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This supplement is organized as follows. Supplemental Appendix D gives proofs of the

formal results in the main text and details on Assumption C.5. Supplemental Appendix E

gives details on the simulations. Supplemental Appendix F discusses the power of tests based

on our empirical Bayes confidence intervals (EBCIs), and Supplemental Appendix G works

through examples of the general shrinkage estimators in Section 6.1.

Appendix D Theoretical details and proofs

Supplemental Appendix D.1 gives technical details on Assumption C.5. The remainder of

this Supplemental Appendix provides the proofs of all results in the main paper and in this

supplement.

D.1 Primitive conditions for Assumption C.5

To verify Assumption C.5, we will typically have to define θi to be scaled by a rate of

convergence. Let Ỹi be an estimator of a parameter ϑi,n with rate of convergence κn and

asymptotic variance estimate σ̂2
i . Suppose that

lim
n→∞

max
1≤i≤n

sup
t∈R

∣∣∣∣∣P
(
κn(Ỹi − ϑi,n)

σ̂i
≤ t

)
− Φ(t)

∣∣∣∣∣ = 0. (S1)
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Then Assumption C.5 holds with θi = κnϑi,n and Yi = κnỸi. Consider an affine estimator

ϑ̂i = ai/κn + wiỸi = (ai + wiYi)/κn with standard error s̃ei = wiσ̂i/κn. The corresponding

affine estimator of θi is θ̂i = κnϑ̂i = ai +wiYi with standard error sei = κn · s̃ei = wiσ̂i. Then

ϑi,n ∈ {ϑ̂i ± s̃ei · χ̂i} iff. θi ∈ {θ̂i ± sei · χ̂i}. Thus, Theorem C.2 guarantees average coverage

of the intervals {ϑ̂i ± s̃ei · χ̂i} for ϑi,n. Note that, in order for the moments of θi to converge

to a non-degenerate constant, we will need to consider triangular arrays ϑi,n that converge

to zero at a κn rate.

As an example, we now verify Assumption C.5 for the linear fixed effects panel data

model

Wit = ϑi,n +X ′itβ + uit, i = 1, . . . , n, t = 1, . . . , Ti,

where Xit are covariates in the fixed effects regression.1 We assume that the Tis increase

at the same rate so that, letting T̄ = 1
n

∑n
i=1 Ti, we can apply the approach described

above with κn =
√
T̄ to verify Assumption C.5 with θi =

√
T̄ ϑi,n. We consider the

fixed effects estimate of ϑi,n formed by regressing Wit on Xit and indicator variables for

each individual i, along with the heteroskedasticity robust variance estimate from this re-

gression. To give the formulas for these estimates, we first define some notation. Let

W̄i = 1
Ti

∑Ti
t=1Wit, X̄i = 1

Ti

∑Ti
t=1Xit, Ẍit = Xit − X̄i, Ẅit = Wit − W̄i, ūi = 1

Ti

∑Ti
t=1 uit

and T̄ = 1
n

∑n
i=1 Ti. Letting Q̂XX = 1

nT̄

∑n
i=1

∑Ti
t=1 ẌitẌ

′
it, the fixed effect estimate of β is

given by β̂ = Q̂−1
XX

∑n
i=1

∑Ti
t=1 ẌitWit/(nT̄ ), and the fixed effect estimate of ϑi,n is given by

Ỹi = W̄i − X̄ ′iβ̂ =
n∑
j=1

Tj∑
t=1

(
I{i = j} 1

Ti
− 1

nT̄
X̄ ′iQ̂

−1
XXẌit

)
Wit. (S2)

We assume that the Tis grow at the same rate, so that all Ỹi’s converge at the same rate

1/
√
T̄ . An estimate of the variance of

√
T̄ (Ỹi − ϑi,n) that is robust to heteroskedasticity in

uit is given by

σ̂2
i = T̄

n∑
j=1

Ti∑
t=1

(
I{i = j} 1

Ti
− 1

nT̄
X̄ ′iQ̂

−1
XXẌjt

)2

û2
jt, (S3)

where ûit = Wit −X ′itβ̂ − Ỹi.
We consider “large n large T” asymptotics in which the Ti’s are implicitly indexed by

n. We make the following assumptions about the Ti’s and the distribution P̃ = P̃ (n) of

{Xit, uit}i=1,...,n, t=1,...,Ti .

Assumption D.1. For some constants γ > 0 and K > 0,

1We note that, despite the similarity in notation, we do not make any assumption about the relation
between the individual level prediction variables Xi used in the individual level predictive regression and the
covariates Xit used in the fixed effects regression.
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1. uit is mean zero and independent across i and t with 1/K ≤ EP̃u
2
it and EP̃ |uit|2+γ ≤ K.

2. |Xit| ≤ K for all i, t.

3. n→∞ and min1≤i≤n Ti →∞ and Ti/Tj ≤ K for all i, j ≤ n.

4. Under P̃ ,
√
nT̄ (β̂ − β) = O(1) and the minimum eigenvalue of Q̂XX is greater than

1/K with probability approaching one as n→∞.

Assumption D.1 is meant to give a simple set of sufficient conditions, and it could be

modified for other settings, so long as large n and T asymptotics allow for valid inference

on the individual fixed effects. For example, one could relax the independence assumption

on the uit’s and modify the standard errors to take into account dependence, so long as

one puts enough structure on the dependence that consistent variance estimation is possible

as n and T increase. The assumption of bounded covariates is made for simplicity, and

could be relaxed, at the possible expense of strengthening the moment condition on uit.

The convergence rate assumption on β̂ follows from standard arguments under appropriate

conditions on uit and Xit (see, e.g., Stock and Watson, 2008).

Theorem D.1. Consider the fixed effects setting given above, and suppose Assumption D.1

holds. Then Assumption C.5 holds with θi =
√
T̄ ϑi,n, Yi =

√
T̄ Ỹi where Ỹi is the fixed effects

estimator defined in Eq. (S2), and σ̂2
i is the variance estimate defined in Eq. (S3).

To prove Theorem D.1, we first prove a series of lemmas.

Lemma D.1. For any η > 0, max1≤i≤n P̃
(√

T̄ |Ỹi − ϑi,n − ūi| > η
)
→ 0.

Proof. The result is immediate from Assumption D.1 since Ỹi − ϑi,n − ūi = X̄ ′it(β − β̂).

Lemma D.2. For any η > 0, max1≤i≤n P̃
(∣∣∣ 1

Ti

∑Ti
t=1(û2

it − u2
it)
∣∣∣ > η

)
→ 0. Furthermore, if

Ait,n is a triangular array of random variables that are bounded almost surely uniformly in n

and i, t, then, for any η > 0, there exists C such that max1≤i≤n P̃
(∣∣∣ 1

Ti

∑Ti
t=1 Ait,nû

2
it

∣∣∣ > C
)
<

η and P̃
(∣∣∣ 1

nT̄

∑n
i=1

∑Ti
t=1Ait,nû

2
it

∣∣∣ > C
)
< η for large enough n.

Proof. Some algebra shows that ûit = Ẍ ′it(β − β̂) + uit − ūi. Thus,

û2
it = u2

it + (β − β̂)′ẌitẌ
′
it(β − β̂) + ū2

i + 2uitẌ
′
it(β − β̂)− 2ūiẌ

′
it(β − β̂)− 2ūiuit. (S4)

It follows that
∣∣∣ 1
nT̄

∑n
i=1

∑Ti
t=1 Ait,nû

2
it

∣∣∣ is bounded by maxi,t,n|Ait,n| times

1

nT̄

n∑
i=1

Ti∑
t=1

u2
it + (β − β̂)′Q̂XX(β − β̂) +

1

nT̄

n∑
i=1

Ti∑
t=1

ū2
i
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+
1

nT̄

n∑
i=1

Ti∑
t=1

2|uit| · |Ẍ ′it(β − β̂)| − 1

nT̄

n∑
i=1

Ti∑
t=1

2|ūi||Ẍ ′it(β − β̂)| − 1

nT̄

n∑
i=1

Ti∑
t=1

2|ūiuit|.

The second term converges in probability to zero by the assumptions on Xit and β̂. The

remaining terms are bounded by a constant times 1
nT̄

∑n
i=1

∑Ti
t=1(u2

it+ū
2
i +|uit|+|ūi|+|ūiuit|).

By Jensen’s inequality, we have ū2
i ≤ 1

Ti

∑Ti
i=1 u

2
it, |ūi| ≤ 1

Ti

∑Ti
i=1 |uit| and

Ti∑
t=1

|ūi||uit| = |ūi|
Ti∑
t=1

|uit| ≤
1

Ti

[
Ti∑
t=1

|uit|
]2

≤ Ti
1

Ti

Ti∑
t=1

u2
it =

Ti∑
t=1

u2
it.

This gives a bound of a constant times 1
nT̄

∑n
i=1

∑Ti
t=1(u2

it + |uit|). The last statement in the

lemma then follows by Markov’s inequality. The second statement in the lemma follows from

similar arguments.

For the first statement in the lemma, it follows from (S4) that 1
Ti

∑Ti
t=1(u2

it− û2
it) is equal

to

(β̂ − β)′

(
1

Ti

Ti∑
t=1

ẌitẌ
′
it

)
(β̂ − β)− ū2

i + 2
1

Ti

Ti∑
t=1

uitẌ
′
it(β − β̂)− 2

ūi
Ti

Ti∑
t=1

Ẍ ′it(β − β̂).

The first term is bounded by a constant that does not depend on i times |β̂ − β|2 (the

squared Euclidean norm), which converges in probability to 0 by assumption. The second

term has expectation bounded by T̄−1 times a constant that does not depend on i. From

the bounds on the support of Xit and the first moment of uit it follows that the last two

terms are bounded by |β̂ − β| times a constant that does not depend on i. This gives the

first statement of the lemma.

Lemma D.3. Let σ2
i = T̄

T 2
i

∑Ti
t=1 EP̃u

2
it. For any η > 0, max1≤i≤n P̃ (|σ̂2

i − σ2
i | > η)→ 0.

Proof. We have σ̂2
i = I + II + III where I = T̄

T 2
i

∑Ti
t=1 û

2
it,

II =
1

n2T̄

n∑
j=1

Ti∑
t=1

X̄ ′iQ̂
−1
XXẌjtẌ

′
jtQ̂
−1
XXX̄iû

2
jt =

1

n
X̄ ′iQ̂

−1
XXQ̂XXuQ̂

−1
XXX̄i,

where Q̂XXu = 1
nT̄

∑n
j=1

∑Ti
t=1 ẌjtẌ

′
jtû

2
it, and

III = −2
1

nTi

Ti∑
t=1

X̄ ′iQ̂
−1
XXẌitû

2
it = −2

1

n
X̄ ′iQ̂

−1
XXQ̂Xu,i,

where Q̂Xu,i = 1
Ti

∑n
i=1 Ẍitû

2
it. By Lemma D.2 and the condition on the minimum eigen-
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value of Q̂XX , it follows that max1≤i≤n P̃ (|II + III| > η/3) → 0. It also follows from

Lemma D.2 that max1≤i≤n P̃
(∣∣∣I − T̄

T 2
i

∑Ti
t=1 u

2
it

∣∣∣ > η/3
)
→ 0. It now suffices to show that

max1≤i≤n P̃
(∣∣∣ T̄T 2

i

∑Ti
t=1 (u2

it − EP̃u2
it)
∣∣∣ > η/3

)
→ 0. By von Bahr and Esseen (1965, Theorem

3),

EP̃

∣∣∣∣∣ T̄T 2
i

Ti∑
t=1

(
u2
it − EP̃u2

it

)∣∣∣∣∣
1+γ/2

≤ 2(T̄ /T 2
i )1+γ/2

Ti∑
t=1

EP̃
∣∣u2
it − EP̃u2

it

∣∣1+γ/2
,

which is bounded by a constant times T̄−γ/2 by the moment bound on uit and the bound on

Ti/Tj. The result now follows from Markov’s inequality.

Let Z̃i =
√
T̄ ūi/σi, R1,i =

√
T̄i(Ỹi − ϑi,n − ūi)/σi and R2,i = σ̂i − σi. We have

√
T̄ (Ỹi − ϑi,n)

σ̂i
=
(
Z̃i +R1,i

) σi
σi +R2,i

= Z̃i − Z̃i
R2,i

σi +R2,i

+R1,i
σi

σi +R2,i

.

It follows from the Lyapounov Central Limit Theorem (applied to Zin for arbitrary sequences

in ≤ n) that limn→∞max1≤i≤n supt∈R

∣∣∣P (Z̃i ≤ t
)
− Φ(t)

∣∣∣ = 0. The conclusion of Theo-

rem D.1 then follows so long as max1≤i≤n P
(∣∣∣Z̃i R2,i

σi+R2,i

∣∣∣+
∣∣∣R1,i

σi
σi+R2,i

∣∣∣ > η
)
→ 0 for any

η > 0. But this follows by Lemmas D.1 and D.3 and the fact that σi is bounded from above

and from below away from zero by the moment assumptions on uit.

D.2 Proof of Lemma 4.1

We first show that the non-coverage probability is weakly decreasing in wEB,i. Let Γ(m)

denote the space of probability measures on R with second moment bounded above by m > 0.

Abbreviating z1−α/2 by z, let ρ̃(w) = ρ(1/w − 1, z/
√
w) denote the maximal undercoverage

when wEB,i = w. By definition of ρ,

ρ̃(w) = sup
F∈Γ(1/w−1)

Eb∼F
[
P (|b− Z| > z/

√
w | b)

]
= sup

F∈Γ(1/w−1)

Pb∼F
(√

w|b− Z| > z
)
, (S5)

where Z denotes a N(0, 1) variable that is independent of b.

Consider any w0, w1 such that 0 < w0 ≤ w1 < 1. Let F ∗1 ∈ Γ(1/w1 − 1) denote the

least-favorable distribution—i.e., the distribution that achieves the supremum (S5)—when

w = w1. (Proposition B.1 implies that the supremum is in fact attained at a particular
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discrete distribution.) Let F̃0 denote the distribution of the linear combination√
w1

w0

b−
√
w1 − w0

w0

Z

when b ∼ F ∗1 and Z ∼ N(0, 1) are independent. Note that the second moment of this

distribution is w1

w0
· 1−w1

w1
+ w1−w0

w0
= 1−w0

w0
, so F̃0 ∈ Γ(1/w0 − 1). Thus, if we let Z̃ denote

another N(0, 1) variable that is independent of (b, Z), then

ρ̃(w0) ≥ Pb∼F̃0

(√
w0|b− Z| > z

)
= Pb∼F ∗1

(√
w0

∣∣∣∣√w1

w0

b−
√
w1 − w0

w0

Z̃ − Z
∣∣∣∣ > z

)
= Pb∼F ∗1

(∣∣√w1b− (
√
w1 − w0Z̃ +

√
w0Z)︸ ︷︷ ︸

∼N(0,w1)

∣∣ > z

)
= Pb∼F ∗1 (

√
w1|b− Z| > z) = ρ̃(w1).

Next, we derive the limit of the non-coverage probability as wEB,i → 0. It follows from

Proposition B.1 that

ρ(t, χ) = sup
0≤λ≤1

(1− λ)r(0, χ) + λr((t/λ)1/2, χ).

Note that r(0, z/
√
w)→ 0 as w → 0. Thus,

lim
w→0

ρ̃(w) = lim
w→0

ρ
(
1/w − 1, z/

√
w
)

= lim
w→0

sup
0≤λ≤1

λr
(
λ−1/2(1/w − 1)1/2, zw−1/2

)
,

provided the latter limit exists. We will first show that the supremum above is bounded

below by an expression that tends to 1/max{z2, 1}. Then we will show that the supremum

is bounded above by an expression that tends to 1/z2 (and the supremum is obviously also

bounded above by 1).

Let ε(w) ≥ 0 be any function of w such that ε(w) → 0 and ε(w)(1/w − 1)1/2 → ∞ as

w → 0. Let z̃ = max{z, 1}. Note first that, by setting λ = (z̃(1− w)−1/2 + ε(w))−2 ∈ [0, 1],

sup
0≤λ≤1

λr
(
λ−1/2(1/w − 1)1/2, zw−1/2

)
≥ r

(
(z̃(1− w)−1/2 + ε(w))(1/w − 1)1/2, zw−1/2

)
(z̃(1− w)−1/2 + ε(w))2

→ 1

z̃2

as w → 0, since r(b, χ)→ 1 when (b− χ)→∞, and

(z̃(1− w)−1/2 + ε(w))(1/w − 1)1/2 − zw−1/2 ≥ (z(1− w)−1/2 + ε(w))(1/w − 1)1/2 − zw−1/2

= ε(w)(1/w − 1)1/2 →∞.
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Second,

sup
0≤λ≤1

λr
(
λ−1/2(1/w − 1)1/2, zw−1/2

)
≤ Φ

(
−zw−1/2

)
+ sup

0≤λ≤1
λΦ
(
λ−1/2(1/w − 1)1/2 − zw−1/2

)
.

The first term above tends to 0 as w → 0. The second term equals

max

{
sup

0≤λ≤(z−ε(w))−2

λΦ
(
λ−1/2(1/w − 1)1/2 − zw−1/2

)
,

sup
(z−ε(w))−2<λ≤1

λΦ
(
λ−1/2(1/w − 1)1/2 − zw−1/2

)}
,

where the first argument is bounded above by sup0≤λ≤(z−ε(w))−2 λ = (z− ε(w))−2 → 1
z2

. The

second argument tends to 0 as w → 0, since

λ−1/2(1/w − 1)1/2 − zw−1/2 ≤ (λ−1/2 − z)(1/w − 1)1/2 ≤ −ε(w)(1/w − 1)1/2

for all λ > (z − ε(w))−2, and the far right-hand side above tends to −∞ as w → 0.

D.3 Proof of Proposition B.1

Since r(b, χ) is symmetric in b, Eq. (5) is equivalent to maximizing EF [r0(t, χ)] over distribu-

tions F of t with EF [t] = m2. Let r(t, χ) denote the least concave majorant of r0(t, χ). We

first show that ρ(m2, χ) = r(m2, χ).

Observe that ρ(m2, χ) ≤ ρ(m2, χ), where ρ(m2, χ) denotes the value of the problem

ρ(m2, χ) = sup
F
EF [r(t, χ)] s.t. EF [t] = m2.

Furthermore, since r is concave, by Jensen’s inequality, the optimal solution F ∗ to this

problem puts point mass on m2, so that ρ(m2, χ) = r(m2, χ), and hence ρ(m2, χ) ≤ r(m2, χ).

Next, we show that the reverse inequality holds, ρ(m2, χ) ≥ r(m2, χ). By Corollary 17.1.4

on page 157 in Rockafellar (1970), the majorant can be written as

r(t, χ) = sup{λr0(x1, χ)+(1−λ)r0(x2, χ) : λx1+(1−λ)x2 = t, 0 ≤ x1 ≤ x2, λ ∈ [0, 1]}, (S6)

which corresponds to the problem in Eq. (5), with the distribution F constrained to be a

discrete distribution with two support points. Since imposing this additional constraint on
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F must weakly decrease the value of the solution, it follows that ρ(m2, χ) ≥ r(m2, χ). Thus,

ρ(m2, χ) = r(m2, χ). The proposition then follows by Lemma D.5 below.

Lemma D.4. Let r0(t, χ) = r(
√
t, χ). If χ ≤

√
3, then r0 is concave in t. If χ >

√
3, then

its second derivative is positive for t small enough, negative for t large enough, and crosses

zero exactly once, at some t1 ∈ [χ2 − 3, (χ− 1/χ)2].

Proof. Letting φ denote the standard normal density, the first and second derivative of

r0(t) = r0(t, χ) are given by

r′0(t) =
1

2
√
t

[
φ(
√
t− χ)− φ(

√
t+ χ)

]
≥ 0,

r′′0(t) =
φ(χ−

√
t)(χ
√
t− t− 1) + φ(χ+

√
t)(χ
√
t+ t+ 1)

4t3/2

=
φ(χ+

√
t)

4t3/2

[
e2χ
√
t(χ
√
t− t− 1) + (χ

√
t+ t+ 1)

]
=
φ(χ+

√
t)

4t3/2
f(
√
t),

where the last line uses φ(a+ b)e−2ab = φ(a− b), and

f(u) = (χu+ u2 + 1)− e2χu(u2 − χu+ 1).

Thus, the sign of r′′0(t) corresponds to that of f(
√
t), with r′′0(t) = 0 if and only if f(

√
t) = 0.

Observe f(0) = 0, and f(u) < 0 is negative for u large enough, since the term −u2e2χu

dominates. Furthermore,

f ′(u) = 2u+ χ− e2χu(2χ(u2 − χu+ 1) + 2u− χ) f ′(0) = 0

f ′′(u) = e2χu(4χ3u− 4χ2u2 − 8χu− 2) + 2 f ′′(0) = 0

f (3)(u) = 4χe2χu(2χ3u+ χ2(1− 2u2)− 6χu− 3) f (3)(0) = 4χ(χ2 − 3).

Therefore for u > 0 small enough, f(u), and hence r′′0(u2) is positive if χ2 ≥ 3, and negative

otherwise.

Now suppose that f(u0) = 0 for some u0 > 0, so that

χu0 + u2
0 + 1 = e2χu0(u2

0 − χu0 + 1) (S7)

Since χu+ u2 + 1 is strictly positive, it must be the case that u2
0−χu0 + 1 > 0. Multiplying

and dividing the expression for f ′(u) above by u2
0 − χu0 + 1 and plugging in the identity in

8



Eq. (S7) and simplifying the expression yields

f ′(u0) =
(u2

0 − χu0 + 1)(2u0 + χ)− (χu0 + u2
0 + 1)(2χ(u2

0 − χu0 + 1) + 2u0 − χ)

u2
0 − χu0 + 1

=
2u2

0χ(χ2 − 3− u2
0)

u2
0 − χu0 + 1

.

(S8)

Suppose χ2 < 3. Then f ′(u0) < 0 at all positive roots u0 by Eq. (S8). But if χ2 < 3, then

f(u) is initially negative, so by continuity it must be that f ′(u1) ≥ 0 at the first positive root

u1. Therefore, if χ2 ≤ 3, f , and hence r′′0 , cannot have any positive roots. Thus, if χ2 ≤ 3,

r0 is concave as claimed.

Now suppose that χ2 ≥ 3, so that f(u) is initially positive. By continuity, this implies

that f ′(u1) ≤ 0 at its first positive root u1. By Eq. (S8), this implies u1 ≥
√
χ2 − 3. As a

result, again by Eq. (S8), f(ui) ≤ 0 for all remaining positive roots. But since by continuity,

the signs of f ′ must alternate at the roots of f , this implies that f has at most a single

positive root. Since f is initially positive, and negative for large enough u, it follows that

it has a single positive root u1 ≥
√
χ2 − 3. Finally, to obtain an upper bound for t1 = u2

1,

observe that if f(u1) = 0, then, by Taylor expansion of the exponential function,

1 +
2χu1

χu1 + u2
1 + 1

= e2χu1 ≥ 1 + 2χu1 + 2(χu1)2,

which implies that 1 ≥ (1 + χu1)(χu1 + u2
1 + 1), so that u1 ≤ χ− 1/χ.

Lemma D.5. The problem in Eq. (S6) can be written as

r(t, χ) = sup
u≥t
{(1− t/u)r0(0, χ) +

t

u
r0(u, χ)}. (S9)

Let t0 = 0 if χ ≤
√

3, and otherwise let t0 > 0 denote the solution to r0(0, χ) − r0(u, χ) +

u ∂
∂u
r0(u, χ) = 0. This solution is unique, and the optimal u solving Eq. (S9) satisfies u = t

for t > t0 and u = t0 otherwise.

Proof. If in the optimization problem in Eq. (S6), the constraint on x2 binds, or either

constraint on λ binds, then the optimum is achieved at r0(t) = r0(t, χ), with x1 = t and

λ = 1 and x2 arbitrary; x2 = t and λ = 0 and x1 arbitrary; or else x1 = x2 and λ arbitrary.

In any of these cases r takes the form in Eq. (S9) as claimed. If, on the other hand, these

constraints do not bind, then x2 > t > x1, and substituting λ = (x2 − t)/(x2 − x1) into the

9



objective function yields the first-order conditions

r0(x2)− (x2 − x1)r′0(x1)− r0(x1) = µ
(x2 − x1)2

(x2 − t)
, (S10)

r0(x2) + (x1 − x2)r′0(x2)− r0(x1) = 0, (S11)

where µ ≥ 0 is the Lagrange multiplier on the constraint that x1 ≥ 0. Subtracting Eq. (S11)

from Eq. (S10) and applying the fundamental theorem of calculus then yields

µ
x2 − x1

(x2 − t)
= r′0(x2)− r′0(x1) =

∫ x2

x1

r′′0(t) dt > 0, (S12)

which implies that µ > 0. Here the last inequality follows because by Taylor’s theorem,

Eq. (S11) implies that
∫ x2
x1
r′′0(t)(t − x1) dt = 0. Since r′′0 is positive for t ≤ t1 and negative

for t ≥ t1 by Lemma D.4, it follows that x1 ≤ t1 ≤ x2, and hence that

0 =

∫ t1

x1

r′′0(t)(t− x1) dt+

∫ x2

t1

r′′0(t)(t− x1) dt

< (t1 − x1)

∫ t1

x1

r′′0(t) dt+ (t1 − x1)

∫ x2

t1

r′′0(t) dt = (t1 − x1)

∫ x2

x1

r′′0(t) dt.

Finally Eq. (S12) implies that µ > 0, so that x1 = 0 at the optimum. Consequently, the

problem in Eq. (S6) takes the form in Eq. (S9) as claimed.

To show the second part of Lemma D.5, note that by Lemma D.4, if χ ≤
√

3, r0 is

concave, so that we can put u = t in Eq. (S9). Otherwise, let µ ≥ 0 denote the Lagrange

multiplier associated with the constraint u ≥ t in the optimization problem in Eq. (S9). The

first-order condition is then given by

r0(0)− r0(u) + ur′0(u) =
−µu2

t
.

Let f(u) = r0(0) − r0(u) + ur′0(u). Since f ′(u) = ur′′0(u), it follows from Lemma D.4 that

f(u) is increasing for u ≤ t1 and decreasing for u ≥ t1. Since f(0) = 0 and limu→∞ f(u) <

r0(0) − 1 < 0, it follows that f(u) has exactly one positive zero, at some t0 > t1. Thus, if

t < t0, u = t0 is the unique solution to the first-order condition. If t > t0, u = t is the unique

solution.

10



D.4 Proof of Proposition B.2

Since r(b, χ) is symmetric in b, letting t = b2, we can equivalently write the optimization

problem as

ρ(m2, κ, χ) = sup
F
EF [r0(t, χ)] s.t. EF [t] = m2, EF [t2] = κm2

2, (S13)

where r0(t, χ) = r(
√
t, χ), and the supremum is over all distributions supported on the

positive part of the real line. The dual of this problem is

min
λ0,λ1,λ2

λ0 + λ1m2 + λ2κm
2
2 s.t. λ0 + λ1t+ λ2t

2 ≥ r0(t), 0 ≤ t <∞,

where λ0 the Lagrange multiplier associated with the implicit constraint that EF [1] = 1, and

r0(t) = r0(t, χ). So long as κ > 1 and m2 > 0, so that the moments (m2, κm
2
2) lie in the

interior of the space of possible moments of F , by the duality theorem in Smith (1995), the

duality gap is zero, and if F ∗ and λ∗ = (λ∗0, λ
∗
1, λ
∗
2) are optimal solutions to the primal and

dual problems, then F ∗ has mass points only at those t with λ∗0 + λ∗1t+ λ∗2t
2 = r(

√
t, χ).

Define t0 as in Lemma D.5. First, we claim that if m2 ≥ t0, then ρ(m2, κ, χ) = ρ(m2, χ),

the value of the objective function in Proposition B.1. The reason that adding the con-

straint EF [t2] = κm2
2 does not change the optimum is that it follows from the proof of

Proposition B.1 that the distribution achieving the rejection probability ρ(m2, χ) is a point

mass on m2. Consider adding another support point x2 =
√
n with probability κm2

2/n,

with the remaining probability on the support point m2. Then, as n → ∞, the mean of

this distribution converges to m2, and its second moment converges to κm2
2, so that the

constraints in Eq. (S13) are satisfied, while the rejection probability converges to ρ(m2, χ).

Since imposing the additional constraint EF [t2] = κm2
2 cannot increase optimum, the claim

follows.

Suppose that m2 < t0. At optimum, the majorant g(x) = λ0 + λ1t + λ2t
2 in the dual

constraint must satisfy g(x0) = r0(x0) for at least one x0 > 0. Otherwise, if the constraint

never binds, we could lower the value of the objective function by decreasing λ0; furthermore,

x0 = 0 cannot be the unique point at which the constraint binds, since by the duality theorem,

this would imply that the distribution that puts point mass on 0 maximizes the primal, which

cannot be the case.

At such x0, we must also have g′(x0) = r′0(x0), otherwise the constraint would be locally

violated. Using this fact together with the equality g(x0) = r0(x0), we therefore have that

λ0 = r0(x0)−λ1x0−λ2x
2
0 and λ1 = r′0(x0)−2λ2x0, so that the dual problem may be written
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as

min
x0>0,λ2

r0(x0) + r′0(x0)(m2 − x0) + λ2((x0 −m2)2 + (κ− 1)m2
2)

s.t. r0(x0) + r′0(x0)(x− x0) + λ2(x− x0)2 ≥ r0(x). (S14)

Since κ > 1, the objective is increasing in λ2. Therefore, given x0, the optimal value of λ2 is

as small as possible while still satisfying the constraint,

λ2 = sup
x>0

δ(x;x0), δ(x;x0) =
r0(x)− r0(x0)− r′0(x0)(x− x0)

(x− x0)2
.

Next, we claim that the dual constraint cannot bind for x0 > t0. Observe that λ2 ≥ 0,

otherwise the constraint would be violated for t large enough. However, setting λ2 = 0 still

satisfies the constraint. This is because the function h(x) = r0(x0) + r′0(x0)(x− x0)− r0(x)

is minimized at x = x0, with its value equal to 0. To see this, note that its derivative equals

zero if r′0(x0) = r′(x). By Lemma D.4, r′0(t) is increasing for t ≤ t0 and decreasing for t > t0.

Therefore, if r′0(x0) < r′0(0), h′(x) = 0 has a unique solution, x = x0. If r′0(x0) > r′0(0), there

is another solution at some x1 ∈ [0, t0]. However, h′′(x1) = −r′′0(x1) < 0, so h(x) achieves

a local maximum here. Since h(0) > 0 by arguments in the proof of Lemma D.4, it follows

that the maximum of h(x) occurs at x = x0, and equals 0. However, Eq. (S14) cannot be

maximized at (x0, 0), since by Proposition B.1, setting (x2, λ2) = (t0, 0) achieves a lower

value of the objective function, which proves the claim.

Therefore, Eq. (S14) can be written as

min
0<x0≤t0

r0(x0) + r′0(x0)(m2 − x0) + ((x0 −m2)2 + (κ− 1)m2
2) sup

x≥0
δ(x;x0),

To finish the proof of the proposition, it remains to show that δ cannot be maximized at

x > t0. This follows from observing that the dual constraint in Eq. (S14) binds at any x

that maximizes δ. However, by the claim above, the constraint cannot bind for x > t0.

D.5 Proof of Theorem C.1

To prove this theorem, we begin with some lemmas.

Lemma D.6. Under Assumption C.1, we have, for any deterministic χ1, . . . , χn, and any
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X ∈ A with NX ,n →∞,

lim
n→∞

1

NX ,n

∑
i∈IX ,n

P̃ (|Zi| > χi)−
1

NX ,n

∑
i∈IX ,n

r(bi,n, χi) = 0.

Furthermore, if Zi − b̃i is independent over i under P̃ , then

1

NX ,n

∑
i∈IX ,n

I{|Zi| > χi} −
1

NX ,n

∑
i∈IX ,n

r(bi,n, χi) = oP̃ (1).

Proof. For any ε > 0, 1
NX ,n

∑
i∈IX ,n I{|Zi| > χi} is bounded from above by

1

NX ,n

∑
i∈IX ,n

I{|Zi − b̃i + bi,n| > χi − ε}+
1

NX ,n

∑
i∈IX ,n

I{|b̃i − bi,n| ≥ ε}.

The expectation under P̃ of the second term converges to zero by Assumption C.1. The

expectation under P̃ of the first term is 1
NX ,n

∑
i∈IX ,n r̃i,n(bi,n, χi − ε) where r̃i,n(b, χ) =

P̃ (Zi− b̃i < −χ−b)+1−P̃ (Zi− b̃i ≤ χ−b). Note that ri,n(b, χ) converges to r(b, χ) uniformly

over b, χ under Assumption C.1, using the fact that the convergence in Assumption C.1

is uniform in t by Lemma 2.11 in van der Vaart (1998), and the fact that P̃ (Zi − b̃i <

−χ − b) = limt↑−χ−b P (Zi − b̃i ≤ t). It follows that the expectation of the above display

under P̃ is bounded by 1
NX ,n

∑
i∈IX ,n r̃(bi,n, χi − ε) + o(1). If Zi − b̃i is independent over i,

the variance of each term in the above display converges to zero, so that the above display

equals 1
NX ,n

∑
i∈IX ,n r̃(bi,n, χi− ε) + oP̃ (1). Taking ε→ 0 and noting that r(b, χ) is uniformly

continuous in both arguments, and using an analogous argument with a lower bound, gives

the result.

Lemma D.7. ρg(χ;m) is continuous in χ. Furthermore, for any m∗ in the interior of the

set of values of
∫
g(b) dF (b), where F ranges over all probability measures on R, ρg(χ;m) is

continuous with respect to m at m∗.

Proof. To show continuity with respect to χ, note that

|ρg(χ;m)− ρg(χ̃;m)| ≤ sup
F

∣∣∣∣∫ [r(b, χ)− r(b, χ̃)] dF (b)

∣∣∣∣ s.t.

∫
g(b) dF (b) = m,

where we use the fact that the difference between suprema of two functions over the same

constraint set is bounded by the supremum of the absolute difference of the two functions.

The above display is bounded by supb|r(b, χ)−r(b, χ̃)|, which is bounded by a constant times

|χ̃− χ| by uniform continuity of the standard normal CDF.
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To show continuity with respect to m, note that, by Lemma D.8 below, the conditions

for the Duality Theorem in Smith (1995, p. 812) hold for m in a small enough neighborhood

of m∗, so that

ρg(χ;m) = inf
λ0,λ

λ0 + λ′m s.t. λ0 + λ′g(b) ≥ r(b, χ) for all b ∈ R

and the above optimization problem has a finite solution. Thus, for m in this neighborhood

of m∗, ρg(χ;m) is the infimum of a collection of affine functions of m, which implies that it

is concave function of m (Boyd and Vandenberghe, 2004, p. 81). By concavity, ρg(χ;m) is

also continuous as a function of m in this neighborhood of m∗.

Lemma D.8. Suppose that µ is in the interior of the set of values of
∫
g(b) dF (b) as F ranges

over all probability measures with respect to the Borel sigma algebra, where g : R→ Rp. Then

(1, µ′)′ is in the interior of the set of values of
∫

(1, g(b)′)′ dF (b) as F ranges over all measures

with respect to the Borel sigma algebra.

Proof. Let µ be in the interior of the set of values of
∫
g(b) dF (b) as F ranges over all

probability measures with respect to the Borel sigma algebra. We need to show that, for any

a, µ̃ with (a, µ̃′)′ close enough to (1, µ′), there exists a measure F such that
∫

(1, g(b)′)dF (b) =

(a, µ̃′)′. To this end, note that, µ̃/a can be made arbitrarily close to µ by making (a, µ̃′)′ close

to (1, µ′). Thus, for (a, µ̃′)′ close enough to (1, µ′), there exists a probability measure F̃ with∫
g(b) dF̃ (b) = µ̃/a. Let F be the measure defined by F (A) = aF̃ (A) for any measurable set

A. Then
∫

(1, g(b)′)′dF (b) = a
∫

(1, g(b)′)′dF̃ (b) = (a, µ̃). This completes the proof.

Lemma D.9. Let M be a compact subset of the interior of the set of values of
∫
g(b) dF (b),

where F ranges over all measures on R with the Borel σ-algebra. Suppose limb→∞ gj(b) =

limb→−∞ gj(b) = ∞ and that infb gj(b) ≥ 0 for some j. Then limχ→∞ supm∈M ρg(χ;m) = 0

and ρg(χ;m) is uniformly continuous with respect to (χ,m′)′ on the set [0,∞)×M .

Proof. The first claim (that limχ→∞ supm∈M ρg(χ;m) = 0) follows by Markov’s inequality

and compactness of M . Given ε > 0, let χ be large enough so that ρg(χ;m) < ε for all

χ ∈ [χ,∞) and all m ∈ M . By Lemma D.7, ρg(χ;m) is continuous on [0, χ + 1] ×M , so,

since [0, χ + 1]×M is compact, it is uniformly continuous on this set. Thus, there exists δ

such that, for any χ,m and χ̃, m̃ with χ, χ̃ ≤ χ + 1 and ‖(χ̃, m̃′)′ − (χ,m′)′‖ ≤ δ, we have

|ρg(χ;m) − ρg(χ̃; m̃)| < ε. If we also set δ < 1, then, if either χ ≥ χ + 1 or χ̃ ≥ χ + 1 we

must have both χ ≥ χ and χ̃ ≥ χ, so that ρg(χ̃; m̃) < ε and ρg(χ;m) < ε, which also implies

|ρg(χ;m)− ρg(χ̃; m̃)| < ε. This completes the proof.
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For any ε > 0, let

ρg(χ;m, ε) = sup
m̃∈Bε(m)

ρg(χ; m̃) and ρ
g
(χ;m, ε) = inf

m̃∈Bε(m)
ρg(χ; m̃).

Lemma D.10. Let M be a compact subset of the interior of the set of values of
∫
g(b) dF (b),

where F ranges over all measures on R with the Borel σ-algebra. Suppose limb→∞ gj(b) =

limb→−∞ gj(b) =∞ and infb gj(b) ≥ 0 for some j. Then, for ε smaller than a constant that

depends only on M , the functions ρg(χ;m, ε) and ρ
g
(χ;m, ε) are continuous in χ. Further-

more, we have limε→0 supχ∈[0,∞),m∈M [ρg(χ;m, ε)− ρ
g
(χ;m, ε)] = 0.

Proof. For ε smaller than a constant that depends only on M , the set ∪m∈MBε(m) is con-

tained in another compact subset of the interior of the set of values of
∫
g(b) dF (b), where

F ranges over all measures on R with the Borel σ-algebra. The result then follows from

Lemma D.9, where, for the first claim, we use the fact that |ρg(χ;m, ε) − ρg(χ̃;m, ε)| ≤
supm̃∈Bε(m)|ρg(χ; m̃)− ρg(χ̃; m̃)| and similarly for ρ

g
.

We now prove Theorem C.1. Given X ∈ A and ε > 0, let m1, . . . ,mJ and X1, . . . ,XJ
be as in Assumption C.3. Let χ

j
= min{χ : ρ

g
(χ;mj, 2ε) ≤ α}. For m̂i ∈ B2ε(mj), we have

ρ
g
(χ;mj, 2ε) ≤ ρg(χ; m̂i) for all χ, so that, using the fact that ρ

g
(χ;mj, 2ε) and ρg(χ; m̂i)

are weakly decreasing in χ, we have χ
j
≤ χ̂i. Thus, letting χ̃(n) denote the sequence with

ith element equal to χ
j

when X̃i ∈ Xj, we have

ANCn(χ̂(n);X ) ≤ max
1≤j≤J

ANCn(χ̃(n);Xj)

≤ max
1≤j≤J

 1

NXj ,n

∑
i∈IXj ,n

I{m̂i /∈ B2ε(mj)}+
1

NXj ,n

∑
i∈IXj ,n

I{|Zi| > χ
j
}

 .
The first term is bounded by 1

NXj ,n

∑
i∈IXj ,n

I{‖m̂i − m(X̃i)‖ > ε} since, for i ∈ IXj ,n, we

have ‖m̂i − mj‖ ≤ ε + ‖m̂i − m(X̃i)‖. This converges in probability (and expectation) to

zero under P̃ by Assumption C.2. By Lemma D.6, the second term is equal to, letting Fj,n

denote the empirical distribution of the bi,n’s for i with xi ∈ Xj,∫
r(b, χ

j
) dFj,n(b) +Rn ≤ ρg(χj;µj, 2ε) +Rn

where Rn is a term such that EP̃Rn → 0 and such that, if Zi − b̃i is independent over i

under P̃ , then Rn converges in probability to zero under P̃ . The result will now follow if we

can show that max1≤j≤J [ρg(χj;µj, 2ε)−α] can be made arbitrarily small by making ε small.
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This holds by Lemma D.10 and the fact that ρ
g
(χ

j
;µj, 2ε) ≤ α by construction.

D.6 Proof of Theorem C.2

To prove Theorem C.2, we will verify the conditions of Theorem C.1 with A given in Assump-

tion C.7, mj(X̃i) = c(γ, σi)
`jµ0,`j , b̃i = c(γ̂, σ̂i)(θi − X̂ ′i δ̂) and bi,n = c(γ, σi)(θi − X̂ ′iδ) where

c(γ, σ) = w(γ,σ)−1
w(γ,σ)σ

. The first part of Assumption C.1 is immediate from Assumption C.5 since

Zi − b̃i = (Yi − θi)/σ̂i. For the second part, we have

b̃i − bi,n = c(γ̂, σ̂i)(θi − X̂ ′i δ̂)− c(γ, σi)(θi −X ′iδ)
= [c(γ̂, σ̂i)− c(γ, σi)](θi −X ′iδ) + c(γ̂, σ̂i) · [(X̂i −Xi)

′δ̂ −X ′i(δ − δ̂)].

For ‖θi‖+ ‖Xi‖ ≤ C, the above expression is bounded by

[c(γ̂, σ̂i)− c(γ, σi)] · (‖δ‖+ 1) · C + c(γ̂, σ̂i)
[
‖δ̂ − δ‖ · C + ‖X̂i −Xi‖ · (C + ‖δ̂ − δ‖)

]
.

By uniform continuity of c() on an open set containing {γ}×S1, for every ε > 0 there exists

η > 0 such that ‖(σ̂i− σi, γ̂− γ, δ̂′− δ′, X̂ ′i −X ′i)′‖ ≤ η implies that the absolute value of the

above display is less than ε. Thus, for any X ∈ A,

lim
n→∞

1

NX ,n

∑
i∈IX ,n

P̃ (|b̃i − bi,n| ≥ ε)

≤ lim
n→∞

1

NX ,n

∑
i∈IX ,n

P̃ (‖(σ̂i − σi, γ̂ − γ, δ̂′ − δ′, X̂ ′i −X ′i)′‖ > η) I{‖θi‖+ ‖Xi‖ ≤ C}

+ lim sup
n→∞

1

NX ,n

∑
i∈IX ,n

I{‖θi‖+ ‖Xi‖ > C}.

The first limit is zero by Assumption C.6. The last limit converges to zero as C → ∞ by

the second part of Assumption C.7 and Markov’s inequality. This completes the verification

of Assumption C.5.

We now verify Assumption C.2. Given X ∈ A and given ε > 0, we can partition X into

sets X1, . . . ,XJ such that, for some c1, . . . , cJ , we have |c(γ, σi)`k−c`kj | < ε for all k = 1, . . . , p

whenever i ∈ IXj ,n for some j. Thus, for each j and k,

1

NXj ,n

∑
i∈IXj ,n

b`ki,n −mk(X̃i) =
1

NXj ,n

∑
i∈IXj ,n

c(γ, σi)
`k
[
(θi −X ′iδ)`k − µ0,`k

]
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= c`kj ·
1

NXj ,n

∑
i∈IXj ,n

[
(θi −X ′iδ)`k − µ0,`k

]
+

1

NXj ,n

∑
i∈IXj ,n

[c(γ, σi)
`k − c`kj ]

[
(θi −X ′iδ)`k − µ0,`k

]
.

Under Assumption C.7, the first term converges to 0 and the second term is bounded up

to an o(1) term by ε times a constant that depends only on K. Since the absolute value of
1

NX ,n

∑
i∈IX ,n b

`k
i,n −mk(X̃i) is bounded by the maximum over j of the absolute value of the

above display, and since ε can be chosen arbitrarily small, the first part of Assumption C.2

follows.

For the second part of Assumption C.2, we have m̂i,k−mk(X̃i) = c(γ, σi)µ̂`j−c(γ, σi)`jµ0,`j .

By uniform continuity of (γ̃′, σ, µ`1 , . . . , µ`p)
′ 7→ (c(γ, σi)

`1µ`1 , . . . , c(γ, σi)
`pµ`p)

′ in an open

set containing {γ} × S1 × {(µ0,`1 , . . . , µ0,`p)
′}, for any ε > 0, there exists η > 0 such that

‖(γ̂′ − γ′, σ̂i − σ, µ̂`1 − µ0,`1 , . . . , µ̂`p − µ0,`p)‖ < η implies ‖m̂i,k −mk(X̃i)‖ < ε. Thus,

max
1≤i≤n

P̃ (‖m̂i −m(X̃i)‖ ≥ ε) ≤ max
1≤i≤n

P̃ (‖(γ̂′ − γ′, σ̂i − σ, µ̂`1 − µ0,`1 , . . . , µ̂`p − µ0,`p)‖ < η),

which converges to zero by Assumptions C.6 and C.7. This completes the verification of

Assumption C.2.

Assumption C.3 follows immediately from compactness of the set S1 × · · · × S1 and

uniform continuity of m() on this set. Assumption C.4 follows from Assumption C.7 and

Lemma D.11 below. This completes the proof of Theorem C.2.

Lemma D.11. Suppose that, as F ranges over all probability measures with respect to the

Borel sigma algebra, (µ`1 , . . . , µ`p)
′ is interior to the set of values of

∫
(b`1 , . . . , b`p)′ dF (b).

Let c ∈ R. Then, as F ranges over all probability measures with respect to the Borel sigma

algebra, (c`1µ`1 , . . . , c
`pµ`p)

′ is also in the interior of the set of values of
∫

(b`1 , . . . , b`p)′ dF (b).

Proof. We need to show that, for any vector r with ‖r‖ small enough, there exists a prob-

ability measure F such that
∫

(b`1 , . . . , b`p)′ dF (b) = (c`1µ`1 + r1, . . . , c
`pµ`p + rp)

′. Let

µ̃`k = µ`k + rk/c
`k . For ‖r‖ small enough, there exists a probability measure F̃ with∫

b`k dF (b) = µ̃`k for each k. Let F denote the probability measure of cB when B is a random

variable distributed according to F̃ . Then
∫
b`k dF (b) = c`k

∫
b`k dF̃ = c`k µ̃`k = c`kµ`k + rk

as required.
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Appendix E Details for simulations

Supplemental Appendix E.1 gives details on the Monte Carlo designs in Section 4.4. Supple-

mental Appendix E.2 considers an additional Monte Carlo exercise calibrated to the empirical

application in Section 7.

E.1 Details for panel data simulation designs

The simulation results reported in Section 4.4 consider the following six distributions for θi,

each of which satisfies var(θi) = µ2:

1. Normal (kurtosis κ = 3): θi ∼ N(0, µ2).

2. Scaled chi-squared (κ = 15): θi ∼
√
µ2/2 · χ2(1).

3. 2-point (κ = 1/(0.9 · 0.1)− 3 ≈ 8.11), with θi = 0 w.p. 0.9 and θi = µ2/(0.9 · 0.1) w.p.

0.1.

4. 3-point (κ = 2):

θi ∼


−
√
µ2/0.5 w.p. 0.25,

0 w.p. 0.5,√
µ2/0.5 w.p. 0.25.

5. Least favorable for robust EBCI: The (asymptotically as n, T → ∞) least favorable

distribution for the robust EBCI that exploits only second moments, i.e.,

θi ∼


−
√
µ2/min{ m2

t0(m2,α)
, 1} w.p. 1

2
min{ m2

t0(m2,α)
, 1},

0 w.p. 1−min{ m2

t0(m2,α)
, 1},√

µ2/min{ m2

t0(m2,α)
, 1} w.p. 1

2
min{ m2

t0(m2,α)
, 1},

where m2 = 1/µ2, and t0(m2, α) is the number defined in Proposition B.1 with χ =

cvaα(m2). The kurtosis κ(µ2, α) = 1/min{ 1/µ2
t0(1/µ2,α)

, 1} depends on µ2 and α.

6. Least favorable for parametric EBCI: The (asymptotically) least favorable distribution

for the parametric EBCI. This is the same distribution as above, except that now

t0(m2, α) is the number defined in Proposition B.1 with χ = z1−α/2/
√
µ2/(1 + µ2).
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E.2 Heteroskedastic design

We now provide average coverage and length results for a heteroskedastic simulation design.

We base the design on the effect estimates and standard errors obtained in the empirical

application in Section 7. Because we do not have access to the underlying data set, we

treat the standard errors as known and impose exact conditional normality of the initial

estimates. Let (θ̂i, σ̂i), i = 1, . . . , n, denote the n = 595 baseline shrinkage point estimates

and associated standard errors from this application. Note for reference that En[θ̂i] = 0.0602,

and En[(θ̂i − θ̄)2] · En[1/σ̂2
i ] = 0.6698, where En denotes the sample mean.

The simulation design imposes independence of θi and σi, consistent with the moment

independence assumption required by our baseline EBCI procedure, see Remark 3.1. We

calibrate the design to match one of three values for the signal-to-noise ratio E[ε2
i /σ

2
i ] ∈

{0.1, 0.5, 1}. Specifically, a simulation sample (Yi, θi, σi), i = 1, . . . , n, is created as follows:

1. Sample θ̃i, i = 1, . . . , n, with replacement from the empirical distribution {θ̂j}nj=1.

2. Sample σi, i = 1, . . . , n, with replacement from the empirical distribution {σ̂j}nj=1.

3. Compute θi = θ̄+
√
m/c · (θ̃i− θ̄), i = 1, . . . , n. Here m is the desired population value

of E[ε2
i /σ

2
i ] and c = 0.6698.

4. Draw Yi
indep∼ N(θi, σ

2
i ), i = 1, . . . , n.

The kurtosis of θi equals the sample kurtosis of θ̂i, which is 3.0773. We use precision weights

ωi = σ−2
i when computing the EBCIs, as in Section 7.

Table S1 shows that our baseline implementation of the 95% robust EBCI achieves av-

erage coverage above the nominal confidence level, regardless of the signal-to-noise ratio

E[ε2
i /σ

2
i ] ∈ {0.1, 0.5, 1}. This contrasts with the feasible version of the parametric EBCI,

which undercovers by 9.3 percentage points.

Appendix F Statistical power

The efficiency calculations in Figure 3 of Section 4.2 show that our EBCI is substantially

shorter than the conventional confidence interval (CI) based on the unshrunk estimate Yi if

the signal-to-noise ratio is small enough. Here, we perform analogous calculations using the

statistical power of tests based on a given CI as the measure of efficiency.

Consider testing H0,i : θi = θ0 for some null value θ0 by rejecting when θ0 /∈ CIi, where

CIi is our robust EBCI. As with the efficiency calculations in Section 4.2, we consider

efficiency under the baseline model in Eq. (9), and we consider the asymptotic setting in
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Table S1: Monte Carlo simulation results: heteroskedastic design.

Robust, µ2 only Robust, µ2 & κ Parametric

n Oracle Baseline Oracle Baseline Oracle Baseline

Panel A: Average coverage (%), minimum across 3 DGPs

595 98.9 96.0 96.1 96.0 94.3 85.7

Panel B: Relative average length, average across 3 DGPs

595 1.56 1.51 1.00 1.48 0.89 0.86

Notes: Nominal average confidence level 1 − α = 95%. Top row: type of EBCI
procedure. “Oracle”: true µ2 and κ (but not δ) known. “Baseline”: µ̂2 and κ̂
estimates as in Section 3.2. For each DGP, “average coverage” and “average length”
refer to averages across observations i = 1, . . . , n and across 5,000 Monte Carlo
repetitions. Average CI length is measured relative to the oracle robust EBCI that
exploits µ2 and κ.

which µ1,i = X ′iδ, µ2, σ2
i and κ = 3 can be treated as known. We compute the average power

of this test (averaged over the baseline normal prior, conditional on Xi, σi), and we compare

it to the average power of the conventional two-sided z-test based on the unshrunk estimate

in the same setting. Since the distribution of θi is atomless, the average power is given by

the rejection probability P (θ0 /∈ CIi | Xi, σi). Let di = (µ1,i−θ0)/σi denote the standardized

average distance between the true parameter θi and the null θ0. Under the baseline model in

Eq. (9), the average power of a test based on the robust EBCI given in Eq. (12) with κ = 3

is thus given by

P (θi /∈ CIi | Xi, σi) = P

(∣∣∣∣∣ Yi − µ1,i√
σ2
i + µ2

+
diσi

wEB,i
√
σ2
i + µ2

∣∣∣∣∣ > cvaα(σ2
i /µ2, 3)√

1 + µ2/σ2
i

∣∣∣∣∣Xi, σi

)

= r

(
di
√

1− wEB,i
wEB,i

, cvaα(1/wEB,i − 1, 3)
√

1− wEB,i
)
,

with r given in Eq. (4), and we use the fact that Yi−µ1,i | Xi, σi ∼ N (0, σ2
i +µ2) under Eq. (9).

The two-sided z-test based on the unshrunk estimate Yi rejects when |Yi − θ0| > z1−α/2σi.

By analogous reasoning, it follows that the average power of this test is given by

P
(
|Yi − θ0| > z1−α/2σi | Xi, σi

)
= r

(
di
√

1− wEB,i, z1−α/2
√

1− wEB,i
)
.

Both expressions depend only on di and the shrinkage wEB,i (or, equivalently, since µ2/σ
2
i =

wEB,i/(1− wEB,i), the signal-to-noise ratio µ2/σ
2
i ).
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Figure S1 computes the power of the robust EBCI-based test and the z-test as a function

of the normalized distance di = (µ1,i − θ0)/σi and the shrinkage wEB,i for α = 0.05. The

third panel shows the difference in power, with positive values indicating greater power for

the EBCI-based test.

The graphs show that the EBCI-based test is more powerful than the z-test for a given

shrinkage wEB,i (equivalently, given signal-to-noise ratio) when the normalized distance is

large enough, while being less powerful when it is small enough. To get some intuition for

this, note that the EBCI differs from the unshrunk CI in two ways: it is shorter, and it uses

shrinkage to move the center of the CI toward the regression line µ1,i = X ′iδ. Shortening the

CI makes the EBCI more powerful than the test based on the unshrunk CI, but the effect of

moving the center of the CI is ambiguous: it increases power when the regression line µ1,i is

far from the null θ0, while decreasing power when µ1,i is close to θ0. On net, the graphs show

that the EBCI-based test displays substantial gains in average power when the amount of

shrinkage is large, even for small to moderate distances to the null.

Appendix G Applications of general shrinkage

Here we provide theoretical and numerical results for the soft thresholding EBCI and the

Poisson EBCI, discussed in Examples 6.2 and 6.3 in Section 6.1.

G.1 Soft thresholding

The soft thresholding EBCI is obtained by calibrating the highest posterior density (HPD)

set in the homoskedastic normal model with a baseline Laplace prior for θi. The HPD

set S(Yi;χ) in Eq. (21) takes the form of an interval, and is available in closed form.

In particular, it follows by direct calculation that the posterior density for θ is given by

p(θ | Yi) = ec(Yi)−
1

2σ2
θ2+Yiθ/σ

2−|θ|
√

2/µ2 , where c(Y ) = 1
2

log(2/πσ2)−log(q(
√
σ2/µ2−Y/σ

√
2)+

q(
√
σ2/µ2 + Y/σ

√
2)). Here q(x) = 2ex

2
Φ(−x

√
2) is the scaled complementary error func-

tion. Consequently, S(Y ;χ) equals the intersection of the solution sets for two quadratic

inequalities,

S(Y ;χ) =
{
θ : θ2

2σ2 −
(
Y
σ2 −

√
2
µ2

)
θ ≤ χ+ c(Y )

}
∩
{
θ : θ2

2σ2 −
(
Y
σ2 +

√
2
µ2

)
θ ≤ χ+ c(Y )

}
.

Since the quadratic term is positive in both inequalities, S(Y ;χ) is given by an intersection

of two intervals, and is therefore itself an interval. The non-coverage function r̃(θi, χ) in

Eq. (18) is computed via numerical quadrature. The linear program in Eq. (19) is solved by

discretizing the support for θi. In addition to computing a robust soft thresholding EBCI, we
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Figure S1: Average power of the robust EBCI and the z-test based on the unshrunk estimate
as a function of the normalized average distance to the null and of the shrinkage wEB,i.
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Figure S2: Soft thresholding EBCIs in the normal means model, α = 0.05. The expected
length is normalized by the length of the unshrunk CI. The grid for θi for the linear pro-
gram in Eq. (19) is given by 500 points equally spaced on [−10, 10]. Integrals over the Yi
distribution are truncated at the endpoints −10 and 10.

can similarly compute a parametric soft thresholding EBCI, with χ solving EF [r(θi, χ)] = α;

here F is the Laplace distribution with second moment µ2.

We now compute the coverage and expected length of the soft thresholding EBCIs. We

consider an asymptotic setting where µ2 = E[θ2] is known, and this is the only constraint

imposed when we compute the robust EBCI. Figure S2 shows the coverage and expected

length of the parametric and robust EBCIs with α = 0.05. The worst-case coverage (over

all θi-distributions with second moment µ2) of the nominal 95% parametric EBCI is below

88% for small signal-to-noise ratios µ2/σ
2. When θi is in fact Laplace-distributed, both the

parametric and robust soft thresholding EBCIs deliver substantial expected length improve-

ments relative to the unshrunk EBCI Yi ± z1−α/2σ. For small values of µ2/σ
2, the length

improvement exceeds that of the linear EBCIs shown in Figure 3.

G.2 Poisson data

Suppose now that Yi has a Poisson distribution with rate parameter θi, conditional on θi. As

a baseline prior for θi, we use the conjugate gamma distribution with shape parameter k and

scale parameter λ. Let Γ−1(α; k, λ) denote the α-quantile of this distribution. As candidate

sets S(y;χ), we use a modification of the equal-tailed posterior credible set for θi under the

23



0 1 2 3 4
0.4

0.5

0.6

0.7

0.8

0.9

1
Coverage probability

Parametric EBCI, worst-case distribution

Robust EBCI, exponential distribution

0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normalized exp. length under exponential distr.

Parametric EBCI

Robust EBCI

Figure S3: Poisson EBCIs, α = 0.05. The expected length is normalized by that of the
unshrunk Garwood (1936) CI. The grid for θi for the linear program in Eq. (19) is given by
500 points equally spaced on [10−6,Γ−1(0.999; 1, λ)]. The support for Yi is truncated above
at 30.

baseline prior,

S(y;χ) =

[
Γ−1

(
α

2
; e−χk + y,

λ

e−χ + λ

)
,Γ−1

(
1− α

2
; 1 + e−χ(k − 1) + y,

λ

e−χ + λ

)]
,

where 1− α is the nominal confidence level. For χ = 0, this corresponds to the equal-tailed

posterior credible interval under the baseline prior; we call this the parametric EBCI. As

χ→∞, the interval converges to the “unshrunk” Garwood (1936) confidence interval for the

Poisson parameter θi, which has coverage at least 1− α conditional on θi. We compute the

value χ̂ ∈ (0,∞) that leads to a robust EBCI numerically as in Supplemental Appendix G.1,

except that we replace integrals over the distribution of Yi with (truncated) sums.

Figure S3 displays the coverage and expected length for k = 1, i.e., when the baseline

θi-distribution is exponential with mean λ. We consider the asymptotic limit where the

first two moments of θi are known.2 We set α = 0.05. The worst-case coverage (over all

θi-distributions with the same first and second moments as the exponential distribution) of

the nominal 95% parametric EBCI is disastrously low for all values of λ considered here. At

the same time, the robust EBCI is over 50% shorter on average than the unshrunk Garwood

2These moments are easily obtained from the first and second marginal moments of the data: E[θ] = E[Y ]
and E[θ2] = E[Y 2]− E[Y ]. They equal E[θ] = kλ and E[θ2] = k(k + 1)λ2 under the baseline distribution.
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(1936) CI when λ ≤ 0.3, and more than 25% shorter when λ ≤ 0.85.
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