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Abstract

We study estimation and inference in settings where the interest is in the effect of a po-

tentially endogenous regressor on some outcome. To address the endogeneity we exploit the

presence of additional variables. Like conventional instrumental variables, these variables are

correlated with the endogenous regressor. However, unlike conventional instrumental variables,

they also have direct effects on the outcome, and thus are “invalid” instruments. Our novel

identifying assumption is that the direct effects of these invalid instruments are uncorrelated

with the effects of the instruments on the endogenous regressor. We show that in this case

the limited-information-maximum-likelihood (liml) estimator is no longer consistent, but that a

modification of the bias-corrected two-stage-least-squares (tsls) estimator is consistent. We also

show that conventional tests for over-identifying restrictions, adapted to the many instruments

setting, can be used to test for the presence of these direct effects. We recommend that empirical

researchers carry out such tests and compare estimates based on liml and the modified version

of bias-corrected tsls. We illustrate in the context of two applications that such practice can be

illuminating, and that our novel identifying assumption has substantive empirical content.
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1 Introduction

In this paper we study estimation and inference in settings where the interest is in the effect of

a potentially endogenous regressor on some outcome. To allow for the possible endogeneity, we

exploit the presence of additional variables. These variables have some of the features of conven-

tional instrumental variables, in the sense that they are correlated with the endogenous regressor.

However, in contrast to conventional instrumental variables, these variables potentially also have

direct effects on the outcome, and thus are “invalid” instruments.

Motivated by the context of our applications we explore the identifying power of a novel as-

sumption that the direct effects of these invalid instruments are uncorrelated with the effects of the

instruments on the endogenous regressor. We focus on the case with many instruments, allowing

their number to increase in proportion with the sample size as in Kunitomo (1980), Morimune

(1983) and Bekker (1994). To accommodate the structure in our applications in which the number

of instruments is tied to the number of exogenous covariates, we also allow the number of exogenous

covariates to increase in proportion with the sample size, as in Anatolyev (2011).

We show that the limited-information-maximum-likelihood (liml) estimator is no longer consis-

tent once direct effects are present. On the other hand, the modified-bias-corrected-two-stage-least-

squares (mbtsls) estimator remains consistent. This estimator is a modification of the bias-corrected

two stage least squares estimator (Nagar, 1959; Donald and Newey, 2001) that allows for many ex-

ogenous covariates. The intuition for this result is that the liml estimator attempts to impose

proportionality of all the reduced form coefficients. On the other hand mbtsls, like the two-stage

least squares (tsls) estimator, can be thought of as a two-stage estimator. In the first stage a single

instrument is constructed as a function of only instruments and endogenous regressors, not involv-

ing the outcome variable. This constructed instrument is then used in the second stage to estimate

the parameter of interest using methods for just-identified settings. Identification only requires

validity of the constructed instrument, not of all the individual instruments. The robustness of the

mbtsls estimator comes at a price: the estimator is less efficient than liml in the absence of these

direct effects under Normality and homoskedasticity.

We also show that conventional tests for over-identifying restrictions, adapted to the many
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instruments setting, can be used to test for the presence of these direct effects. We recommend in

practice that researchers carry out such tests and compare estimates based on liml and the modified

version of bias-corrected tsls. We illustrate in the context of two applications that such practice

can be illuminating.

The paper is related to two strands of literature. First, we contribute to the literature on many

and weak instruments, started by Kunitomo (1980), Morimune (1983), Bekker (1994), Staiger

and Stock (1997), and Chao and Swanson (2005). In recent work Anatolyev (2011) relaxes the

assumption of fixed number of exogenous regressors. Hausman, Newey, Woutersen, Chao and

Swanson (2012); Chao, Swanson, Hausman, Newey and Woutersen (2012) and Ackerberg and

Devereux (2009) relax the assumption of homoscedasticity. Hansen, Hausman and Newey (2008),

Belloni, Chen, Chernozhukov and Hansen (2012) and Gautier and Tsybakov (2011) allow the first

stage to be estimated non-parametrically. This paper takes a complementary approach: we relax

the assumption of no direct effects, but keep the rest of the model simple to maintain tractability.

Our key contribution is to show that the superiority of liml in the homoscedastic Normal error

case with many instruments is tied to the assumption of no direct effects. The mbtsls estimator is

shown to be less efficient than liml in the case with no direct effects, but robust to the presence of

uncorrelated direct effects.

Second, we contribute to the literature studying properties of instrumental variables methods

allowing for direct effects of the instruments. This literature has largely focused on the case with a

fixed number of instruments. The focus of this literature has been on correcting size distortions of

tests, biases of estimators, sensitivity analyses, and bounds in the presence of direct effects. Fisher

(1961, 1966, 1967), Caner (2007); Berkowitz, Caner and Fang (2008) and Guggenberger (2012)

analyze the implications of local (small) violations of exogeneity assumption. Hahn and Hausman

(2005) compare biases for different estimators in the presence of direct effects. Conley, Hansen

and Rossi (2012); Ashley (2009) and Kraay (2008) propose sensitivity analyses in the presence of

possibly invalid instruments. Nevo and Rosen (2012) consider assumptions about the sign of the

direct effects of the instruments on the outcome to derive bounds on the parameters of interest.

Reinhold and Woutersen (2011) and Flores and Flores-Lagunes (2010) also derive bounds allowing
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for direct effects of the instruments on the outcome. The current paper is the first to derive (point)

identification results in the presence of non-local departures from the no-direct-effects assumption

or exclusion restriction.

The rest of the paper is organized as follows. In Section 2 we discuss in detail the empirical

setting that motivates our study, based on Chetty, Friedman, Hilger, Saez, Schanzenbach and Yagan

(2011). In Section 3 we set up the general problem and formulate the critical assumptions. Next,

in Section 4 we report on the large sample properties of k-class estimators, which covers both liml

and mbtsls. In Section 5 we discuss tests for instrument validity. We then analyze two data sets

to illustrate the usefulness of the results in Section 6. In Section 7 we report the results of a small

simulation study to assess the accuracy of our asymptotic approximations. Section 8 concludes.

2 Motivating example

In this section we discuss the empirical application that motivates our setup. The application is

based on Chetty et al. (2011). Chetty et al. (2011) are interested in estimating the effect of early

achievement for children, as measured by kindergarten performance, on subsequent outcomes, say

first grade scores. Chetty et al. (2011) wish to exploit the fact that kindergarten teachers are ran-

domly assigned to classes, generating arguably exogenous variation in kindergarten performance.

This suggests using kindergarten teacher or classroom indicators as instruments for kindergarten

performance. However, a concern with this strategy is that classes mostly stay together over mul-

tiple years during the child’s education. As a result, kindergarten classroom/teacher assignment

is almost perfectly correlated with first grade classroom/teacher assignment. Therefore, the in-

strument (kindergarten teacher assignment) may have direct effects on the outcome (first grade

performance) through first grade teacher assignment, that is, not mediated through the endoge-

nous regressor (kindergarten performance). However, if first grade teachers are randomly assigned,

and thus independent of kindergarten teacher assignment, the direct effect of the instrument on the

outcome might reasonably be assumed to be independent of the direct effect of the instrument on

the endogenous regressor. We show that this independence assumption has substantial identifying

power, and discuss estimation strategies that exploit it. The identifying power of this independence
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assumption suggests that in applications where there is concern regarding the presence of direct

effects of the instruments on the outcome it may be useful to explore whether the substantive

argument for their presence also suggests that these effects are independent of the effect of the

instrument on the endogenous regressor.

To make this precise, let us discuss a simplified version of the Chetty et al. (2011) application in

more detail. Let us ignore the presence of any exogenous regressors beyond the intercept. Children

are indexed by i = 1, . . . , N . The classroom or cluster variable is Gi ∈ {1, 2, . . . , NG}, where NG

is the number of clusters or classrooms. For simplicity, let us assume here that the classrooms

are equal size. The instruments are the classroom indicators, Zik = 1Gi=k, for k = 1, . . . , NG − 1,

so that the number of instruments is the number of clusters minus one. Following the clustering

literature we focus on large sample approximations where the number of units in each cluster is

finite and the number of clusters increases proportional to the sample size, NG/N → αK > 0,

leading to the Bekker-style many-instruments asymptotics. In this simple case the model can be

written as

Yi = δ + βXi +

NG−1∑
k=1

γkZik + εi, (2.1)

Xi = π2 +

NG−1∑
k=1

π1,kZik + νi, (2.2)

where Yi is the outcome (first grade test scores) and Xi is the endogenous regressor (kindergarten

performance). The residuals εi and νi are assumed to be independent across individuals, but

correlated with each other. The coefficient β on the endogenous regressor is the object of interest.

The coefficients on the instruments in the second equation, π1,k capture the direct effects on the

endogenous regressor Here they represent the effects of the kindergarten teachers on kindergarten

performance (we normalize π1,NG
= 0, so that the effects are relative to classroom NG). The

presence of nonzero coefficients on the instruments in the first equation, denoted by γk, is what

make the instruments invalid. These coefficients represent the effects of the first grade teachers on

the first grade test scores.

Similar to the clustering literature, we can view the coefficients π1,k and γk as random variables.
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In this setting where the instruments are cluster indicators this is equivalent to viewing the cluster

effects as random, a common assumption in such settings. An alternative formulation of the model,

one which stresses the links to the clustering literature, would be

Yi = δ + βXi + UGi + εi, (2.3)

Xi = π2 + VGi + νi. (2.4)

The random classroom component in the outcome equation in the clustering notation, UGi , is

equal to the coefficient on one of the instruments, γGi , and the random classroom component

in the equation for Xi, VGi is equal to the coefficient on the same instrument in the first stage,

π1,Gi . The VGi represents the effect of kindergarten teachers on the kindergarten performance. The

UGi represents the effect of first grade teachers on the outcome. We focus on the notation and

formulation in (2.1)–(2.2) because it stresses links to the literature on many instrumental variables

that are helpful in motivating the estimators we consider.

The instruments are not valid in the sense that the standard orthogonality condition for instru-

ments does not hold, holding fixed the γ1, . . . , γNG−1:

E [(Yi − δ −Xiβ)Zi|Zi, γ1, . . . , γNG−1]

= E [UGiZi|Zi, γ1, . . . , γNG−1] =


γ1Zi1

...

γNG−1ZiNG−1

 6= 0. (2.5)

However, we wish to exploit the random assignment of both kindergarten and first grade teachers.

We therefore consider the assumption that the effects of kindergarten teachers on kindergarten

performance and the effects of first grade teachers on outcomes are independent,

π1,k ⊥⊥ γk,

or, given a normalization of the mean of the γk, E[π1,kγk] = 0. In terms of the cluster formulation

(2.3), the assumption is UGi ⊥⊥ VGi . This suggests replacing the orthogonality condition (2.5),
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which requires each instrument to be valid, with

E
[
(Yi − δ −Xiβ)Z ′iπ1

]
= E

[
E
[
(Yi − δ −Xiβ)Z ′iπ1

∣∣Zi]] (2.6)

= E [UGiVGi ] = E

[
NG−1∑
k=1

γkπ1,kZik

]
= 0,

which requires the instruments to be valid in an average sense. Here π1 is the vector with kth

element equal to π1,k. In a setting with a few instruments this would suggest estimating β as the

solution to solving (2.6) with π1 replaced by the least squares estimator π̂1:

1

N

N∑
i=1

(
Yi − Y − β(Xi −X)

)
Z ′iπ̂1 = 0,

where Y and X are sample averages of Yi and Xi respectively. Solving this for β leads to the

standard tsls estimator. However, since the work by Bekker (1994) it is well known that even with

valid instruments the tsls estimator is not consistent in settings with many instruments, and thus

it is unlikely to be consistent here. This motivates looking for alternative, tsls-like, estimators of

the type that have been proposed to deal with many-instrument problems. We do so in the Section

4. First, in Section 3, we introduce the general setup.

3 General setup

We consider the following instrumental variables model:

Yi = Xiβ +W ′iδ + Z ′iγ + εi.

Xi = Z ′iπ1 +W ′iπ2 + νi.

(3.1)

The first equation relates a scalar outcome Yi, i = 1, . . . , N , to a potentially endogenous scalar

regressor Xi. Wi is a vector of exogenous regressors with dimension LN (including an intercept),

and Zi is a vector of instruments with dimension KN . The second equation relates the endogenous

regressor Xi to the exogenous regressors Wi and the instruments Zi. The object of interest is the

coefficient β on the endogenous regressor in the outcome equation.

The model (3.1) modifies the conventional many-instruments model (e.g. Bekker, 1994) in two
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ways. First, and this is the main contribution of the paper, we allow γ to be non-zero, thus

allowing for direct effects of the instrument on the outcome. If we restrict γ = 0, then the exclusion

restriction holds, and the instruments are valid. If we leave γ unrestricted, then β, the coefficient

of interest, is not identified. In this paper, we will consider assumptions on γ that are weaker than

γ = 0, but that still allow us to identify β, and assess their empirical content. Second, like Anatolyev

(2011), we allow the number of exogenous regressors, LN , to change with the sample size. The

motivation for this extension is that often the presence of a large number of instruments is the result

of interacting a few basic instruments with many exogenous covariates. For example, in Angrist and

Krueger (1991), the basic instruments were three quarter of birth indicators. These were interacted

with year of birth and state of birth indicators to generate a large number of instruments. As the

results below show, this second extension does not make a substantial difference for the variance

calculations, unless the ratio of the number of exogenous variables to the sample size is large. It

does, however, matter for tests of instrument validity, as we discuss in Section 5.

Because the number of instruments and the number of exogenous variables change with the

sample size, the distribution of some of the random variables also changes with the sample size. To

be precise, we should therefore index the random variables and parameters by the sample size N .

For ease of notation we drop this index. In the remainder γ and π1 will be vectors of dimension

KN , and δ and π2 will be vectors of dimension LN .

Next, we introduce some additional notation. Let Y be the N -component vector with ith

element Yi, X the N -component vector with ith element Xi, ε the N -component vector with ith

element εi, ν the N -component vector with ith element νi, W the N × LN matrix with ith row

equal to W ′i , and Z the N × KN matrix with ith row equal to Z ′i. Let Z = (Z,W) be the full

matrix of exogenous variables. For an arbitrary N × J matrix S, let

PS = S
(
S′S
)−1

S′ and MS = I− S
(
S′S
)−1

S′

denote the N × N projection matrix and the N × N annihilator matrix that projects on the

orthogonal complement of S.

Following Staiger and Stock (1997), we use the subscript ⊥ as shorthand for taking residuals
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after regression on the exogenous regressors W, so Z⊥ = MWZ, X⊥ = MWX, and Y⊥ = MWY.

We also denote by ιN the N -dimensional vector of ones.

Define the augmented concentration parameter, the two by two matrix ΛN :

ΛN =

ΛN.11 ΛN,12

ΛN,12 ΛN,22

 =

(
γ π1

)′
Z′⊥Z⊥

(
γ π1

)
. (3.2)

The (1,1) element, ΛN,11, measures the degree of misspecification. In the case with valid instru-

ments, γ = 0, and thus ΛN,11 = ΛN,12 = 0 and the only non-zero element of ΛN is ΛN,22. The

(2, 2) element ΛN,22 is closely related to the conventional concentration parameter (Mariano, 1973;

Rothenberg, 1984), typically defined as ΛN,22/Σ22. Following Andrews, Moreira and Stock (2006),

we use the version without dividing by the structural variance Σ22.

We make the following assumptions. Some of these can be weakened along the lines of Chao

and Swanson (2005). We focus on the simplest version of the assumptions and results that allow

us to focus on the conceptual contribution of the paper.

Assumption 1 (Instruments and exogenous variables).

(i) Zi ∈ RKN , Wi ∈ RLN , εi ∈ R, νi ∈ R, for i = 1, . . . , N , N = 1, . . . are triangular arrays of

random variables with (Zi,Wi, εi, νi), i = 1, . . . , N exchangeable.

(ii) Z is full column rank with probability one.

This assumption is standard, with a minor adaption to allow for many exogenous variables.

Assumption 2 (Model).

(i) (εi, νi)
′ | Z,W are i.i.d. with mean zero, positive definite covariance matrix Σ, and finite

fourth moments;

(ii) The distribution of (εi, νi)
′ | Z,W is Normal.

To simplify the derivation of distributional results, we will assume that the structural errors

Normally distributed. We do not require Normality for consistency arguments. Recent papers by

Chao et al. (2012) and Hausman et al. (2012) investigate the implications of heteroscedasticity in

the setting with many valid instruments, and show that liml loses some of its attractive properties in
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that case. Our results complement theirs in the sense that our results highlight a different concern

with conventional estimators such as liml.

Assumption 3 (Number of instruments and exogenous regressors). For some 0 ≤ αK < 1 and

0 ≤ αL < 1, such that αK + αL < 1

KN/N = αK + o(N−1/2), and LN/N = αL + o(N−1/2).

The first part of this assumption is standard in the many-instrument literature. The second part

relaxes the standard assumption that the number of exogenous covariates is fixed and is identical

to the corresponding assumption in Anatolyev (2011).

Assumption 4 (Concentration parameter). For some positive semi-definite 2 × 2 matrix Λ with

Λ22 > 0,

ΛN/N
p→ Λ, and E [ΛN/N ]→ Λ.

The first part of Assumption 4 is a natural extension of the assumption underlying the Bekker

many-instrument asymptotics. The second part of the assumption strengthens this slightly by also

requiring the expectation of the augmented concentration parameter to converge to its probability

limit.

Assumption 5 (Zero Correlation). Λ12 = 0.

The last assumption is a new and critical assumption. We allow for direct effects of the instru-

ments on the outcome (Λ11 > 0), but assume that these direct effects are orthogonal to the direct

effects of the instruments on the endogenous regressor. This is a strong assumption, and one that

needs to be justified on a case-by-case basis. In settings such as the Chetty et al. (2011) application

we argued (in Section 2) that this may be a reasonable assumption.

Typically, this assumption will implicitly require that the number of instruments increase with

the sample size. In the Chetty et al. (2011) application, for instance, Λ12,N/N equals the sample
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correlation between the kindergarten teacher effect π1,k and the first-grade teacher effect γk,

1

NG

NG−1∑
k=1

π1,kγk −
1

NG

NG−1∑
k=1

π1,k ·
1

NG

NG−1∑
k=1

γk.

With a fixed number of clusters, Λ12,N/N will in general not average out to exactly zero unless

γ = 0. However, if first-grade and kindergarten teachers are assigned independently, so that the

population correlation between π1,k and γk is zero, Λ12,N/N will converge to zero as the number

of clusters NG →∞. The requirement that the number of instruments/clusters increases with the

sample size is similar to that in the clustering literature, in which the number of clusters needs to

increase with the sample size to achieve point-identification.

In some applications, there may therefore potentially be a bias-variance trade-off as adding

instruments both decreases the bias coming from Λ12,N/N not being equal to zero in the sample,

and decreases the precision of the estimates due to the many instrument problem. For instance,

when the instruments are group indicators (as in the Chetty et al. (2011) application), for a fixed

total sample size, there is a trade-off between getting data on more clusters with less observations

per cluster, and getting data on less clusters, but more observations per cluster.

4 The Properties of k-Class Estimators

This section contains the main formal results of the paper. We discuss estimators for β and their

large sample properties under the assumptions introduced in the previous section. Some of the

results are for general k-class estimators (Nagar, 1959; Theil, 1961, 1971; Davidson and MacKin-

non, 1993), and some for four particular estimators in this class. All four have been introduced

previously, and are asymptotically equivalent in the conventional setting with a fixed number of

valid instruments and a fixed number of exogenous regressors. Given a scalar κ, a k-class estimator

for (β, δ) is given by:β̂κ
δ̂κ

 =

((
X W

)′
(I− κ ·MZ)

(
X W

))−1((
X W

)′
(I− κ ·MZ)Y

)
.
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We are primarily interested in the estimator for β, which can be written using the ⊥ projection

notation as

β̂κ =
(
X′⊥(I− κ ·MZ⊥)X⊥

)−1 (
X′⊥(I− κ ·MZ⊥)Y⊥

)
. (4.1)

A prominent member of the k-class is the two-stage-least-squares (tsls) estimator (Basmann, 1957;

Theil, 1961), with κ̂tsls = 1. Even if all instruments are valid, this estimator has been shown to

be inconsistent under many-instrument asymptotics, see Kunitomo (1980) and Bekker (1994). We

also consider a bias-corrected version of the tsls estimator that is valid under many-instrument

asymptotics. Nagar (1959) suggested the bias correction κ̂nagar = 1 + (KN − 2)/N, but the second

of the four estimators we focus on is a slightly different version suggested by Donald and Newey

(2001), with

κ̂btsls =
1

1− (KN − 2)/N
.

Although in samples with a moderate number of instruments the difference between the Nagar

and Donald-Newey estimators is small, this difference does not go away under many-instruments

asymptotics with KN/N → αK > 0, and only the Donald-Newey version is consistent under those

asymptotics. Once we also allow LN to increase with sample size, β̂btsls is no longer consistent.

To address this issue, the third estimator we consider is a further modification of the Donald-

Newey bias-corrected estimator, first suggested by Anatolyev (2011), that is consistent even when

LN/N → αL > 0:

κ̂mbtsls =
1− LN/N

1−KN/N − LN/N
.

In practice this modification has only a minor effect, unless the ratio of the number of exogenous

variables to the sample size is substantial.

The fourth estimator we consider is the limited-information-maximum-likelihood (liml) estima-

tor of Anderson and Rubin (1949), with

κ̂liml = min
β

(Y −Xβ)′MW (Y −Xβ)

(Y −Xβ)′MZ (Y −Xβ)
.
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This estimator has been shown to be asymptotically efficient under many-instrument asymptotics

(Chioda and Jansson, 2009; Anderson, Kunitomo and Matsushita, 2010) in the class of invariant

estimators given Normality and homoskedasticity of the error terms.

The first of our two main results describes the probability limit of a general k-class estimator

under the assumptions given in the previous section.

Theorem 1 (probability limits of k-class estimators). Suppose Assumptions 1, 2(i), 3, 4 and 5

hold. If κ̂
p→ κ with κ < 1−αL

1−αK−αL
+ Λ22

Σ22(1−αK−αL) , then:

β̂κ̂
p→ βκ = β +

(1− αL − (1− αK − αL)κ)Σ12

Λ22 + (1− αL − (1− αK − αL)κ)Σ22
.

If we impose αL = 0, the condition for consistency of β̂κ̂ is the same as in Chao and Swanson

(2005), namely that κ̂→ 1/(1−αK). Having many exogenous regressors changes the condition on

κ̂ to κ̂ → (1 − αL)/(1 − αK − αL). As long as Λ12 = 0, this result holds whether or not Λ11 > 0.

Therefore, the robustness of k-class estimators to the presence of direct effects depends on whether

the probability limit of κ̂ remains unaffected by their presence.

For the four estimators we discussed, the implication of this theorem is given in the following

Corollary.

Corollary 1. Suppose Assumptions 1, 2(i), 3, 4 and 5 hold. Then:

(i) (tsls)

βtsls = β +
αKΣ12

Λ22 + αKΣ22
, κtsls = 1,

(ii) (btsls)

βbtsls = β +
{αKαL/(1− αK)}Σ12

Λ22 + {αKαL/(1− αK)}Σ22
, κbtsls =

1

1− αK
,

(iii) (mbtsls)

βmbtsls = β, κmbtsls =
1− αL

1− αK − αL
,
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(iv) (liml) Suppose min eig(Σ−1Λ) < Λ22/Σ22. Then:

βliml = β − min eig(Σ−1Λ)Σ12

Λ22 −min eig(Σ−1Λ)Σ22
, κliml =

1− αL
1− αK − αL

+
min eig(Σ−1Λ)

1− αK − αL
,

The key insight is that the mbtsls modification of the tsls estimator that makes it robust to

the presence of many instruments and many exogenous variables is also robust to the presence of

direct effects, provided these direct effects are uncorrelated with the effects of the instrument on

the endogenous regressor. On the other hand, in order for liml to be consistent for all values of Σ,

then it has to be the case that Λ11 is equal to zero since min eig(Σ−1Λ) > 0 otherwise. To provide

some intuition, consider the reduced-form based on the model (3.1):

Yi = Z ′i(π1β + γ) +W ′i (δ + π2β) + (νiβ + εi),

Xi = Z ′iπ1 +W ′iπ2 + νi.

If the instruments are valid, so that γ = 0, then the vector of reduced-form coefficients on Zi in the

first equation is proportional to π1, the vector of reduced-form coefficients in the second equation.

The liml estimator tries to impose this proportionality. This leads to efficiency if proportionality

holds, under Normality and homoskedasticity, (Chioda and Jansson, 2009; Anderson et al., 2010).

However, if γ 6= 0, then the proportionality does not hold in the population, and liml loses con-

sistency. On the other hand, mbtsls, like tsls, can be thought of as two stage estimators. In the

first stage composite instruments are constructed, one for each regressor (endogenous or exoge-

nous) based on the data on the endogenous regressor, the exogenous variables, and the instruments

alone. These instruments are then used to estimate the parameters of interest using a method for

just-identified settings, possibly with some adjustment. In this procedure proportionality of the

reduced forms is never exploited. This explains why Λ12 = 0 is a sufficient condition for consistency,

although it results in efficiency loss relative to liml when proportionality does hold.

Note also that the bias of the btsls estimator is relatively minor: it is essentially proportional

to the product of αK and αL, so that unless both are substantial, the bias will generally be small.

However, the presence of many exogenous regressors might have a large effect on the probabil-
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ity limits of other estimators. For example, in previous version of this paper (Kolesár, Chetty,

Friedman, Glaeser and Imbens, 2011) we show that the jackknife instrumental variables estimator

(Angrist, Imbens and Krueger, 1999) may exhibit substantial bias when the number of exogenous

covariates is large.

Without the assumption that the direct effects are uncorrelated (Assumption 5), if follows from

the proof of Theorem 1 that the probability limit of k-class estimators has an additional term that

is proportional to Λ12:

β̂κ̂
p→ β +

Λ12 + (1− αL − (1− αK − αL)κ)Σ12

Λ22 + (1− αL − (1− αK − αL)κ)Σ22
(4.2)

In this case all the k-class estimators are in general inconsistent, and in fact there are no estimators

for β that are consistent for all values of Σ. On the other hand, the asymptotic bias of mbtsls,

Λ12/Λ22, will be small so long as the covariance between the effect of the instruments on the outcome

and their effect on the endogenous regressor is small relative to the strength of the instruments,

Λ22.

The second main result concerns the asymptotic approximation to the distribution of the mbtsls

estimator. We focus on the mbtsls estimator because that is the only estimator in the k-class that is

consistent under the assumptions we consider. A complication arises because, except in the special

case where the only non-zero element of ΛN is the (2, 2) element ΛN,22 (the standard case with valid

instruments, Λ11 = 0), the asymptotic distribution for β̂mbtsls depends on the stochastic properties

of ΛN−Λ. In order to derive the asymptotic distribution of β̂mbtsls we therefore make one additional

assumption about the sequence of γk and π1,k. That is, similar to corresponding assumptions in the

clustering literature, we assume that these parameters are random and make assumptions regarding

their stochastic properties. First we redefine the parameters by orthogonalizing them with respect

to Z⊥ as(
γ̃ π̃1

)
=
(
αKZ′⊥Z⊥

)1/2(
γ π1

)
Assumption 6 (Incidental parameters). The pairs (γ̃k, π̃1,k), for k = 1, 2, . . . ,KN , are i.i.d. with
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distribution γ̃k

π̃1,k


∣∣∣∣∣∣∣Z,W ∼ N


 µγ

µπ

 ,Ξ

 .

The motivation for formulating the random effects assumption in terms of the orthogonalized

parameters, rather than in terms of the original parameters, comes from the cluster structure in our

example in Section 2. Exploiting that special structure, the augmented concentration parameter

can be written as the sample covariance matrix of (γk, π1,k):

ΛN =
N

NG

NG−1∑
k=1

 (γk − γ)2 (γk − γ) (π1,k − π12)

(γk − γ) (π1,k − π12) (π1,k − π12)2

 ,

where

γ =
1

NG

NG−1∑
k=1

γk, and π12 =
1

NG

NG−1∑
k=1

π1,k.

Now let us consider Assumption 6 and interpret it in this context. Suppose we have a large

population of clusters. Let δ + Uk and π2 + Vk be the population means of Yi − βXi and Xi in

cluster k, and let δ and π2 be the population average of the cluster means. In terms of the original

parametrization, we have: π1,k = Vk, and γk = Uk.

The natural way to impose a random effects structure on the parameters would be to assume

that the cluster means (δ + Uk, π2 + Vk) are independent and Normally distributed: δ + Uk

π2 + Vk

 ∼ N

 δ

π2

 ,Φ

 . (4.3)

This implies

(
γ̃ π̃1,k

)
=

√
NG − 1

NG
B


δ + U1 π2 + V1

...
...

δ + UNG
π2 + VNG

 ,

B =

(
ING−1 − 1−1/

√
NG

NG−1 ιNG−1ι
′
NG−1 − 1√

NG
ιNG−1

)
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where the (NG − 1)×NG matrix B satisfies BιNG
= 0, and BB′ = ING−1. Thus, a random effects

specification on (δ+Uk, π2 +Vk) as in (4.3) implies a random effects specification on (γ̃, π̃1), namely

 γ̃k

π̃1,k


∣∣∣∣∣∣∣Z,W ∼ N


0

0

 ,Ξ

 , with Ξ =
NG − 1

NG
· Φ. (4.4)

Given Assumption 6, it follows that the augmented concentration parameter satisfies

Λ = plim

(
ΛN
N

)
= plim

 1

N

γ′
π′1

Z′⊥Z⊥

(
γ π1

)
= plim

 1

KN

KN∑
k=1

 γ̃k

π̃1,k

(γ̃k π̃1,k

) =

 µγ

µπ


 µγ

µπ


′

+ Ξ.

Now we can state the second main result of the paper.

Theorem 2 (Asymptotic Normality with many invalid instruments). Suppose that Assumptions

1–6 hold. Suppose, in addition, that αK > 0 and that Ξ12 = 0. Then

√
N
(
β̂mbtsls − β

)
d→

N
(

0,Λ−2
22

(
Σ11Λ22 +

αK(1− αL)

1− αK − αL
(
Σ11Σ22 + Σ2

12

)
+ Λ11

(
Σ22 +

Λ22

αK

)))
. (4.5)

If in addition Λ11 = 0 (corresponding to the conventional many-instrument case), the distribu-

tion for β̂mbtsls is the special case of (4.5) with Λ11 = 0:

√
N
(
β̂mbtsls − β

)
| Z d→ N

(
0,Λ−2

22

(
Σ11Λ22 +

αK(1− αL)

1− αK − αL
(
Σ11Σ22 + Σ2

12

)))
. (4.6)

In this case imposing Assumption 6 has no effect on the asymptotic distribution. This result obtains

because under the standard valid many-instrument asymptotic sequence, the Normal prior on the

incidental parameters gets dominated, and the Bernstein-von Mises theorem applies (see Kolesár,

2012).

The theorem assumes that the random effects are uncorrelated, Ξ12 = 0 to rule out the case in

which γ̃ and π̃1 are correlated, but their second moment is zero, Λ12 = Ξ12 +µγµπ = 0 because the
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correlation happens to be exactly offset by the means. This assumption is moot when instruments

are cluster indicators, because then the means µγ and µπ can be normalized to zero, with the mean

effect of the instruments being captured by the terms in π2 and δ that correspond to the intercept,

as in Equation (4.4).

The theorem also assumes Normality (Assumption 2(ii)). It is be possible to relax this assump-

tion and instead only assume finite fourth moments (Assumption 2 (i)). Then the expression for

asymptotic variance would have additional terms (Hansen et al., 2008; van Hasselt, 2010). However,

these additional terms will be small unless the distribution of the error terms displays substantial

skewness or kurtosis and the design matrix of the instruments is unbalanced, so that there are

observations with high leverage, (PZ⊥)ii (Kolesár, 2012). We focus on the Normal case here to

better highlight the substantive effect of relaxing the standard assumption that γ = 0.

The asymptotic variance of β̂mbtsls is strictly larger if Λ11 > 0 than if Λ11 = 0. The additional

term in the variance, Λ11 (Σ22 + Λ22/αK), diverges if αK goes to zero. In contrast with much of the

many-instruments literature, where the presence of many instruments is a nuisance, the number of

instruments needs to increase with the sample size (αK > 0) for convergence of the estimator to be

at
√
N rate. The large number instruments is required so that Λ12,N/N converges to zero at

√
N

rate. This is similar to the clustering literature, in which the number of clusters needs to increase

in proportion with the sample size.

One may be tempted to avoid this problem by not scaling by
√
αK in the definition of (γ̃, π̃1).

However, such scaling would be rather unusual. For instance, in the clustering example above, it

follows from Equations (4.3) and (4.4) that for Assumption 6 to hold, the variance of the cluster

effects Uk and Vk would need to be proportional to KN/N : if KN/N → 0, this implies that in the

limit, the cluster effects are exactly the same in each cluster, contradicting the Assumptions about

ΛN/N (Assumptions 4 and 5).

For comparison, the asymptotic distribution of liml given Λ11 = 0 is

√
N
(
β̂liml − β

)
| Z d→ N

(
0,Λ−2

22

(
Σ11Λ22 +

αK(1− αL)

1− αK − αL
(
Σ11Σ22 − Σ2

12

)))
, (4.7)

with a smaller variance than the mbtsls estimator under the same assumptions (comparing (4.6)
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with (4.7)), consistent with the efficiency of liml under those conditions. There is therefore a trade-

off between the robustness of the mbtsls estimator to the presence of direct (uncorrelated) effects

and the efficiency of liml in the absence of such effects (under Normality and homoskedasticity).

5 Testing

The assumption that the instruments are valid (that is, that γ = 0) is equivalent to restricting

the Λ11,N (and thus Λ12,N ) elements of the augmented concentration matrix to zero. Several tests

of this restriction have been proposed in the literature, most of them in the setting with a fixed

number of instruments, but some designed to be robust to the presence of many instruments.

The most popular one test, due to Sargan (1958), is based on the statistic:

JSargan =
(Y −Xβ̂liml)

′PZ⊥(Y −Xβ̂liml)

(Y −Xβ̂liml)′MW(Y −Xβ̂liml)/N
= N(1− κ̂−1

liml)

This statistic can easily be computed as the N · R2 from regressing the estimated residuals in

the structural equation on instruments and exogenous regressors. Sargan (1958) shows that under

the standard strong instrument asymptotic sequence which keeps the number of instruments and

exogenous regressors fixed (so that KN = K and LN = L), this statistic satisfies JSargan
d→ χ2

K−1.

Anatolyev and Gospodinov (2011) show, however, that if the number of instruments is allowed to

grow with the sample size, the limiting distribution is Normal, and using a critical value based on the

χ2 distribution withKN−1 degrees of freedom yields an asymptotically conservative test. Anatolyev

and Gospodinov (2011) therefore propose an adjustment to the critical value. Unfortunately, if the

number of exogenous regressors is allowed to grow with the sample size as well, the original as well

as the adjusted Sargan test have asymptotic size equal to one (Anatolyev, 2011). We therefore

propose to use a test statistic suggested by Cragg and Donald (1993):

JCragg-Donald = (N −KN − LN )(κ̂liml − 1)

Like the Sargan statistic, this statistic depends on the data only through κ̂liml. Both tests reject

for large values of κ̂liml, so their power properties are identical; the only difference between them

is in how well they control size. Under the standard strong instrument asymptotics, this statistic,
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like the Sargan statistic, is also distributed according to χ2
K−1. However, under many-instrument

asymptotics, using the 1− α̃ quantile of the χ2 distribution with (KN − 1) degrees of freedom for a

test with nominal size α̃ results in asymptotic size distortions. We therefore compare JCragg-Donald

against the Φ(
√

(1− αL)/(1− αK − αL)Φ−1(1 − α̃)) quantile of χ2
KN−1, where Φ is the cdf of a

standard Normal distribution. Kolesár (2012) shows that this adjusted Cragg-Donald test controls

size under strong, as well as many-instrument asymptotics.

6 Two Applications

In this section we discuss two applications. These will serve to provide further context for the

empirical content of the assumptions, and in particular the zero correlation assumption (Assumption

5).

6.1 Application I

The first application is based on Chetty et al. (2011) first introduced in Section 2. The interest in

Chetty et al. (2011) is in the effect of kindergarten performance on later outcomes. Here we focus

on first, second, and third grade performance as the outcome of interest. The outcome equation is

Yi = βXi +

LN∑
`=1

δ`Wi` +

KN∑
k=1

γkZik + εi. (6.1)

Here the outcome Yi is first, second, or third grade performance. The endogenous regressor Xi is

kindergarten performance. The exogenous regressors Wik include 76 school indicators and three

demographic variables (female, black, and being on subsidized lunches), for a total of LN = 79

exogenous variables. The instruments are KN = 238 classroom indicators. The first stage is

Xi =

KN∑
k=1

π1,kZik +

LN∑
`=1

π2,`Wi` + νi. (6.2)

The motivation for the zero correlation assumption is that the γk represent the effects of the

first or subsequent, grade teachers. Because the classes largely stay the same from year to year,

children with the same kindergarten teacher would have the same first, second, and third grade

[19]



teacher. However, by design the subsequent teachers were assigned randomly, independently of the

kindergarten teachers, and so the γk would be independent of the π1,k if the only direct effect of

the kindergarten classroom/teacher assignment was through the subsequent teacher.

Finally, we impose a random effects structure on the effects of the instruments on outcomes and

endogenous regressors: γ̃k

π̃1,k


∣∣∣∣∣∣∣Z,W ∼ N


 0

0

 ,Λ

 .

where, as before, the (γ̃k, π̃1,k) are the orthogonalized coefficients on the instruments:(
γ̃ π̃1

)
=
(
αKZ′⊥Z⊥

)1/2(
γ π1

)
.

In Table 1 we present point estimates of the parameter of interest, β, based on tsls, liml, btsls, and

mbtsls. For each of the estimators we present up to four different standard errors: conventional

standard errors, Bekker standard errors which are robust to the presence of many instruments,

standard errors robust to the presence of many instruments and many exogenous regressors, and

standard errors robust to the presence of direct effects of the instruments on the outcome. For all

three outcomes the liml estimate differ substantially from tsls. Based on the early many-instrument

literature one might interpret that as evidence of the bias of the tsls estimator in settings with many

instruments, and view the liml estimates are more credible. However, the btsls and mbtsls estimates,

which, like liml, would be consistent under the conventional many-instruments asymptotics, also

differ substantially from the liml estimates.

To understand the difference between the liml and btsls/mbtsls estimates, we report in Table

2 test statistics and p-values for the tests for instrument validity Λ11 = 0. The results from these

tests are consistent with substantial variation in the γk. Although these results do not validate the

mbtsls estimates (for that one still relies on the zero correlation assumption, Λ12 = 0), at the very

least they imply that the liml estimates should not be taken at face value.
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6.2 Application II

In the second application we apply some of the methods to a subset of the Angrist and Krueger

(1991) data, who study the effect of years of schooling on log-earnings. We use interactions between

quarter, year, and state of birth as instruments, and restrict the sample to individuals born in the

first and fourth quarter (so we have a single binary basic instrument, although this is not essential),

dropping observations from Alaska because there are some years birth quarters with no observations,

leaving us with observations on 162,487 individuals.

Let Wik, for k = 1, . . . ,KN be the cluster indicators, corresponding to year-of-birth times state-

of-birth interactions, so that KN = 500, and let Qi be the binary quarter-of-birth indicator. The

general model we consider is

Yi = βXi +

KN∑
k=1

δkWik +

KN∑
k=1

γkQiWik + εi, (6.3)

Xi =

KN∑
k=1

π1,kQiWik +

KN∑
k=1

π2,kWik + νi, (6.4)

where Yi is log-earnings, and Xi is years of schooling. We assume a random effects structure γk

π1,k


∣∣∣∣∣∣∣Z,W ∼ N


 µγ

µπ

 ,Ξ

 .

The critical assumption that Λ12 = 0 is more difficult to justify in this case than in the Chetty et al.

(2011) case. Its plausibility relies on the interpretation of the direct effects of the instruments on

the outcome and the endogenous regressor. The argument for the direct effects of the instrument

on the endogenous regressor in the AK study is that quarter of birth effects years of schooling

through compulsory schooling laws. If the direct effects of quarter of birth on earnings is through

other differences between states, either in institutions or in economic climate, it may be reasonable

to assume that these other differences are uncorrelated with compulsory schooling laws. However,

unlike in the Chetty et al. (2011) study, there is no design feature that makes this assumption

more plausible. Nevertheless, in our view it is still useful to calculate both liml and mbtsls, and

calculating the p-value for the test of instrument validity. Finding that the estimators are similar,
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and that the p-values are not unusually small, lends support to the instrumental variables estimates.

We report in Table 3 estimates for β based on tsls, liml, btsls, and mbtsls and the various

standard errors. In Table 4 we report the results based on the Sargan and Craig-Donald tests for

validity of instruments. Here we find, in contrast to the findings for the Chetty et al. (2011) data,

that the three estimators, liml, btsls, and mbtsls are very similar, and that there is no evidence of

direct effects of the instruments on the outcome. Note also that although LN and KN are equal in

magnitude, the additional adjustment in moving from btsls to mbtsls again makes little difference.

7 A Simulation Study

We also carried out a small simulation study to assess the finite sample properties of the estimators.

The design was based on the Chetty et al. (2011) study. The model is

Yi = βXi +

LN∑
`=1

δ`Wi` +

KN∑
k=1

γkZik + εi, (7.1)

Xi =

KN∑
k=1

π1,kZik +

LN∑
`=1

π2,`Wi` + νi, (7.2)

where Wi` and Zik are school and classroom indicators from the Chetty et al. (2011) data, so that

LN = 76 and KN = 238. We put a random effects structure on the orthogonalized parameters: γ̃k

π̃1,k


∣∣∣∣∣∣∣Z,W ∼ N


0

0

 ,Λ

 .

The sample size in the simulations is N = 4, 170, corresponding to the sample size in the Chetty

et al. (2011) data, so that αL = 0.0182 and αK = 0.0571.

The values of the parameters are β = 0, δj = 0 and π2,j = 0, for j = 1, . . . , LN . The covariance

matrix for the structural errors is

Σ =

 1.0 0.5

0.5 1.0

 .

The coefficients γk and π1,k are drawn from Normal distributions centered at zero and variances so
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that

Λ11,N/KN = 0.7, Λ22,N/KN = 2.4,

comparable to the values from Chetty et al. (2011). We also consider Λ11,N = 0.

For each of the four estimators we calculate the bias as the average difference between the

estimate and the true value (note that liml does not have finite moments, so the bias is arguably not

a useful summary measure), the median absolute deviation, and coverage rates based on confidence

intervals using the four different standard errors: conventional standard errors, Bekker standard

errors which are robust to the presence of many instruments, standard errors robust to the presence

of many instruments and many exogenous regressors, and standard errors robust to the presence

of direct effects of the instruments on the outcome.

The simulation results are reported in Table 5 for the case with valid instruments (Λ11 = 0). In

the case with valid instruments, liml performs best, consistent with its efficiency properties. The

mbtsls and btsls estimators do almost, but not quite as well. The bekker standard errors do well,

the adjustment for many exogenous variables makes virtually no difference for coverage. The tsls

estimator performs poorly, not surprising given the presence of many instruments.

When we simulate data with Λ11 > 0 and the instruments are not valid, the results change

considerably. The liml estimator now performs very poorly. It has substantial bias and the coverage

rates are low. Both the btsls and mbtsls estimators do well in terms of bias and median absolute

deviation. Adjusting the variance for the presence of many exogenous covariates makes little

difference, but the adjustment to allow for the presence of direct effects makes a considerable

difference.

8 Conclusion

In this paper we analyze settings with many instruments where each separate instrument might

have a direct effect on the outcome. We show that liml is particularly sensitive to such direct effects.

In contrast, a modified version of the bias-corrected tsls estimator is robust to such direct effects

if these direct effects are uncorrelated with the direct effects of the instrument on the endogenous
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regressor. We argue in the context of some applications that this orthogonality condition has

empirical content. In this setting the choice between liml and the mbtsls estimator depends on a

trade-off between efficiency and robustness. In practice we recommend that researchers test for the

presence of direct effects under the assumption of orthogonality of the direct effects, and that they

compare liml and mbtsls estimates.
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Appendices

We first define some additional notation. Write the reduced-form based on Equations (3.1) as:(
Yi Xi

)
= Z ′i

(
ψ1 π1

)
+Wi

(
ψ2 π2

)
+ V ′i ,

where ψ1 = γ+π1β and ψ2 = δ+π2β, and Vi = (εi + νiβ, νi)
′, and let V be the N × 2 matrix with

ith row equal to V ′i . Denote the upper KN ×2 submatrix of the matrix of reduced-form coefficients
by Π = (ψ1, π1). Let

Y⊥ = MW

(
Y X

)
denote the full matrix of endogenous variables after projecting out the exogenous covariates. Let:

Γ =

(
1 0
−β 1

)
.

Let Ω = E[ViV
′
i ] denote the reduced-form covariance matrix. Then:

Ω = Γ−1′ΣΓ−1 =

(
Σ11 + 2Σ12β + Σ22β

2 Σ12 + Σ22β
Σ21 + Σ22β Σ22

)
.

Let Wd(f, V, V
−1M) denote a d-dimensional non-central Wishart distribution with f degrees of

freedom, scale parameter V , and non-centrality parameter M . Let S1/2 denote the symmetric
square root of a symmetric positive semi-definite matrix S.

Appendix A Auxilliary Lemmata

Lemma A.1 (Lemmata 1 and 2, Bekker, 1994). Consider the quadratic form Q = (M+U)′C(M+
U), where M ∈ RN×S , C ∈ RN×N are non-stochastic, C is symmetric and idempotent with rank JN
which may depend on N , and U = (u1, . . . , uN )′, with ui ∼ [0,Ω] iid. Let a ∈ RS be a non-stochastic
vector. Then:
(i) If ui has finite fourth moments:

E[Q | C] = M ′CM + JNΩ,

var(Qa | C) = a′ΩaM ′CM + a′M ′CMaΩ + Ωaa′M ′CM +MCMaa′Ω

+ JN (a′ΩaΩ + Ωaa′Ω)

+ d′CdC [E(a′u)2uu′ − a′Ωaa′Ω− a′ΩaΩ] + 2d′CCMaE[(a′u)uu′]

+M ′CdCE[(a′u)2u′] + E[(a′u)2u]d′CCM,

where dC = diag(C). If the distribution of ui is Normal, the last two lines of the variance
expression equals zero.

(ii) Suppose that the distribution of ui is Normal, and that, as N →∞:

M ′CM/N → QCM , JN/N → αr,
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where the elements cis of C may depend on N . Then:

√
N (Qa/N − EQa/N)

d→ N (0, V ) ,

where

V = a′ΩaQCM + a′QCMaΩ + Ωaa′QCM +QCMaa
′Ω + αr(a

′ΩaΩ + Ωaa′Ω).

Lemma A.2. Consider a sequence of independent random matrices {XN}∞N=1 with distributions
XN ∼ WS(JN ,Ω,Ω

−1ΞN ). Suppose that ΞN/N → Ξ, and that JN/N = α + o(N−1/2), α > 0.
Then, for any vector a ∈ RS

N−1/2 (XNa/N − (ΞN/N + αΩ)a)

d→ N
(
0, (a′ΩaΞ + a′ΞaΩ + Ωaa′Ξ + Ξaa′Ω) + α(a′ΩaΩ + Ωaa′Ω)

)
.

Proof. By definition of a non-central Wishart distribution, we can decompose XN = (U +M)′(U +
M), where U = (u1, . . . , uJN )′, uj ∼ N(0,Ω) iid, M ′M = ΞN , and ΞN/JN → Ξ/α. Hence, we can
apply Lemma A.1 (ii) with C = IJN to get:

J
−1/2
N (XNa− (ΞN + JNΩ)a)

d→ N
(
0, α−1(a′ΩaΞ + a′ΞaΩ + Ωaa′Ξ + Ξaa′Ω) + a′ΩaΩ + Ωaa′Ω

)
,

which yields the result.

Lemma A.3. Suppose Assumptions 1, 2(i), 3 and 4 hold. Then:

Y
′
⊥Y⊥/N

p→ Ψ + (1− αL)Ω, (A.1a)

Y
′
⊥PZ⊥Y⊥/N

p→ Ψ + αKΩ, (A.1b)

where

Ψ =

(
Λ11 + 2Λ12β + Λ22β

2 Λ12 + Λ22β
Λ12 + Λ22β Λ22.

)
(A.2)

These probability limits also hold conditional on Z.

Proof. First we establish the probability limit of V′PZ⊥V/N . By Lemma A.1 (i):

E[V′PZ⊥V/N | Z⊥] = (KN/N)Ω. (A.3)

Fix a ∈ R2. Since PZ⊥ is a projection matrix, 0 ≤ (PZ⊥)ii ≤ 1. Hence,
∑

i(PZ⊥)2
ii ≤

∑
i(PZ⊥)ii ≤
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KN . Therefore:

var(V′PZ⊥Va/N) = E var(V′PZ⊥Va/N | PZ⊥)

= E
[
tr(PZ⊥/N

2)
]

(a′ΩaΩ + Ωaa′Ω)

+ E
[
N−2∑

i(PZ⊥)2
ii

]
[E(a′Vi)

2ViV
′
i − a′Ωaa′Ω− a′ΩaΩ]

≤ KN

N2
(a′ΩaΩ + Ωaa′Ω) +

KN

N2
[E(a′vi)

2viv
′
i − a′Ωaa′Ω− a′ΩaΩ]

= O(KN/N
2).

(A.4)

Combining Equations (A.3) and (A.4) with Assumption 3 yields :

V′PZ⊥V/N
p→ αKΩ. (A.5)

By similar arguments:

V′MWV/N
p→ (1− αL)Ω. (A.6)

Next, by Assumption 2 (i), E[Π′Z′⊥V/N | Z⊥,Π] = 0, so that:

var
(
Π′Z′⊥Va/N

)
= E

[
var
(
Π′Z′⊥Va/N | Z⊥,Π

)]
= (a′Ωa)E

[
Π′1Z

′
⊥Z⊥Π/N2

]
= (a′Ωa)Γ−1′E

[
ΛN/N

2
]

Γ−1 = O(1/N),

where the last equality follows by Assumption 4. Consequently:

ΠZ′⊥V/N
p→ 0. (A.7)

Combining the representation Y⊥ = Z⊥Π +V⊥ with the limits in Equations (A.6) and (A.7), and
Assumption 4 establishes (A.1a):

Y
′
⊥Y⊥/N = Π′Z′⊥Z⊥Π/N + Π′Z⊥V/N + V′Z⊥Π/N + V′MWV/N

= Γ−1′ΛNΓ−1/N + (1− αL)Ω + op(1)

= Ψ + (1− αL)Ω + op(1).

Claim (A.1b) follows by similar arguments from Equations (A.5) and (A.7):

Y
′
⊥PZ⊥Y⊥/N = Π′Z′⊥Z⊥Π/N + Π′Z⊥V/N + V′Z⊥Π/N + V′PZ⊥V/N

p→ Ψ + αKΩ.

This concludes the proof.
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Appendix B Proofs of Theorems

Proof of Theorem 1. Combining Lemma A.3 with the condition κ̂ = κ+ op(1) yields:

(1− κ̂)Y
′
⊥Y⊥/N + κ̂Y

′
⊥PZ⊥Y⊥/N = (1− κ)(Ψ + (1− αL)Ω) + κ · (Ψ + αKΩ) + op(1)

= Ψ + (1− αL − (1− αK − αL)κ)Ω + op(1).
(B.1)

Since Σ22 = Ω22, the (2,2) element of (B.1) is given by:

(1− κ̂)X′⊥X⊥/N + κ̂X′⊥PZ⊥X⊥/N = Λ22 + (1− αL − (1− αK − αL)κ)Σ22 + op(1).

By the condition on κ, Λ22 + (1− αL − (1− αK − αL)κ)Σ22 > 0, so that:(
(1− κ̂)X′⊥X⊥/N + κ̂X′⊥PZ⊥X⊥/N

)−1
= (Λ22 + (1− αL − (1− αK − αL)κ)Σ22)−1+op(1). (B.2)

The (1,2) element in Equation (B.1) is given by:

(1− κ̂)X′⊥Y⊥/N + κ̂X′⊥PZ⊥Y⊥/N

= Λ12 + Λ22β + (1− αL − (1− αK − αL)κ)Ω12 + op(1)

= Λ12 + (1− αL − (1− αK − αL)κ)(Σ12 + Σ22β) + Λ22β + op(1). (B.3)

Combining Equations (B.2) and (B.3) with Slutsky’s lemma then yields

β̂κ̂ =
(1− κ̂)X′⊥Y⊥/N + κ̂X′⊥PZ⊥Y⊥/N

(1− κ̂)X′⊥X⊥/N + κ̂X′⊥PZ⊥X⊥/N
= β +

Λ12 + ((1− κ)(1− αL) + αKκ)Σ12

Λ22 + ((1− κ)(1− αL) + αKκ)Σ22
+ op(1).

Proof of Corollary 1. The results for tsls, btsls and mbtsls follow directly from Theorem 1. We
therefore just need to derive the results for liml. Define

Q̂N (φ) =
φ′Y

′
⊥Y⊥/Nφ

φ′Y
′
⊥MZ⊥Y⊥/Nφ

.

Then

κ̂liml = min
β̃

(1,−β̃)Y
′
⊥Y⊥/N(1,−β̃)′

(1,−β̃)Y
′
⊥MZ⊥Y⊥/N(1,−β̃)′

= min
φ∈S1

Q̂N (φ),

where S1 denotes the unit circle in R2. Applying Lemma A.3 yields

Q̂N (φ)
p→ φ′(Ψ + (1− αL)Ω)φ

(1− αL − αK)φ′Ωφ
≡ φ′Tφ

φ′T⊥φ
≡ Q(φ),

where we define T = Ψ + (1− αL)Ω and T⊥ = (1− αL − αK)Ω. Assumption 2 (i) guarantees that
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the denominator is non-zero for any value of φ. The minimum of Q(φ) is achieved at

min
φ∈S1

Q(φ) =
1− αL

1− αK − αL
+

1

1− αL − αK
min
φ∈S1

φ′Ψφ

φ′Ωφ

=
1− αL

1− αK − αL
+

min eig(Σ−1Λ)

1− αK − αL
= κliml,

where the last line follows since the eigenvalues of Ω−1Ψ correspond to the eigenvalues of Σ−1Λ.
The minimand φliml is given by the eigenvector corresponding to the smallest eigenvalue of the
matrix

1

1− αK − αL
Ω−1 (Ψ + (1− αL)Ω) .

We now need to show that

κ̂liml − κliml = min
φ∈S1

Q̂N (φ)−Q(φliml)
p→ 0. (B.4)

To this end, we first show that the convergence of the objective function is uniform,

sup
φ∈S1

|Q̂N (φ)−Q(φ)| p→ 0. (B.5)

Fix φ ∈ S1. By the triangle inequality,

|Q̂N (φ)−Q(φ)| ≤

≤ 1

|φ′Y′⊥MZ⊥Y⊥φ/N |

∣∣∣φ′Y′⊥Y⊥φ/N −Q(φ)φ′Y
′
⊥MZ⊥Y⊥φ/N

∣∣∣
=

1

|φ′Y′⊥MZ⊥Y⊥φ/N |

∣∣∣φ′(Y′⊥Y⊥/N − T )φ−Q(φ)φ′
(
Y
′
⊥MZ⊥Y⊥/N − T⊥

)
φ
∣∣∣

≤ 1

|φ′Y′⊥MZ⊥Y⊥φ/N |

(∣∣∣φ′(Y′⊥Y⊥/N − T )φ
∣∣∣+Q(φ)

∣∣∣φ′ (Y′⊥MZ⊥Y⊥/N − T⊥
)
φ
∣∣∣) .
(B.6)

We now need to bound all three terms in the expression uniformly in φ. Because the trace operator
is the inner product under Frobenius norm, ‖·‖F , by Cauchy-Schwarz inequality,

|φ′(Y′⊥MZ⊥Y⊥/N − T⊥)φ| =
∣∣∣tr((Y

′
⊥MZ⊥Y⊥/N − T⊥)φφ′

)∣∣∣
≤
√

tr((φφ′)2)‖(Y′⊥MZ⊥Y⊥/N − T⊥)‖F
= ‖(Y′⊥MZ⊥Y⊥/N − T⊥‖F
= op(1),

where the third line follows since φ′φ = 1, and the last line follows since Y
′
⊥MZ⊥Y⊥/N

p→ T⊥ by
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Lemma A.3. By similar argument,

|φ′(Y′⊥Y⊥/N − T )φ| = op(1).

Finally, we bound the denominator. Because Y
′
⊥MZ⊥Y⊥/N

p→ T⊥ > 0, φ′Y
′
⊥MZ⊥Y⊥φ/N > 0

wpa1, so that wpa1 1/(|φ′Y′⊥MZ⊥Y⊥φ/N |) < C for some C <∞. Applying these bounds and the
fact that Q(φ) is bounded implies that the right-hand side in (B.6) is op(1), which implies (B.5).

Next, denote the argmin of Q̂N (φ) by φ̂. Note that κ̂liml and hence φ̂ exists wpa1. We can now
establish (B.4), using the uniform convergence result (B.5),

Q(φliml) ≤ Q(φ̂) = Q̂N (φ̂) + (Q(φ̂)− Q̂N (φ̂)) ≤ Q̂(φliml) + (Q(φ̂)− Q̂n(φ̂))

= Q(φliml) + (Q̂N (φliml)−Q(φliml)) + (Q(φ̂)− Q̂N (φ̂))

= Q(φliml) + op(1).

The probability limit for liml then follows by Theorem 1.

Proof of Theorem 2. Under Assumption 2, we have:

√
αK

(
(Z′⊥Z⊥)−1/2Z′⊥Y

(Z′⊥Z⊥)−1/2Z′⊥X

) ∣∣∣Z, π̃1, γ̃ ∼ N
((

π̃1β + γ̃
π̃1

)
, αKΩ⊗ IKN

)
,

Y
′
⊥MZ⊥Y⊥ | Z, π̃1, γ̃ ∼ W2(N −KN − LN ,Ω).

Moreover, these two statistics are independent. Let b = (1,−β)′ and a = (β, 1). Assumption 6
then implies that unconditionally,

Y
′
⊥PZ⊥Y⊥ ∼ W2(KN ,Γ

−1′ΞΓ−1/αK + Ω,
(

Γ−1′ΞΓ−1/αK + Ω
)−1

KNΓ−1′µµ′Γ−1/αK),

Y
′
⊥MZ⊥Y⊥ ∼ W2(N −KN − LN ,Ω),

with the independence property preserved. Applying Lemma A.2 then after some algebra yields:

N1/2
(
X′⊥MZ⊥Y⊥b/N − (1− αK − αL)Σ12

) d→ N (0, (1− αK − αL)VΣ) , (B.7a)

N1/2
(
X′⊥PZ⊥Y⊥/Nb− (αKΣ12)

) d→ N (0, αKVΣ + VΛ) , (B.7b)

where

VΣ = Σ22Σ11 + Σ2
12,

VΛ = Λ22Σ11 + Λ11Σ22 + α−1
K Λ22Λ11.

Equations (B.7) imply that

N1/2
(
X′⊥PZ⊥Y⊥/N + (1− κmbtsls)X

′
⊥MZ⊥Y⊥/N

)
b
d→ N

(
0, VΛ +

αK(1− αL)

1− αK − αL
VΣ

)
.

Since by Lemma A.3, (X′⊥PZ⊥X⊥N + (1 − κmbtsls)X
′
⊥MZ⊥X⊥/N)−1 p→ Λ−1

22 + op(1), this yields
the claim in the theorem.
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Table 1: Estimates for Chetty et al. (2011) Data

Standard Error

Estimator β̂ classic bekker many exo Λ11 > 0

Panel I: Grade 1 Test scores

tsls 0.380 (0.038)

liml 0.014 (0.047) (0.052) (0.052)

btsls 0.221 (0.041) (0.052)

mbtsls 0.215 (0.041) (0.052) (0.052) (0.066)

Panel II: Grade 2 Test scores

tsls 0.389 (0.044)

liml 0.108 (0.049) (0.057) (0.057)

btsls 0.234 (0.047) (0.059)

mbtsls 0.226 (0.047) (0.059) (0.059) (0.070)

Panel III: Grade 3 Test scores

tsls 0.385 (0.048)

liml 0.175 (0.052) (0.061) (0.061)

btsls 0.238 (0.051) (0.064)

mbtsls 0.230 (0.051) (0.064) (0.064) (0.070)

Notes: “classic” refers to conventional standard errors that assume fixed number of instruments, “bekker” refer to
standard errors based on Bekker (1994) that allow for the number of instruments to increase with the sample size,
“many exo” refers to standard errors also allow for many exogenous covariates, and “Λ11 > 0” are standard errors
based on Theorem 2 that allow for direct effects of the instruments on outcome.

Table 2: Tests of Null Hypothesis Λ11 = 0 for Chetty et al. (2011) Data.

Sargan Adjusted Craig-Donald

Outcome Test Statistic p-value Test Statistic p-value

Grade 1 Test scores 382.9 < 0.001 389.6 < 0.001

Grade 2 Test scores 319.3 < 0.001 320.8 < 0.001

Grade 3 Test scores 284.6 0.008 281.9 0.014
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Table 3: Estimates for Angrist and Krueger (1991) Data (N = 162, 487)

Standard Error

Estimator β̂ classic bekker many exo Λ11 > 0

tsls 0.073 (0.018)

liml 0.095 (0.018) (0.040) (0.040)

btsls 0.097 (0.018) (0.040)

mbtsls 0.098 (0.018) (0.040) (0.040) (0.040)

Notes: “classic” refers to conventional standard errors that assume fixed number of instruments, “bekker” refer to
standard errors based on Bekker (1994) that allow for the number of instruments to increase with the sample size,
“many exo” refers to standard errors also allow for many exogenous covariates, and “Λ11 > 0” are standard errors
based on Theorem 2 that allow for direct effects of the instruments on outcome.

Table 4: Tests of Null Hypothesis Λ11 = 0 for Angrist and Krueger (1991) Data

Sargan Craig-Donald

Outcome Test Statistic p-value Test Statistic p-value

log earnings 487.0 0.641 485.5 0.659

Table 5: Simulations: Median bias, Median absolute deviations, and coverage rates
for nominal 95% confidence intervals for different estimators.

Coverage

Estimator med. bias MAD classic bekker many exo Λ11 > 0

Panel I: Λ11 = 0

tsls 0.147 0.023 2.7

liml 0.001 0.032 90.9 95.0 95.0

btsls 0.006 0.034 88.9 94.9

mbtsls 0.000 0.035 88.6 94.9 94.9 95.6

Panel II: Λ11 = 0.7

tsls 0.148 0.031 7.6

liml −0.181 0.061 12.6 15.7 15.7

btsls 0.005 0.045 76.5 86.4

mbtsls −0.001 0.046 76.2 86.3 86.3 94.0

Notes: “med. bias” and “MAD” stand for median bias and median absolute deviation. “classic” refers to conventional
confidence intervals that assume fixed number of instruments, “bekker” refer to confidence intervals based on Bekker
(1994) that allow for the number of instruments to increase with the sample size, “many exo” refers to confidence
intervals that also allow for many exogenous covariates, and “Λ11 > 0” are confidence intervals based on Theorem 2
that allow for direct effects of the instruments on outcome.
The results are based on 10,000 simulation draws.
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