg(a(0))Pu (X, Yi, K™ (Xi/ 1)

where the first dy columns of $,(X;,Y;, h) are given by e{M~'p(|X;/h|)fx ' (Y; — p)1(X; > 0)
and the remaining dy columns are given by e’lM_lp(|X,-/h\)f§,1_(Y,- — u_)I(X; < 0). Note that

the above expression can be written as

T(Xi/h, Y, vu(h),ve(h), a(h), { Bujm(h) h<j<ay j<m<r+1, {Bejm(h) Yi<j<ay i<m<r+1)
— T(Xi/h, Y, v4(0),v(0), a(0), { Bujm(0) }r<j<ay1<m<r1, {Bejm(0) h<j<dy 1<me<r+1)

for a function T that is Lipschitz in its remaining arguments uniformly over X;/h, Y; on bounded

sets. Combining this with the previous lemmas gives the result. O

It follows from Lemmas S2.7 and S1.12 that the conclusion of Lemma S2.7 also holds with
o(h)ip(W;, h) replaced by ¢(W;, h), so long as the remaining conditions of Lemma S1.12 (those

involving the conditional expectation and variance of 1(W;,0)) hold. We have

= ooy L Do (@) fiel [1(x) = ]I 2 0) + Dy (a(0)) ficLA(x) = f-J1(x < 0)}

and

var[p(W;,0)|X; = x| =

+ Dy (2(0))(x) Dy ((0))' f2 I (x < 0) }

By the conditions on ji(x) and £(x), it follows that these expressions are left and right continuous
in x at 0 with modulus ¢(x) satisfying the necessary conditions. By this and the conditions on
fx, it follows that the same holds for E[(W;,0)||X;| = x] and var[p(W;,0)||X;| = x]. In addition,
the assumptions guarantee that var[p(W;,0)||X;| = x| is bounded away from zero for small x so

that ¢(0) > 0.
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Thus, for ¥(W;, h) defined above,

nh(6(h) —6(h)) 1 ¢ . .
Vih(@(h) —0(h)) 1 &
S e P SUAAR
N 1 1
Ve -0 - | 75 - 555

By Lemma S2.3, the first term is of the order Op(1/4/loglogh,'), and the last term is of the
order Op(\/log logh,* - \/log logh,'/+/nh,). Thus, for (loglogh,')?/nh, — 0, both terms will

be op(1/4/loglogh, ") as required. This completes the proof of Theorem S2.1.

S$2.1 Equivalent Kernels for Local Linear Regression

Thus section gives the equivalent kernels for local polynomial regression at the boundary and in
the interior, and outlines how our results can be extended to cover local polynomial regression

at local-to-boundary points. Let
k(u;t) = el M(t) " p(u)k" (u),

where

M(t) = /uw D — )p(u— 1)k (1 — £) dus = /uw () p (1) K* (1) . @)

=0 =—t
Then the equivalent kernel for local polynomial regression at the boundary is given by k(1;0).

For r = 1, we have

—1
. ) 1 .
&MO0) p(u) =) | 1O R _ Mo Vk,llg\_
Hi1 P2 i Mk oMk 2 — M 1

For r = 2, we have

B 1
e M~ p(u) = 5 (e abtie 2 = Heos) + (e b a = e 2t 3) [l + (Mo = e apie 3) )
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where D = det(M) = pugo(pes 2Mke 4 — e 3) — Hiee1 (B 11k 4 — P 2P 3) F i 2 (B 11k 3 — Hie)-

The moments p: ; for the uniform, triangular, and Epanechnikov kernel are given by

Name Ho M1 M2 M3 Ha
; 1 1 1 1 1
Uniform CREE S S S
; 1 1 1 1 1
Triangular > L Lk
; 1 3 1 1 3
Epanechnikov 5 7 1% 1% 7%

Plugging these moments into the definitions of equivalent kernels in the two displays above
then yields the definitions of equivalent kernels for local linear and local quadratic regressions.
These definitions are summarized in Table S3.

Theorem S2.1 can be extended to apply to local polynomial estimation in the interior, pro-
vided that the definition of the equivalent kernel is appropriately altered to k(u; o) (so that the
integral on the right-hand side of Equation (2) is over the whole real line rather than the interval
(0, 00) as in the boundary case). Our package BWSnooping can be used to calculate the appropri-
ate critical values in this case. Note that for » = 1, the equivalent kernel and the original kernel
coincide, so that one can use Table 1 to look up the appropriate critical value.

Finally, let us outline how our results can be extended to cover estimating a conditional mean
at a point that is local to the boundary of the support of the distribution of the conditioning
variable. Here we can use the local-to-boundary formulation of the problem as in Section 3.2.5
of Fan and Gijbels (1996). In particular, consider local polynomial estimation of E(Y; | X; = xo)
where xq = ch,, and the lower support point of the density of X; is zero. Letting 8(h) denote the
rth order local polynomial estimator based on a kernel k*, it can be shown that under regularity
conditions, sup,c1, 7 1 Vnh|@(h) — 6(h)| /& (h) can be approximated by SUP, (1, /1, IH(t)], where

H(#) is a Gaussian process with covariance function cov(IH(s),H(t)) = p(s, t;¢), with

[ k(u/s;c/s)k(u/t;c/t)du

u=—c

p(s, t;c) = ‘
\/fi_ck(u/s;C/sVdu\/fu"i_ck(u/t;c/t)Z du

u

Note that the critical value depends only on h/h, and c (along with the kernel and order of the

local polynomial). Similar result obtains for one-sided t-statistics.
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S3 Proofs for Theorems in Appendix B

S3.1 Regression Discontinuity/LATEs for Largest Sets of Compliers

This section proves Theorems B.1 and B.3. First, note that the regression discontinuity and
LATE applications can both be written as functions of local polynomial estimators in the above
setup, with dy = 2 and Y; playing the role of Y;; and D; playing the role of Y;,. For the LATE
application, we define X; = —(Z; — 2)I(|Z; —z| < |Zi —Z|) + (z — Z)I(|Z; — z| > |Z; —Z|).
Both of these applications fit into the setup of Section S2 with, letting a(h) = (a,(h)’, a¢(h)’) =
(ayy(h),ayp(h),apy(h),app(h)) (where we use the suggestive subscripts “Y” and “D” rather

than 1 and 2), g(a) = ;‘”;:zf; Then, letting Ap = &, p — &y p, we have

This is Lipschitz continuous and bounded over bounded sets with a, p — &, p bounded away
from zero.

For the last condition (non-degeneracy of the conditional variance), note that Dy, (a(0))Z; -
Dgu(x(0)) = Wz}ar[lfi — ¢(«(0))D;|X; = 0], which will be nonzero so long as corr(D;,Y; |
X; =04) < 1and var(Y; | X; = 04) > 0. A sufficient condition for this is that var(Y; | D; =

d,X; = 04) > 0is nonzero for d = 0 or d = 1, and this (or the corresponding statement with +

replaced by —) holds under the conditions of the theorem.

S$3.2 Trimmed Average Treatment Effects under Unconfoundedness

This section proves Theorem B.2. We first give an intuitive derivation of the critical value, which
explains why it differs in this setting, and provide the technical details at the end.
To derive the form of the correction in this case, note that, under the conditions of the theorem,

W will converge to a Gaussian process G(h) with covariance

cov {[Yi = 0(h)]1(X; € ), [V; = 6(W)]I(X; € Xp)}

cov(G(h),G(K)) = - = :
\/WV {lYi —0(h)|I(X; € Xy) }var {[Yi — O(W)]I(X; € Xy)}

Let v(h) = var{[Y; — 8(h)]I(X; € X})} as defined in the statement of the theorem. Note that, for
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h>H,

COU{[YZ' — Q(h)]I(Xl S Xh)/ [Yl — G(h’)]I(XZ € XW)} =E {[Yl — 9<h>][Yl — 9(}1,>]I(Xl € Xh)}
— E{[Y— 0mPI(X; € )} + [6(1) — 0(W)E {[Y: — (0] 1(X; € X)) = o(h)

where the last step follows since E {[Y; — 0(h)]I(X; € X;)} = 0. Note also that v(h) is weakly
decreasing in /1, which can be seen by noting that v(h) = inf, E { Y —a] 1 (X; € &) }, since 0(h)

is the conditional expectation of Y; given X; € A&j,. Thus,

ny _ o(hVEY)  o(h) Ao(h')
oo SN = ety ~ ot
(b —0(h)

(h)
can be approximated by the distribution of SUP, 3y <t<o(h) %\/? 4 SUP1 <4< o(h) /0 () %. Note that

o(h) = o(h)?P(X; € X},)?, so that

so G(h) 4 IB(UT\/% where B is a Brownian motion. Thus, the distribution of sup, .,

—

o(h)  o(h)*P(X; € &})?
U(E) U(E)2P(Xi € Xﬁ)f
Thus, f is a consistent estimator for % under the conditions of the theorem.

The formal result then obtains by noting that, by Theorem 19.5 in van der Vaart (1998),

W 4 G(h), taken as processes over h € [k h] with the supremum norm. By the

calculations above,

B(v(h))
v(h)

sup [G(h)| £ sup
he [hh) he[h,h]

7

where B is a Brownian motion. The result then follows since {t|v(h) = tsome h € [k h]} C

[v(h),v(h)], and the two sets are equal if v(h) is continuous.

S4 Additional details for critical values

We first give a one-sided version of Theorem 3.1 and Corollary 3.1. To state the result, recall the

definitions of b(t, k) and the Gaussian process H(h) as defined in the statement of Theorem 3.1.
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Theorem S4.1. Let ¢§* (k) be the 1 — « quantile of sup,_,, H(h). Suppose that h, — 0, h, =
Op(1), and nh,,/[(loglogn)(logloglogn)]? — oo. Then, under Assumptions 3.1 and 3.2,

P (9(9) € [0(h) — o(h) - T/ hk/Vnh,00) all b € [, < h < En]) "]

The above display also holds with ¢$*  (hy/h,, k) replaced by

—log (—log(1 —a)) + b(hy/h,, k

) ) + \/ZlOgIOg(En/hn)’
\/2 loglog(hn/hn)

provided hy, / h,, — . Ifsupycy 7 w < op((loglog (T, /1)) ~V/2), then

liminf P (9(0) € [0(h) —o(h) - T/ k/vnh,00) all hh € [, < h < En]) >1-u.

n—00

Unlike in the two-sided case, the bias does not have to be negligible so long as it can be signed:
if 0(h) — 6(0) is known to be weakly negative (positive), then bias can only improve the coverage
of a lower (upper) one-sided CI (see Section 4.1.2). The proof of Theorem S4.1 is analogous to
the proof of Theorem 3.1 given in Appendix A.

Tables S1 and S2 give two- and one-sided critical values c{* (En /h,, k) and cl_a(ﬁn /h,, k) for
several kernel functions k, « and a selected of values of #,,/ h,, for 90%, 95%, and 99% confidence
intervals. The critical values can also be obtained using our R package BWSnooping, which can
be downloaded from https://github.com/kolesarm/BWSnooping. The package also includes
critical values for local quadratic regression, and computes critical values for other significance
levels and other ratios of maximum to minimum bandwidth % /.

For comparison, Figure S1 plots critical values based on the extreme value approximation

(given in the second part of Theorem 3.1) along with those based directly on the Gaussian process.

S5 Monte Carlo evidence

We conduct a small Monte Carlo study of inference in a sharp regression discontinuity design to
further illustrate our method and to examine how well it works in practice. In each replication,

we generated a random sample {Xi,si}?zl, with size n = 500, X; = 2Z; — 1, where Z; has Beta
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distribution with parameters 2 and 4, and ¢; ~ N (0,0.1295). The regression discontinuity point
is normalized to zero. The outcome Y; is given by Y; = ¢;(X;) + &;, where the regression function
gj depends on the design. We consider two regression functions. The first one corresponds to a

polynomial fit to the Lee (2008) data,

0.48 + 1.27x + 7.18x2 +20.21x3 + 21.54x* + 7.33x° if x <0,

0.52 + 0.84x — 3.00x% 4+ 7.99x3 — 9.01x* + 3.56x° otherwise.

This design corresponds exactly to the data generating process in Imbens and Kalyanaraman
(2012, IK) and Calonico et al. (2014, CCT). The second regression function corresponds to another

design in IK, and is given by
g2(x) = 0.42 +0.1I(x > 0) + 0.84x + 7.99x° — 9.01x* + 3.56x°.

Figure S2 plots the conditional mean functions ¢; and g that generate the data in Designs 1
and 2. The results for designs in which the error term ¢; is heteroscedastic are very similar, and
reported in an earlier version of the paper (Armstrong and Kolesar, 2015).

In each design, we consider estimates based on local linear regression using the uniform
and the triangular kernel. We use the bandwidth selector proposed by IK to select a baseline
bandwidth, and then construct confidence bands for estimators in bandwidth range around this
baseline bandwidth. We also consider the robust bias correction method of CCT discussed in
Section 4.1 by running a local quadratic regression at the same bandwidths. To define these
estimators, let p(x) = (1, x,...,x") denote a polynomial expansion of order r. Given an i.i.d. sam-
ple {Y;, X;}'_,, the RD estimator is given by the difference between the intercepts of polynomial

linear regressions of order r with the same bandwidth on either side of the cutoff,

where &, (h) = €. (h), &y(h) = e} Bi(h),

Bu(h) =Tu(m)~! ; [(X;i = 0)k"(Xi/h)p(1Xi])Ys,
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n

Bo(h) =Ty(n) ' Y I(X; < 0)k*(X:/h)p(|1Xi]) Y,

i=1

k* is a kernel, and

Lu(h) = Y} 1(Xi = 0)k* (Xi/h)p(|Xi) p(1Xi])',

=) I(Xi <Ok (Xi/m)p(IXi)p(1Xi])"-

The corresponding function 6(h) is plotted in Figures S3 and S4 for the local linear and local
quadratic estimators.

To estimate the variance of the estimator, we use the Eicker-Huber-White (EHW) robust
variance estimator that treats the two linear linear regressions on either side of the cutoff as
a weighted linear regression. In Theorem B.1 below, we show formally that using this estimator
leads to uniformly valid confidence intervals. We also consider a modification of the EHW esti-
mator that uses a nearest neighbor (NN) estimator to estimate var(Y; | X;) in the middle part of
the Eicker-Huber-White “sandwich”, rather than using the regression residuals. This estimator
was introduced by Abadie and Imbens (2006) and Abadie et al. (2014), and it was studied by
Calonico et al. (2014) in an RD context. The nearest neighbor (NN) and EHW variance estimators
have the form

&% (h) = nh (oar (&, (h)) 4 oar(&.(h))),

where

i=1

oar (& (h)) = eiTu(h)™ (anl(Xi > 0)?75(Xz')k*(Xi/h)P(IXiI)P(IXiI)'> Fu(h) e

and similarly for oar(&,(h)), where 6Z(X;) and 67(X;) are some estimators of var(Y; | X;). The

u(h
EHW estimator sets 62(X;) = (Y; — X!B4)?, and the NN estimators sets

2
6—5(X) I(X >O ]_{_1( ZY[M] ) 4

where ¢, ;(i) is the jth closest unit to i among {k # i: X; > 0}, and | = 3.

Table S4 reports empirical coverage of the confidence bands for 6(h) for the two designs we
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consider. Our adjustment works well overall, with the empirical coverage being close to 95%
for almost all specifications, in contrast with the naive confidence bands (using the unadjusted
1.96 critical value), which undercover. As plotted in Figure 2, Theorem 3.1 predicts that with
h/h = 2, the coverage should be 91.6% for the triangular kernel, and 83.9% for the uniform
kernel. When ii/h = 4, the coverage of the naive confidence bands should drop to 88.5% and
76.8%, respectively. The Monte Carlo results match these predictions closely. There are a few
specifications in which the adjusted confidence bands based on EHW standard errors undercover.
This happens when small bandwidths are considered, and is due to the well-known downward
bias of EHW standard errors in small samples, so that the pointwise confidence intervals fail
to achieve nominal coverage in the first place. Since our method only corrects for the multiple
comparisons, it cannot solve this problem. Overall, the adjusted confidence bands have coverage
that is as good as the coverage of the underlying pointwise confidence intervals.

Typically in regression discontinuity studies, the primary object of interest is 6(0), the aver-
age treatment effect conditional on X = 0. We therefore also report empirical coverage of the
confidence bands for 6(0) in Table S5. Confidence bands around undersmoothed local linear
estimator, (that correspond to the bandwidth range [ﬁ /4 i/ 2]) perform well, provided NN
standard errors, which perform better in small samples, are used. At larger values of the band-
width, O(h) is a biased estimator of (0). The pointwise confidence intervals based on the local
linear regression do not take this bias into account, and they fail to achieve proper coverage. Con-
sequently, although our adjustment ensures that the coverage of the adjusted confidence band is
within the range of the pointwise confidence intervals, it still falls short of 95% due to the point-
wise confidence intervals performing poorly. On the other hand, confidence bands around the
bias-adjusted confidence intervals (that correspond to local quadratic regression) perform well,
especially when the NN standard errors are used.

In conclusion, our adjustment performs well in terms of coverage of 6(h), with empirical
coverage close to nominal coverage, especially when combined with NN standard errors. If our
method is combined with undersmoothing (corresponding to bandwidth ranges smaller than
f1x), or bias-correction (such as when the CCT method for constructing confidence intervals is
used), so that the underlying pointwise confidence intervals achieve good coverage of 6(0), our

method also achieves good coverage of 6(0).
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LES

NW / Loc. linear (interior) Loc. linear (boundary)

Unif Tri Epa Unif Tri Epa
h/h 01 005 001 0.1 005 001 01 005 0.01 01 005 001 0.1 0.05 001 01 0.05 0.01

1.0 165 196 257 164 196 258 164 196 258 1.63 196 257 164 195 257 164 196 257
1.2 192 224 285 170 201 263 171 203 265 192 223 283 172 203 264 173 205 266
14 202 233 293 174 205 267 177 208 269 202 233 293 177 208 269 180 211 272
1.6 209 240 298 178 209 270 181 212 272 209 239 300 180 212 273 184 215 276
1.8 214 245 303 1.81 211 272 185 215 275 214 244 304 184 216 276 188 219 281
2 218 248 3.07 1.83 214 275 1.87 217 278 218 248 3.08 187 218 278 191 222 283
3 230 260 318 191 222 283 196 227 286 230 260 318 196 227 286 201 232 291
4 237 266 324 196 226 286 202 231 292 236 266 324 201 232 290 206 237 295
5 241 270 328 200 230 290 205 235 295 241 271 327 205 235 294 211 241 299
6 244 273 331 202 232 292 208 237 297 244 273 331 208 237 296 213 243 3.01
7 247 275 334 204 234 294 210 239 299 247 276 333 210 239 298 216 245 3.04
8 249 277 335 206 235 295 212 241 3.01 249 278 335 212 241 299 218 247 3.05
9 251 279 337 207 237 296 214 242 3.02 250 279 337 214 243 3.00 220 248 3.06
10 252 280 338 208 238 297 215 244 3.04 252 281 339 215 244 3.01 221 250 3.07
20 261 289 345 216 245 3.03 223 251 3.10 261 289 345 223 252 3.08 229 258 3.14
50 270 297 351 224 253 310 231 259 315 270 298 352 232 260 316 238 266 321
100 275 3.02 356 229 257 314 236 264 320 276 3.02 356 237 265 320 244 271 325

Table S1: Critical values c1_4(h/h, k) for level & = 0.1, 0.05, and 0.01 for the Uniform (Unif, k(u) = 3I(|u| < 1)), Triangular (Tri,
(1 —|u|)I(Ju| < 1)) and Epanechnikov (Epa, 3/4(1 — u?)I(Ju| < 1)) kernels. “NW / Loc. linear (interior)” refers to Nadaraya-
Watson (local constant) regression in the interior or at a boundary, as well as local linear regression in the interior. “Loc. linear
(boundary)” refers to local linear regression at a boundary (including regression discontinuity designs).



8¢S

NW / Loc. linear (interior) Loc. linear (boundary)

Unif Tri Epa Unif Tri Epa
h/h 01 005 001 0.1 005 001 01 005 0.01 01 005 001 0.1 0.05 001 01 0.05 0.01

1.0 129 166 233 129 166 234 129 166 234 128 164 233 129 165 233 128 1.65 233
1.2 157 194 264 135 172 239 136 173 241 157 193 259 136 172 240 138 174 242
14 167 204 273 139 176 244 142 179 245 167 203 269 141 178 246 144 1.80 247
1.6 175 211 279 142 180 247 146 183 250 174 210 276 146 181 249 149 185 2.52
1.8 180 215 283 146 183 249 149 186 253 180 215 281 149 184 252 153 1.88 255
2 1.84 219 285 148 185 252 152 189 255 184 219 284 152 187 255 156 191 258
3 197 231 297 156 193 258 1.62 198 264 196 230 295 162 196 262 1.67 201 267
4 204 238 302 161 197 263 168 203 268 203 236 302 167 201 267 173 206 272
5 209 242 305 165 201 266 171 207 271 208 241 304 171 205 270 177 211 276
6 212 245 3.08 1.68 2.03 268 174 209 274 212 244 3.07 174 208 272 180 213 277
7 215 248 310 171 205 270 177 211 276 214 247 309 176 210 274 183 216 2.80
8 217 250 312 172 207 272 179 213 277 217 249 311 179 212 275 185 218 281
9 219 252 314 174 209 273 180 214 279 218 251 312 180 214 277 187 220 282
10 221 253 316 176 210 274 1.82 216 281 220 252 313 182 215 279 188 221 284
20 229 262 323 183 217 280 191 224 287 229 261 322 190 223 286 197 229 291
50 240 271 331 192 225 287 200 232 294 239 270 330 199 231 292 206 238 299
100 246 277 336 198 230 292 206 237 299 245 276 335 205 237 296 212 244 3.03

Table S2: One-sided critical values ¢{°  (h/h, k) for level « = 0.1, 0.05, and 0.01 for the Uniform (Unif, k(u) = JI(ju| < 1)),
Triangular (Tri, (1 — |u|)I(|u| < 1)) and Epanechnikov (Epa, 3/4(1 — u?)I(|u| < 1)) kernels. “NW / Loc. linear (interior)” refers
to Nadaraya-Watson (local constant) regression in the interior or at a boundary, as well as local linear regression in the interior.
“Loc. linear (boundary)” refers to local linear regression at a boundary (including regression discontinuity designs).



Name k*(u) Order k(u)
0 I(ul<1)

Uniform H(jul<1) 1 (4—6lu))I(jul <1)
2 (9 —36|u| +30u?)I(|u| < 1)
0 (1 —Jul)+

Triangular (1—1ul)+ 1 6(1—2ul)(1—|u|)+
2 12(1 = 5]u| +5u?) (1 — |u|)+
0 T(1—u?)y

Epanechnikov  2(1—u?), 1

2

15(16 = 30[u[) (1 — u?)
(85 — 400|u| + 385u2)(1 — u2).

Q= =

Table S3: Definitions of kernels and equivalent kernels for regression discontinuity / estimation
at a boundary. Order refers to the order of the local polynomial.
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Uniform kernel Triangular kernel

(h,h) (h)  Pointwise Naive Adj. Pointwise Naive Adj.

Design 1: Local Linear regression

A ~ EHW (92.7, 94.4) 83.7 93.9 (91.8,94.0) 88.5 923
(hix/4, hix/2)
NN (94.6, 95.8) 87.3 95.3 (94.2,95.3) 91.2 94.2
A o EHW (94.2,94.7) 85.0 95.0 (93.9,94.5) 90.5 94.0
(hix/2, hix)
NN (95.3, 96.1) 87.9 96.3 (94.9,959) 923 95.3
~ ~ EHW (904, 94.7) 74.8 934 92.1,94.5) 85.6 93.0
(hix/2, 2hk) ( (

(91.8,96.1) 774 944 (934,959) 882 944
Design 1: Local quadratic regression
EHW (89.5,92.6) 78.1 90.2 (88.5,919) 833 887

hi/4, hix/2
(/4 hix/2) g (93.8,94.8) 852 943 (932,945) 89.0  93.0
) R EHW (92.7,943) 827 935 (92.0,940) 880 924
(hix/2, hix)

NN  (948,957) 871 955 (94.5,954) 913 946
) A EHW (844,951) 686  90.1 (89.4,948) 801 897
(hix/2, 2h1x)

NN  (87.1,96.2) 749 929 (91.3,96.0) 845  92.5

Design 2: Local Linear regression

o o EHW (85.6,91.4) 73.7 86.5 (83.0,90.0) 78.3 83.2
(hix/4, hix/2)
(93.3, 94.3) 84.6 93.9 (92.7,93.5) 88.7 92.1
o N EHW (91.3,92.7) 80.3 919 (90.2,92.1) 86.0 90.3
(hix /2, hix)
NN (94.0, 94.6) 85.3 943 (93.5,94.2) 90.2 93.2
~ ~ EHW (88.5, 92.8) 70.6 90.4 86.3,92.1) 78.8 87.7
(hix /2, 2hix) ( (

NN  (85.0,948) 730 913 (81.0,942) 760 853
Design 2: Local quadratic regression
EHW (74.6,869) 576 729 (743,85.4) 655 720
NN 92.2,93.1) 807 916 (915,924) 851  89.6
EHW (87.5,915) 741  87.6 (85.8,909) 803 859

(hix /4, hug /2) (
(

NN (92.2, 93.3) 81.6 92.1 (91.6,92.8) 86.8 90.6
(
(

(hix /2, hix)

EHW (87.5,94.6) 67.6 88.3 (85.8,94.0) 76.8 86.6

hix/2, 2h
(hix/2, 2h1x0) 92.2,952) 748 922 (91.6,945) 832 910

Table S4: Monte Carlo study of regression discontinuity. Empirical coverage of 8(/) for nominal
95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverage of point-
wise confidence intervals. “Naive” refers to the coverage of the naive confidence band that uses
the unadjusted critical value equal to 1.96. “Adj.” refers to confidence bands using adjusted
critical values based on Theorem 3.1. Variance estimators are described in the text. 10,000 Monte
Carlo draws, 100 grid points for h.
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Uniform kernel Triangular kernel

(h,h) (h)  Pointwise Naive Adj. Pointwise Naive Adj.

Design 1: Local Linear regression
EHW (90.3, 92.7) 79.9 92.0 (90.0,92.1) 85.5 90.1
92.4,94.7) 84.5 944 (92.4,94.1) 89.2 92.7

(hix /4, hug/2) E

EHW (73.7, 89.8) 62.0 80.7 (76.7,89.5) 74.0 80.9
(
(

huix/2, h
Bix/2 0 N (774, 92.0) 669 842 (80.1,919) 780 841

EHW (732,89.8) 543 809 (765,895 694  81.1
NN  (76.7,92.0) 59.8 849 (79.9,91.9) 742 849

Design 1: Local quadratic regression
EHW (89.6,92.7) 783  90.0 (88.6,922) 835  88.6

(hix /2, 2hik)

hix/4, hix/2
e NN (93.8,94.7) 851 944 (932,943) 888  93.0
) . EHW (90.3,93.6) 802 922 (89.3,93.0) 852  90.0
(hix /2, hix)

NN  (924,953) 848 947 (91.5,947) 884 928
. . EHW (74.8,93.6) 548 818 (78.6,93.0) 703 825
(hix/2, 2h1x)

NN  (78.6,95.3) 622 86.3 (822,94.7) 753 86.5
Design 2: Local Linear regression

o o EHW (85.6,91.4) 73.7 86.5 (83.0,90.1) 78.3 83.2
(hix/4, hix/2)
NN (93.3, 94.3) 84.6 93.9 (92.7,93.5) 88.7 92.1
o o EHW (91.3, 92.6) 80.2 91.8 (90.2,91.9) 85.7 90.1
(hix/2, hix)
NN (94.0, 94.6) 85.1 943 (93.5,94.1) 89.9 93.1
~ ~ EHW (59.3, 92.6) 47 .8 75.3 53.9,91.9) 474 60.7
(hix/2, 2hk) ( (

NN  (63.1,946) 540 798 (57.6,941) 529 655
Design 2: Local quadratic regression
EHW (74.6,86.9) 576 729 (743,854) 655 72.0

hik/4, hix/2
(/4 hixe/2) (93.6,94.8) 844 936 (92.8,940) 877 916
) . EHW (87.5,91.5) 742  87.6 (858,90.9) 803 859
(hix /2, hix)

NN  (935,944) 841 938 (929,938) 884 924
) . EHW (87.5,943) 672 880 (858,93.6) 759  86.1
(hix/2, 2hix)

NN  (935,958) 783 938 (929,951) 846 924

Table S5: Monte Carlo study of regression discontinuity. Empirical coverage of 6(0) for nominal
95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverage of point-
wise confidence intervals. “Naive” refers to the coverage of the naive confidence band that uses
the unadjusted critical value equal to 1.96. “Adj.” refers to confidence bands using adjusted
critical values based on Theorem 3.1. Variance estimators are described in the text. 10,000 Monte
Carlo draws, 100 grid points for h.

541



3.2

3.0

2.8-

wLIojIun

2.6+

@
N
1

W
o
1

method
Extreme Value
--- Gaussian

Critical value
N
[0
ren3uern

g
(o)
1

3.2-

3.0+

2.8-

Aoyruyaueds

2.6+

20 40 60 80 10020 40 60 80 100
h/h

Figure S1: Comparison of critical values based on Gaussian approximation and extreme value
approximation (i.e. asymptotic approximation as i/h — o). Order “0” corresponds to Nadaraya-
Watson interior or boundary regression, and to local linear regression in the interior, and order
“1” to local linear regression at a boundary:.
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Figure S2: Monte Carlo study of regression discontinuity. Regression function g(X) for designs
1and 2.
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Figure S3: Monte Carlo study of regression discontinuity. Function 6 (/) for local linear regression
for designs 1 and 2. Solid lines correspond to the triangular kernel, dotted lines to the uniform
kernel.
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Figure S4: Monte Carlo study of regression discontinuity. Function 6(/) for local quadratic

regression for designs 1 and 2. Solid lines correspond to the triangular kernel, dotted lines to the
uniform kernel.
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