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These supplemental materials are organized as follows. Supplemental Appendix C gives addi-

tional empirical results. Supplemental Appendix D proves Lemma A.3, gives the derivation of the

solution path in the proof of Theorem 2.2, completes the proof of Theorem 2.3, proves Lemma B.1

and Lemma B.2, gives conditions for asymptotic efficiency of the matching estimator with a single

match, and finally verifies Assumption B.1 for the matching estimator.

C Additional empirical results: Other choices of distance

A disadvantage of the distance based on A = Amain is that it requires prior knowledge of the relative

importance of different pretreatment variables in explaining the outcome variable. An alternative is

to specify the distance using moments of the pretreatment variables in a way that ensures invariance

to scale transformations. For example, Abadie and Imbens (2011) form matching estimators using

the weighted Euclidean norm (so q = 2) with A = Ane ≡ diag(1/std(x1), . . . , 1/std(xp)), where

std denotes sample standard deviation. Table S1 shows the diagonal elements of Ane. It can be

seen that this distance is most likely not the best way of encoding a researcher’s prior beliefs about

Lipschitz constraints. For example, the bound on the difference in average earnings between blacks

and non-black non-Hispanics is substantially smaller than the bound on the difference in average

earnings between Hispanics and non-black non-Hispanics.

If the constant C is to be chosen conservatively, the derivative of f(x, d) with respect to each of

these variables must be bounded by C times the corresponding element in this table. If one allows for

somewhat persistent earnings, then C should be chosen in the range of 10 or above: to allow previous

years’ earnings to have a one-to-one effect, we would need to take C = 1/
√
.072 + .072 = 10.1. For

this C, when δ is chosen to optimize confidence interval (CI) length, the resulting CI is given by

1.72± 7.63, which is much wider than the CIs reported in Table 2.
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Table S1: Diagonal elements of the weight matrix A in definition of the norm
in eq. (24) for the main specification, Amain, and alternative specification, Ane.

Earnings Employed

Age Educ. Black Hispanic Married 1974 1975 1974 1975

Amain 0.15 0.60 2.50 2.50 2.50 0.50 0.50 0.10 0.10

Ane 0.10 0.33 2.20 5.49 2.60 0.07 0.07 2.98 2.93

In Theorem 2.3, we showed that the matching estimator with a single match is optimal for C

large enough. For this result, it is important that the norm used to construct the matches is the

same as the norm defining the Lipschitz class. To illustrate this point, consider a matching estimator

considered in Abadie and Imbens (2011), that uses q = 2 and A = Ane. The root mean squared

error (RMSE) efficiency of this estimator under our main specification (Amain, q = 1 and C = 1) is

77.5%; for CI length, its efficiency is 74.6%. This is considerably lower than the efficiencies of the

matching estimator that matched on the norm defining the Lipschitz class reported in Section 5.2.

Furthermore, the efficiency is never higher than 80.1%, even for large values of C.

D Proofs of auxiliary Lemmas and additional details

D.1 Proof of Lemma A.3

We will show that eq. (29) holds for (a) all i, j with di = dj = 1−d, (b) all i, j with di = 1−dj = d,

and for part (ii) that it also holds (c) for all i, j with di = dj = d. Let gi denote the ith element of

the vector (g(x1, d), . . . , g(xn, d))′.

For (a), if eq. (29) didn’t hold for some i, j with di = dj = 1−d, then by the triangle inequality,

for all j′ with dj′ = d,

gj + C‖xi − xj‖X < gi ≤ gj′ + C‖xi − xj′‖X ≤ gj′ + C‖xi − xj‖X + C‖xj − xj′‖X ,

contradicting the assertion in both part (i) and part (ii) that eq. (29) holds with equality for at least

one j′ with dj′ = d. Similarly, for (c), if it didn’t hold for some i, j, then for all i′ with di′ = 1− d,

by the triangle inequality,

gi′ ≤ gj + C‖xi′ − xj‖X < gi + C‖xi′ − xj‖X − C‖xi − xj‖X ≤ gi + C‖xi′ − xi‖X ,

contradicting the assertion that eq. (29) holds with equality for at least one i′ with di′ = 1 − d.

Finally, for (b), if eq. (29) didn’t hold for some i′, j′ with di′ = 1 − dj′ = d, then by the triangle

inequality, denoting by j∗(j′) an element with dj∗ = d such that eq. (29) holds with equality when

i = j′ and j = j∗,

gi′ − gj∗(j′) = gi′ +C‖xj∗(j′) − xj′‖X − gj′ > C‖xj∗(j′) − xj′‖X +C‖xi′ − xj′‖X ≥ C‖xj∗(j′) − xi′‖X ,
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which violates (c).

D.2 Derivation of algorithm for solution path

Observe that Λ0
ij = 0 unless for some k, i ∈ R0

k and j ∈M0
k, and similarly Λ1

ij = 0 unless for some

k, j ∈ R1
k and i ∈M1

k. Therefore, the first-order conditions for the Lagrangian can be written as

mj/σ
2(0) = µw(0) +

∑
i∈R0

k

Λ0
ij j ∈M0

k, µw(1) =
∑
j∈M0

k

Λ0
ij i ∈ R0

k, (S1)

mi/σ
2(1) = µw(1) +

∑
j∈R1

k

Λ1
ij i ∈M1

k, µw(0) =
∑
i∈M1

k

Λ1
ij j ∈ R1

k. (S2)

Summing up these conditions then yields∑
j∈M0

k

mj/σ
2(0) = µw(0) ·#M0

k +
∑
j∈M0

k

∑
i∈R0

k

Λ0
ij = #M0

k · µw(0) + #R0
k · µw(1),

∑
i∈M1

k

mi/σ
2(1) = µw(1) ·#M1

k +
∑
i∈M1

k

∑
j∈R1

k

Λ1
ij = #M1

k · µw(1) + #R1
k · µw(0).

Following the argument in Osborne et al. (2000, Section 4), by continuity of the solution path, for

a small enough perturbation s, Nd(µ + s) = Nd(µ), so long as the elements of Λd(µ) associated

with the active constraints are strictly positive. In other words, the set of active constraints doesn’t

change for small enough changes in µ. Hence, the partitionMd
k remains the same for small enough

changes in µ and the solution path is differentiable. Differentiating the preceding display yields

1

σ2(0)

∑
j∈M0

k

∂mj(µ)

∂µ
= #M0

k · w(0) + #R0
k · w(1),

1

σ2(1)

∑
i∈M1

k

∂mi(µ)

∂µ
= #M1

k · w(1) + #R1
k · w(0).

If j ∈ M0
k, then there exists a j′ and i such that the constraints associated with Λ0

ij and

Λ0
ij′ are both active, so that mj + ‖xi − xj‖X = ri = mj′ + ‖xi − xj′‖X , which implies that

∂mj(µ)/∂µ = ∂mj′(µ)/∂µ. Since all elements in M0
k are connected, it follows that the derivative

∂mj(µ)/∂µ is the same for all j inM0
k. Similarly, ∂mj(µ)/∂µ is the same for all j inM1

k. Combining

these observations with the preceding display implies

1

σ2(0)

∂mj(µ)

∂µ
= w(0) +

#R0
k(j)

#M0
k(j)

w(1),
1

σ2(1)

∂mi(µ)

∂µ
= w(1) +

#R1
k(i)

#M1
k(i)

w(0),

where k(i) and k(j) are the partitions that i and j belong to. Differentiating the first-order con-

ditions (S1) and (S2) and combining them with the restriction that ∂Λdij(µ)/∂µ = 0 if Nd
ij(µ) = 0
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then yields the following set of linear equations for ∂Λd(µ)/∂µ:

#R0
k

#M0
k

w(1) =
∑
i∈R0

k

∂Λ0
ij(µ)

∂µ
, w(1) =

∑
j∈M0

k

∂Λ0
ij(µ)

∂µ
,

#R1
k

#M1
k

w(0) =
∑
j∈R1

k

∂Λ1
ij(µ)

∂µ
, w(0) =

∑
i∈M1

k

∂Λ1
ij(µ)

∂µ
,

∂Λdij(µ)

∂µ
= 0 if Nd

ij(µ) = 0.

Therefore, m(µ), Λ0(µ), and Λ1(µ) are all piecewise linear in µ. Furthermore, since for i ∈ R0
k,

ri(µ) = mj(µ) + ‖xi − xj‖X where j ∈M0
k, it follows that

∂ri(µ)

∂µ
=
∂mj(µ)

∂µ
= σ2(0)

[
w(0) +

#R0
k

#M0
k

w(1)

]
.

Similarly, since for j ∈ R1
k, and i ∈M1

k rj(µ) = mi(µ) + ‖xi − xj‖X , where j ∈M0
k, we have

∂rj(µ)

∂µ
=
∂mi(µ)

∂µ
= σ2(1)

[
w(1) +

#R1
k

#M1
k

w(0)

]
.

Thus, r(µ) is also piecewise linear in µ.

Differentiability of m and Λd is violated if the condition that the elements of Λd associated

with the active constraints are all strictly positive is violated. This happens if one of the non-zero

elements of Λd(µ) decreases to zero, or else if a non-active constraint becomes active, so that for

some i and j with N0
ij(µ) = 0, ri(µ) = mj(µ) + ‖xi − xj‖X , or for some i and j with N1

ij(µ) = 0,

rj(µ) = mi(µ) + ‖xi − xj‖X . This determines the step size s in the algorithm.

D.3 Bounds on optimal δ for Theorem 2.3

Theorem 2.3 follows from Theorem A.5 so long as the optimal δ for the fixed-length confidence

interval (FLCI) and RMSE criteria do not increase without bound as C increases. This section

shows that this is indeed the case.

Let S(δ, C) = sd(L̂δ) and let B(δ, C) = biasF (L̂δ) denote standard deviation and worst-case

bias when F is given by the Lipschitz class with constant C, and L̂δ is computed with this class.

Let A(C) denote the feasible set of worst-case bias and standard deviation pairs for this problem.

Note that the set A(C) is convex. In particular, given estimators L̂1 and L̂2 with worst-case bias

B1, B2 and standard deviation S1, S2, the estimator λL̂1 + (1− λ)L̂2 has worst-case bias bounded

by λB1 + (1−λ)B2 and standard deviation bounded by λS1 + (1−λ)S2, which then allows for the

construction of an affine estimator with worst-case bias and standard deviation exactly equal to

these quantities by adding a nonrandom constant and a multiple of a N (0, 1) variable independent

of the observed data (adding a N (0, 1) variable to the sample will not change the calculations for

the optimal estimator for RMSE or FLCI length).

Let R(B,S) be the RMSE criterion (R(B,S) =
√
B2 + S2) or the FLCI length criterion

S4



(R(B,S) = cvα(B/S)S). Let δ∗ = δ∗(C) minimize R(B(δ, C), S(δ, C)). Then B(δ∗, C), S(δ∗, C)

optimizes R(B,S) over the feasible set A(C). Let δ 6= δ∗ be given. By convexity of the feasible set

A(C), we have, for all t ∈ [0, 1],

R((B(δ, C)−B(δ∗, C))t+B(δ∗, C), (S(δ, C)− S(δ∗, C))t+ S(δ∗, C))−R(B(δ∗, C), S(δ∗, C)) ≥ 0.

Dividing both sides by t and taking the limit as t→ 0, we obtain

R∗1(C)[B(δ, C)−B(δ∗, C)] +R∗2(C)[S(δ, C)− S(δ∗, C)] ≥ 0,

where (R∗1(C), R∗2(C)) is the derivative of R(B,S) at (B(δ∗, C), S(δ∗, C)). It now follows that δ∗

minimizes

2B(δ) + [2R∗2(C)/R∗1(C)]S(δ)

over δ > 0. Note, however, that this is simply the worst-case β quantile of excess length of a

one-sided 1− α CI when z1−α + zβ = 2R∗2(C)/R∗1(C), so this means that δ∗(C) is also optimal for

this criterion. By Theorem A.1, the estimator L̂δ̃ where δ̃ = 2R∗2(C)/R∗1(C) is also optimal for this

criterion. Furthermore, the estimator that optimizes this criterion is unique in this setting, so it

follows that the estimator that optimizes the criterion R(B,S) is equal to the estimator L̂δ̃.

To show that this estimator is equal to the matching estimator with a single match once C

is large enough, it now suffices to show that R∗2(C)/(2R∗1(C)) is bounded as C → ∞ so that

C > KR∗2(C)/(2R∗1(C)) once C is large enough. This can be checked by noting that, for the FLCI

length and RMSE criteria, R∗1(C) is bounded from below and R∗2(C) is bounded from above, over

the set (B(δ, C), S(δ, C)) with C > 0, using the fact that S(δ, C) is bounded from above and below

away from zero over this set.

D.4 Proof of Lemma B.1

Let An = {x ∈ [a, b]p : there exists j such that Dj = 0 and ‖x−Xj‖ ≤ 2h}. Then #In(h) =∑
i∈N1,n

[I{Xi ∈ [a, b]p} − I{Xi ∈ An}]. Note that, conditional on E , the random variables

I{Xi ∈ An} with i ∈ N1,n are i.i.d. Bernoulli(νn) with νn = P (Xi ∈ An | E) =
∫
I{x ∈ An}fX|D(x |

1) dx ≤ Kλ(An) where fX|D(x | 1) is the conditional density of Xi given Di = 1, λ is the Lebesgue

measure and K is an upper bound on this density. Under the assumption that lim supn hnn
1/p ≤ η,

we have λ(An) ≤ (4hn)pn ≤ 8pηp where the last inequality holds for large enough n. Thus, letting

ν = 8pηpK, we can construct random variables Zi for each i ∈ N1,n that are i.i.d. Bernoulli(ν)

conditional on E such that I{Xi ∈ An} ≤ Zi. Applying the strong law of large numbers, it follows

that

lim inf
n

#In(h)/n ≥ lim inf
n

#N1,n

n

1

#N1,n

∑
i∈N1,n

(I{Xi ∈ [a, b]p} − Zi)

≥ P (Di = 1)(P (Xi ∈ [a, b]p | Di = 1)− 8pηpK)
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almost surely. This will be greater than η for η small enough.

D.5 Proof of Lemma B.2

The result follows from verifying the conditions of Theorem F.1 in Armstrong and Kolesár (2018).

In particular, we need to show that the weights k are such that
∑n

i=1 k(xi, di)ui/ sdk converges in dis-

tribution to N(0, 1) (condition (S13) in Armstrong and Kolesár, 2018) and
∑

i û
2
i k(xi, di)

2/ sd2
k con-

verges in probability to 1, uniformly over f ∈ FLip(Cn) (S14), where sd2
k =

∑n
i=1 σ

2(xi, di)k(xi, di)
2.

Under the moment bounds on ui, eq. (22) directly implies the Lindeberg condition that is needed

for condition (S13) to hold. To show that it also implies (S14), note that (S14) is equivalent to the

requirement that
∑n

i=1 û
2
i ani −

∑n
i=1 σ

2(xi, ni)ani converges to zero uniformly over f ∈ FLip(Cn),

where

ani = k(xi, di)
2/

n∑
j=1

[σ2(xj , dj)k(xj , dj)
2].

By an inequality of von Bahr and Esseen (1965),

E

∣∣∣∣∣
n∑
i=1

(u2i − σ2(xi, di))ani

∣∣∣∣∣
1+1/(2K)

≤ 2
n∑
i=1

a
1+1/(2K)
ni E|u2i − σ2(xi, di)|1+1/(2K)

≤ max
1≤i≤n

a
1/(2K)
ni E|u2i − σ2(xi, di)|1+1/(2K) ·

n∑
i=1

ani.

Note that, by boundedness of σ(x, d) away from zero and infinity,
∑n

i=1 ani is uniformly bounded.

Furthermore, it follows from eq. (22) that max1≤i≤n ani → 0. From this and the moment bounds on

ui, it follows that the above display converges to zero. It therefore suffices to show that
∑n

i=1(û
2
i −

u2i )ani converges to zero. This follows from the following result.

Lemma D.1. Consider the model in eq. (1). Suppose that 1/K ≤ Eu2i ≤ K and E|ui|2+1/K ≤ K

for some constant K, and that σ2(x, d) is uniformly continuous in x for d ∈ {0, 1}. Let `j(i) be

the jth closest unit to i, with respect to some norm ‖·‖, among units with the same value of the

treatment. Let û2i = J
J+1(Yi −

∑J
j=1 Y`j(i)/J)2, and let ani ≥ 0 be a non-random sequence such

that maxi ani → 0, and that
∑n

i=1 ani is uniformly bounded. If maxiCn‖x`J (i) − xi‖ → 0, then∑
i ani(û

2
i − u2i ) converges in probability to zero, uniformly over FLip(Cn).

Proof. The proof is based on the arguments in Abadie and Imbens (2008). For ease of notation, let

fi = f(xi, di), σ
2
i = σ2(xi, di), and let f i = J−1

∑J
j=1 f`j(i) and ui = J−1

∑J
j=1 u`j(i). Then we can

decompose

J + 1

J
(û2i − u2i ) = [fi − f i + ui − ui]2 −

J + 1

J
u2i

= [(fi − f i)2 + 2(ui − ui)(fi − f i)]− 2uiui +
2

J2

J∑
j=1

j−1∑
k=1

u`j(i)u`k(i) +
1

J2

J∑
j=1

(u2`j(i) − u
2
i )
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= T1i + 2T2i + 2T3i + T4i + T5i +
1

J2

J∑
j=1

(σ2`j(i) − σ
2
i ),

where

T1i = [(fi − f i)2 + 2(ui − ui)(fi − f i)], T2i = uiui

T3i =
1

J2

J∑
j=1

j−1∑
k=1

u`j(i)u`k(i), T4i =
1

J2

J∑
j=1

(u2`j(i) − σ
2
`j(i)

), T5i = σ2i − u2i .

Since maxi‖x`J (i) − xi‖ → 0 and since σ2(·, d) is uniformly continuous, it follows that

max
i

max
1≤j≤J

|σ2`j(i) − σ
2
i | → 0,

and hence that |
∑n

i=1 aniJ
−1∑J

j=1(σ
2
`j(i)
− σ2i )| ≤ maxi maxj=1,...,J(σ2`j(i) − σ

2
i )
∑n

i=1 ani → 0. To

prove the lemma, it therefore suffices to show that the sums
∑n

i=1 aniTqi all converge to zero.

To that end,

E|
∑
i

aniT1i| ≤ max
i

(fi − f i)2
∑
i

ani + 2 max
i
|fi − f i|

∑
i

aniE|ui − ui|,

which converges to zero since maxi|fi−f i| ≤ maxi maxj=1,...,J(fi−f`j(i)) ≤ Cn maxi‖xi−x`J (i)‖X →
0. Next, by the von Bahr-Esseen inequality,

E|
n∑
i=1

aniT5i|1+1/2K ≤ 2
n∑
i=1

a
1+1/2K
ni E|T5i|1+1/2K ≤ 2 max

i
a
1/2K
ni max

j
E|T5j |1+1/2K

n∑
k=1

ank → 0.

Let Ij denote the set of observations for which an observation j is used as a match. To show that

the remaining terms converge to zero, let we use the fact #Ij is bounded by JL, where L is the

kissing number, defined as the maximum number of non-overlapping unit balls that can be arranged

such that they each touch a common unit ball (Miller et al., 1997, Lemma 3.2.1; see also Abadie

and Imbens, 2008). L is a finite constant that depends only on the dimension of the covariates (for

example, L = 2 if dim(xi) = 1). Now,

∑
i

aniT4i =
1

J2

n∑
j=1

(uj − σ2j )
∑
i∈Ij

ani,

and so by the von Bahr-Esseen inequality,

E|
∑
i

aniT4i|1+1/2K ≤ 2

J2+1/K

n∑
j=1

E|uj − σ2j |1+1/2K

∑
i∈Ij

ani

1+1/2K
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≤ (JL)1/2K

J2+1/K
max
k

E|uk − σ2k|1+1/2K max
i
a
1+1/2K
ni

n∑
j=1

∑
i∈Ij

ani,

which is bounded by a constant times maxi a
1+1/2K
ni

∑n
j=1

∑
i∈Ij ani = maxi a

1+1/2K
ni J

∑
i ani → 0.

Next, since E[uiui′u`j(i)u`k(i′)] is non-zero only if either i = i′ and `j(i) = `k(i
′), or else if i = `k(i

′)

and i′ = `j(i), we have
∑n

i′=1 ani′E[uiui′u`j(i)u`k(i′)] ≤ maxi′ ani′
(
σ2i σ

2
`j(i)

+ σ2`j(i)σ
2
i

)
, so that

var(
∑
i

aniT2i) =
1

J2

∑
i,j,k,i′

aniani′E[uiu`k(i′)ui′u`j(i)] ≤ 2K2 max
i′

ani′
∑
i

ani → 0.

Similarly for j 6= k and j′ 6= k,
∑n

i′=1 ani′E[u`j(i)u`k(i)u`j′ (i′)u`k′ (i′)] ≤ maxi′ 2σ
2
`j(i)

σ2`k(i), so that

var
(∑

i

aniT3i

)

=
1

J4

∑
i,i′,j,j′

j−1∑
k=1

j′−1∑
k′=1

aniani′E[u`j(i)u`k(i)u`j′ (i′)u`k′ (i′)] ≤ 2K2 max
i′

ani′
∑
i

ani → 0.

D.6 Asymptotic efficiency of the matching estimator

By Theorem 2.2, the matching estimator with M = 1 is efficient in finite samples if the Lipschitz

constant C is large enough. We now give conditions for its asymptotic optimality.

Theorem D.1. Suppose that the assumptions of Theorem 4.1 hold, and that σ2(x, d) is bounded

away from zero and infinity. Suppose that, for some functions G : R+ → R+ and G : R+ → R+ with

limt→0G(G−1(t))2/[t/ log t−1]2/p+1 = 0,

G(a) ≤ P (‖Xi − x‖X ≤ a, Di = d) ≤ G(a).

Let R∗n,match,RMSE denote the worst-case RMSE of the matching estimator with M = 1, and let

R∗n,opt,RMSE denote the minimax RMSE among linear estimators, conditional on {Xi, Di}ni=1, for

the class FLip(C). Then R∗n,match,RMSE/R
∗
n,opt,RMSE → 1 almost surely. The same holds with

“RMSE” replaced by “CI length” or “β quantile of excess length of a one-sided CI.”

If Xi has sufficiently regular support and the conditional density of Xi given Di is bounded away

from zero on the support of Xi for both Di = 0 and Di = 1, then the conditions of Theorem D.1

hold with G(a) and G(a) both given by constants times ap, so that G(G(a)) decreases like a as

a→ 0. Thus, the conditions of Theorem D.1 hold so long as p > 2 and there is sufficient overlap.

Proof. Let sdδRMSE,n and biasδRMSE,n denote the standard deviation and worst-case bias of the

minimax linear estimator and let sdmatch,1 and biasmatch,1 denote the standard deviation and worst-

case bias of the estimator with a single match (conditional on {(Xi, Di)
n
i=1}). Since worst-case bias
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is increasing in δ and variance is decreasing in δ, and since the matching estimator with M = 1

solves the modulus problem for small enough δ by Theorem 2.3, we have biasδRMSE,n ≥ biasmatch,1.

Thus,

1 ≤
bias

2
match,1 + sd2

match,1

bias
2
δRMSE,n + sd2

δRMSE,n

≤
bias

2
δRMSE,n + sd2

match,1

bias
2
δRMSE,n + sd2

δRMSE,n

≤ 1 +
sd2

match,1

bias
2
δRMSE,n + sd2

δRMSE,n

.

By the arguments in the proof of Theorem 4.1, there exists ε > 0 such that biasδRMSE,n ≥ εn−2/p

almost surely. In addition, by Theorem 37 in Chapter 2 of Pollard (1984), the conditions of Theo-

rem 4.3 hold almost surely (with G(a) and G(a) multiplied by some positive constants). Arguing as

in the proof of Theorem 4.3 then gives the bound sd2
match,1 ≤ [2 max1≤i≤nK1(i)]

2/n ≤ [2nG(an)]2/n

for any sequence an = G−1(cn(log n)/n) with cn = nG(an)/ log n → ∞. Plugging these bounds

into the above display gives a bound proportional to

G(G−1(cn(log n)/n))2n2/p+1 = b(cn(log n)/n)

[
cn(log n)/n

log n− log cn − log logn

]2/p+1

n2/p+1,

where b(t) = G(G−1(t))2/[t/ log t−1]2/p+1. If limt→0 b(t) = 0, then this can be made to converge to

zero by choosing cn to increase slowly enough. Similar arguments apply to the other performance

criteria.

D.7 Verification of the conditions in Theorem B.1 for the matching estimator

For matching estimators with a fixed number of matches we use results from Abadie and Imbens

(2006) and Abadie and Imbens (2016) to verify Assumption B.1. Since such results appear to

be available only for the case where Xi is scalar, we restrict ourselves to this case, and we leave

the question of verifying Assumption B.1 when Xi is multivariate for future research. Since these

results are stated for a single underlying distribution, we restrict attention to the case where the

distribution of (Xi, Di) is fixed over P ∈ P (but where the conditional expectation function fP is

allowed to vary over the given class F).

Theorem D.2. Suppose that the class P is such that the marginal distribution of (Xi, Di) and

the conditional variance function σ2P (x, d) is the same for all P ∈ P, and such that the following

conditions hold: (i) Xi is scalar, and is supported on a compact interval [a, b] with continuous

density (ii) σ2P (x, d) is continuous and uniformly bounded away from zero and infinity (iii) 0 <

P (Di = 1) < 1 and letting g(x | d) denote the density of Xi given Di, g(x | 1)/g(x | 0) is uniformly

bounded from above and below away from zero on [a, b]. Suppose, in addition, that, for some η,

EP (u2+ηi | Xi = x,Di = d) ≤ 1/η for d ∈ {0, 1}, all x and all P ∈ P. Then Assumption B.1 holds

for the weights k(Xi, Di) = 1
n(2Di − 1)

(
1 + KM (i)

M

)
for the matching estimator with M matches.

Proof. Part (i) of Assumption B.1 follows from Lemma S.11 in Abadie and Imbens (2016). The

formula for V1,n(P ) follows from this lemma as well, and is given by a constant times 1/n (where,
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under our assumptions, the constant is strictly positive and does not depend on P ). Thus, to verify

part (ii) of Assumption B.1, it suffices to show this condition with V1,n(P ) replaced by 1/n. To

this end, note that replacing V1,n(P ) with 1/n in this condition gives

n2EP [k(Xi, Di)
2u2i I{k(Xi, Di)

2u2i > ε/n}] = EP [(1 +KM (i)/M)2u2i I{(1 +KM (i))2u2i > ε · n}].

This will converge to zero by the standard arguments showing that the Lyapunov condition implies

the Lindeberg condition, so long as EP [(1 + KM (i)/M)2+ηu2+ηi ] is uniformly bounded. Indeed,

the bound on the conditional 2 + η moment of ui implies that this is bounded by a constant times

EP [(1+KM (i)/M)2+η], which is bounded uniformly in i and n by Lemma S.8 in Abadie and Imbens

(2016).

We now consider construction of the standard error seτ (L̂k). For matching estimators with a

fixed number of matches, standard errors for the PATE are available, for example, in Abadie and

Imbens (2006). For completeness, we provide a generic formulation and consistency result that

applies to arbitrary estimators L̂k in our setting.

In Theorems 4.2 and 4.3, we gave conditions under which the conditional standard error se(L̂k) is

consistent in the sense that se(L̂k)
2/
∑n

i=1 k(Xi, Di)
2σ2P (Xi, Di) converges in probability to one con-

ditional on {Xi, Di}ni=1, along with conditions on the marginal distribution of (Xi, Di) such that this

holds for {Xi, Di}∞i=1 in a probability one set. This implies that se(L̂k)
2/
∑n

i=1 k(Xi, Di)
2σ2P (Xi, Di)

converges in probability to one unconditionally under these conditions. Thus, if Assumption B.1

holds as well, se(L̂k)
2/V1,n(P ) will converge in probability to one.

Thus, it suffices to estimate nV2,n(P ) = EP ((fP (Xi, 1)−f(Xi, 0)−τ(P ))2). Abadie and Imbens

(2006, Theorem 7) give consistency conditions for the matching estimator described in the text. We

therefore focus on the estimator nV̂2 = 1
n

∑n
i=1(f̂(Xi, 1)− f̂(Xi, 0))2 − L̂2

k.

Theorem D.3. Suppose that max1≤i≤n,d∈{0,1}|f̂(Xi, d)−fP (Xi, d)| p→ 0 and L̂k
p→ τ(P ) uniformly

over P ∈ P, and that Assumption B.1 holds, with n[V1,n(P ) + V2,n(P )] bounded away from zero

uniformly over P ∈ P. Let V̂2,n be given above. Then [V̂2,n − V2,n(P )]/[V1,n(P ) + V2,n(P )] con-

verges in probability to zero uniformly over P ∈ P. Furthermore, if seτ (L̂k)
2 = se(L̂k)

2 + V̂2,n

where se(L̂k)
2/V1,n(P ) converges in probability to one uniformly over P ∈ P, then [V1,n(P ) +

V2,n(P )]/ seτ (L̂k)
2 p→ 1 uniformly over P ∈ P.

Proof. We have

|V̂2,n/n− V2,n(P )/n|

=

∣∣∣∣∣ 1n
n∑
i=1

{[f̂(Xi, 1)− f̂(Xi, 0)]2 − [fP (Xi, 1)− fP (Xi, 0)]2}+ τ(P )2 − L̂2
k

∣∣∣∣∣
≤ 2 max

1≤i≤n,d∈{0,1}
|f̂(Xi, d)− fP (Xi, d)|2 + |L̂2

k − τ(P )2|,

which converges in probability to zero uniformly over P ∈ P. By the O(1/n) lower bound on
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V1,n(P ) + V2,n(P ), it then follows that [V̂2,n− V2,n(P )]/[V1,n(P ) + V2,n(P )] converges in probability

to zero uniformly over P ∈ P.
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