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SA.1 Additional details for calculations in main text

Let e1 = (1, 0)′ and let e2 = (0, 1)′.

SA.1.1 Additional details for Section 2.2

This section shows that the block of the inverse information matrix based on the limited
information likelihood corresponding to β is given by n−1b′Ωb · a′Ω−1a/λn.

The distribution of the statistics Π̂ and S is given by

vec(Π̂) ∼ N2kn

(
(a′Ω−1a/n)−1/2a⊗ ηn, Ω⊗ Ikn

)
, (SA–1)

(n− kn − `n)S ∼ W2(n− kn − `n, Ω), (SA–2)

with Π̂ independent of S, where W2(n − kn − `n, Ω) denotes a Wishart distribution with
n− kn − `n degrees of freedom, and scale matrix Ω. Their densities are therefore given by

fΠ̂(Π̂; β, ηn, Ω) =
|Ω|−kn/2

(2π)kn
exp

(
−n

2

(
tr(Ω−1T) + η′nηn − 2

η′nΠ̂Ω−1a
(na′Ω−1a)1/2

))
,

fS(S; Ω) = Cν|S|(ν−3)/2|Ω|−ν/2e−
ν
2 tr(Ω−1S),

(SA–3)

where ν = n− kn − `n, and C−1
ν = (2/ν)νπ1/2Γ(ν/2)Γ((ν− 1)/2), with Γ denoting the gamma

function.
It follows that the limited information likelihood is given by

Lli,n(β, ηn, Ω) =
Cν|S|(ν−3)/2

(2π)kn
· |Ω|−(n−`n)/2e

− 1
2

(
tr(Ω−1S̃)+nη′nηn−2n η′nΠ̂Ω−1a

(na′Ω−1a)1/2

)
, (SA–4)
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†Compiled January 23, 2019
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where S̃ = nT + νS.
The score is given by

Sβ(β, ηn, Ω) = n1/2 η′nΠ̂Ω−1d(β, Ω)

(aΩ−1a)1/2 ,

Sηn(β, ηn, Ω) = n
(

n−1/2Π̂Ω−1a
(a′Ω−1a)1/2 − ηn

)
,

Svech(Ω)(β, ηn, Ω) =
1
2

D̃′
[

vec
(
S̃− (n− `n)Ω

)
− 2n1/2

(a′Ω−1a)1/2 Π̂′ηn ⊗ a +
n1/2η′nΠ̂Ω−1a
(a′Ω−1a)3/2 a⊗ a

]
,

where D̃ = (Ω−1 ⊗Ω−1)D2, D2 is the duplication matrix, and d(Ω, β) = e1 − a a′Ω−1e1
a′Ω−1a . Let

Hβηn(β, ηn, Ω) denote the β-ηn block of the Hessian, and similarly for the other blocks. By
taking derivatives of the score, we obtain that

Hββ(β, ηn, Ω) = −2Sβ(β, ηn, Ω)
a′Ω−1e1

a′Ω−1a
− n1/2η′nΠ̂Ω−1a

(a′Ω−1a)1/2
1

b′Ωb · a′Ω−1a
,

Hηn β(β, ηn, Ω) =
n1/2Π̂Ω−1d(Ω, β)

(aΩ−1a)1/2 ,

Hvech(Ω)β(β, ηn, Ω) = D̃′
(Sβ(β, ηn, Ω)

2a′Ω−1a
a⊗ a +

n1/2
√

a′Ω−1a

(
η′nΠ̂Ω−1a

a′Ω−1a
a− 2Π̂′ηn

)
⊗ d(Ω, β)

)
,

where we use the identities e′1Ω−1e1a′Ω−1a− (a′Ω−1e1)
2 = |Ω|−1, D2(v1 ⊗ v2) = D2(v2 ⊗ v1)

for any vectors v1, v2, and (Π̂′ηn) ⊗ a = vec(aη′nΠ̂) = (Π̂′ ⊗ a)ηn. Since a′Ω−1d(Ω, β) = 0,
it follows that E[Hvech(Ω)β(β, ηn, Ω)] = 0 and E[Hηnβ(β, ηn, Ω)] = 0. Thus, the (1,1) element
block of the inverse information matrix is given by

I11
li,n(β, ηn, Ω) = − 1

E[Hββ(β, ηn, Ω)]
=

a′Ω−1ab′Ωb
nη′nηn

=
a′Ω−1ab′Ωb

nλn
,

as stated in the main text.

SA.1.2 Additional details for Section 4.2

Consider the groups example, so that z∗ij = 1 if individual i belongs to group j and zero
otherwise, and let W = ιn, where ιn denotes to an n-vector of ones, so that (W ′(W ′W)W ′)ij =

1/n. Let ν denote a kn-vector with elements νj = nj, and let diag(ν) denote a diagonal matrix
with elements νj = nj on the diagonal. It then follows that Z̃ = Z∗ −W ′(W ′W)W ′Z∗ =

Z∗ − ιnν′/n, Z̃′Z̃ = diag(ν)− νν′/n, (Z̃′Z̃)−1 = diag(ν)−1 + ιkn ι′kn
/n, and

(ZZ′)ii = (Z̃(Z̃′Z̃)−1Z̃′)ii = 1/nj(i) − 1/n,
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where j(i) denotes the group index that individual i belongs to. Since (W ′(W ′W)W)ii = 1/n,
it follows that

Hii = (ZZ′)ii −
kn

n− 1− kn
(1− (ZZ)ii − 1/n) =

n− 1
n− 1− kn

(
1

ng(i)
− 1 + kn

n

)

Consequently,

δn = diag(H)′ diag(H)/kn =
(n− 1)2

kn(n− 1− kn)2

kn

∑
j=0

nj

(
1
nj
− 1 + kn

n

)2

=
(n− 1)2

(n− 1− kn)2kn

(
∑

j

1
nj
− (kn + 1)2

n

)
.

SA.1.3 Additional details for Section 5.2

I illustrate the minimization of the minimum distance objective function given in Equation (25)
in the paper subject to the constraint Ξ11,n ≥ β2Ξ22,n. For concreteness and simplicity, consider
the random-effects weight matrix Ŵre = D′2(S

−1 ⊗ S−1)D2, and suppose that the errors are
normal. The solution is given by

(
Ξ̂11 Ξ̂22 β̂

)
=


(

Ξ̂11,umd Ξ̂22,umd β̂umd

)
if S− (kn/n)T is positive semi-definite,(

Ξ̂22,re β̂2
re

Ξ̂22,re β̂re

)
otherwise.

When Assumption PR does not hold, then T − (kn/n)S will be positive definite with proba-
bility approaching one so that the restriction will not bind asymptotically. Otherwise, under
Assumptions N and MI, its distribution is given by

√
n
(

β̂− β
)
⇒
√

Vliml,NZ2 +

√
2τ(b′Ωe2)

Ξ22
max(Z1, 0),

(
Z1

Z2

)
∼ N2(0, I2), (SA–5)

where Vliml,N is given in Equation (9) in the paper and τ = αk(1−α`)
1−αk−α`

. This result follows by
verifying the conditions for Theorem 1 in Andrews (2002).

The asymptotic distribution is non-standard, and since E max(Z1, 0) > 0, β̂ is asymptotically
biased. Recall that for umd,

√
n
(

β̂umd − β
)
⇒
√

VlimlZ2 +

√
2τb′Ωe2

Ξ22
Z1. (SA–6)

The difference between this expression and the asymptotic distribution for the minimum
distance estimator subject to the positive definiteness condition is that the term max(Z1, 0) in
Equation SA–5 has been replaced by Z1. Lovell and Prescott (1970, Section 4) were the first
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ones to point out that this increases the asymptotic mean squared error.
There are several possible approaches to inference on β using β̂. I discuss two of them (see

Andrews, 1999, for a discussion of the bootstrap and subsampling). The first approach is based
on the observation that the conventional asymptotic standard errors based on the assumption
that no parameters are on the boundary (i.e. standard errors for β̂umd) yield conservative
confidence intervals when, in fact Ξ is reduced rank (Andrews, 1999, p. 1369). The second
approach suggested by Andrews (1999) is to do a pre-test of the hypothesis H0 : Ξ11 = Ξ22β2

against H1 : Ξ11 > Ξ22β2 to determine if the true parameter Ξ11 is at the boundary with
critical values chosen such that the pre-test is consistent as n → ∞. If the test rejects, then
we conclude that we’re not at the boundary, and we use umd standard errors. Otherwise, we
assume that we’re at the boundary, and, we use the asymptotic distribution (SA–5) to obtain
confidence intervals. Quantiles of the limiting distribution in Equation (SA–5) can be obtained
by simulating draws of Z1 and Z2. The pre-test used in this approach is, in fact, equivalent to
a consistent test of overidentifying restrictions, so that the modified Cragg-Donald test can be
used.

SA.1.4 Additional details for Section 6

I first derive the expression for Ĵmd. First, observe that, since QT (β̂re, S) = mmax,

min
Ξ11=Ξ22β2

Qn(β, Ξ11, Ξ22, Ŵre) = Qn(β̂re, Ξ̂22,re, Ŵre)

= tr
(
((kn/n)I2 − S−1T)2

)
− (mmax − kn/n)2. (SA–7)

Since tr
(
((kn/n)I2 − S−1T)2) = (mmax − kn/n)2 + (mmin − kn/n)2, it follows that (SA–7) can

be written as
Qn(β̂re, Ξ̂22,re, Ŵre) = (mmin − kn/n)2.

It follows from the results in Section SA.1.3 that if S− (kn/n)T is not positive semi-definite
(which is equivalent to mmin < kn/n), then

min
Ξ11≥Ξ22β2

Qn(β, Ξ11, Ξ22; Ŵre) = min
Ξ11=Ξ22β2

Qn(β, Ξ11, Ξ22, Ŵre).

Otherwise, minΞ11≥Ξ22β2 Qn(β, Ξ11, Ξ22; Ŵre) = 0, which yields the expression for Ĵmd as stated
in the main text.

Next, I derive the asymptotic properties of overidentification tests proposed by Sargan
(1958), Cragg and Donald (1993), and Anderson and Rubin (1949). Let

Ĵs =
b̂′

liml
Tb̂liml

b̂′
liml

(T − (kn/n)S)b̂liml

=
mmin

1− kn/n− `n/n + mmin
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The Sargan (1958) test rejects whenever nĴs > q
χ2

k−1
1−ns, the 1− ns quantile of a χ2

k−1 distribution
where ns denotes the desired nominal size. The generalized likelihood ratio test based on
the limited information likelihood of Anderson and Rubin (1949) replaces Ĵs with Ĵar =

log(nmmin/(n− kn − `n) + 1), and the Cragg and Donald (1993) test uses Ĵcd = mmin.
All three tests are equivalent in the sense that they all reject for large values of mmin.

Therefore, the only difference between them in finite samples is how well the chi-squared
approximation controls size in each case. While under standard asymptotics their asymptotic
distributions coincide and therefore do not provide any guidance as to which test has the best
size control, allowing for αk, α` > 0 reverses this conclusion.

Lemma SA.1. Under Assumptions PR, MI and RC, if kn → ∞,

P

(
nĴs ≥ q

χ2
kn−1

1−ns

)
→

Φ
(

Φ−1(ns)√
(1−αk)(1+(1−αk)κδ/2)

)
if α` = 0,

1 otherwise.

P

(
nĴcd ≥ q

χ2
kn−1

1−ns

)
→ Φ

(
Φ−1(ns)√

(1− α`)/(1− αk − α`) + κδ/2

)
,

and if αk > 0, then P

(
nĴar ≥ q

χ2
kn−1

1−ns

)
→ 1, where Φ(·) is the cdf of a standard normal distribution.

Proof of Lemma SA.1. Let α̃ = (1− α`)/(1− αk − α`). By Proposition 4 and the delta method,

n√
kn

(
Ĵs − αk

1−α`

)
⇒ N

(
0, 2α̃+κδ

(1−α`)2 α̃2

)
n√
kn

(
Ĵar − log(α̃)

)
⇒ N

(
0, 2α̃+κδ

(1−α`)2

)
n√
kn

(
Ĵcd − αk

)
⇒ N (0, 2α̃ + δκ),

I use the approximation from Peiser (1943) that as k→ ∞,

qχ2
k

1−ns = k + Φ−1(1− ns)
√

2k + O(1).

Therefore if τ > 0,

P

(
nĴcd ≥ q

χ2
kn−1

1−ns

)
= P

(
n√
kn

( Ĵcd − αk) ≥ Φ−1(1− ns)
√

2 + O(1/
√

kn)

)
= P

(
N (0, 1) + op(1) ≥

Φ−1(1− ns)√
α̃ + κδ/2

+ o(1)

)
→ Φ

(
Φ−1(ns)√
α̃ + κδ/2

)
.

Similarly,

P

(
nĴs ≥ q

χ2
kn−1

ns

)
= P

(
nĴs ≥ kn + Φ−1(1− ns)

√
2kn + O(1)

)
= P

(√
2α̃ + κδ

(1− α`)2α̃2N (0, 1) + op(1) ≥ −
√

knα`
(1− α`)

+ Φ−1(1− ns)
√

2 + o(1)

)
.

Now, if α` > 0, then the right-hand side converges to −∞, so that the rejection probability converges to one. If
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α` = 0, then

P

(
nĴs ≥ q

χ2
kn−1

ns

)
→ Φ

(
Φ−1(ns)√

(1− αk)(1 + (1− αk)κδ/2)

)
.

Finally,

P

(
nĴar ≥ q

χ2
kn−1

ns

)
= P

(
n√
kn

( Ĵar − n log(α̃)) ≥ − n√
kn

log(α̃) +
√

kn + Φ−1(1− ns)
√

2 + o(1)
)

= P

(√
2α̃ + κδ

1− α`
N (0, 1) + op(1) ≥

n√
kn

(kn/n− log(α̃)) + Φ−1(1− ns)
√

2 + o(1)

)
.

Since αk ≤ − log(1− αk),

αk − log(α̃) ≤ log
(

1
1− αk

)
− log

(
1− α`

1− αk − α`

)
= log

(
1− αk − α`

(1− αk)(1− α`)

)
≤ 0,

with equality only if αk = 0, so that the right-hand side of the previous display converges to −∞ if αk > 0. �

SA.2 Proof of Lemma A.2

Proof. Let Kd = 2Nd − Id2 denote the commutation matrix, which has the property that Kd vec(A) = vec(A′),
where A is a d× d matrix. To show part (i), note that for any v1, v2, v3, v4 ∈ Rd,

v1v′2 ⊗ v3v′4 = Kd(v3v′2 ⊗ v1v′4). (SA–8)

This follows from v1v′2 ⊗ v3v′4 = v1 ⊗ (v3v′2 ⊗ v′4) = Kd(v3v′2 ⊗ v′4)⊗ v1, where the second equality uses the identity
Kd(A⊗ v) = v⊗ A for any A ∈ Rd×d′ and v ∈ Rd (Magnus and Neudecker, 1979, Theorem 3.1(ix)). Furthermore,

vec(Qn) = (IG2 + KG)(IG ⊗M′nPn) vec(Un) + vec(U′nPnUn) + vec(M′nPn Mn), (SA–9a)

E[U′nPnUn] = tr(Pn)Ωn, (SA–9b)

E[vec(Qn)] = vec(M′nPn Mn + tr(Pn)Ωn), (SA–9c)

E[vec(Un) vec(Un)
′] = Ωn ⊗ In, (SA–9d)

E[vec(Un) vec(U′nPnUn)
′] = E[uin ⊗ diag(Pn)⊗ u′in ⊗ u′in], (SA–9e)

E vec(U′nPnUn) vec(U′nPnUn)
′ = δnE[uinu′in ⊗ uinu′in] + (tr(Pn)

2 − δn) vec(Ωn) vec(Ωn)
′ (SA–9f)

+ (tr(P2
n)− δn)(IG2 + KG)Ωn ⊗Ωn

where (SA–9a) follows by the definition of the commutation matrix, (SA–9b) follows from the expansion U′nPnUn =

∑i,j pijuinu′jn, (SA–9f) also follows from this expansion and from (SA–8), (SA–9c) follows from (SA–9b). Equa-
tions (SA–9d) and (SA–9e) follow by direct calculation. Therefore,

var[vec(Qn)] = (IG2 + KG)(IG ⊗M′nPn)E[vec(Un) vec(Un)
′](IG ⊗ Pn Mn)(IG2 + KG)

+ (IG2 + KG)(IG ⊗M′nPn)E[vec(Un) vec(U′nPnUn)
′]

+ E[vec(U′nPnUn) vec(Un)
′](IG ⊗ Pn Mn)(IG2 + KG) + E vec(U′nPnUn) vec(U′nPnUn)

′

− tr(Pn)
2 vec(Ωn) vec(Ωn)

′

= (IG2 + KG)(Ωn ⊗Ψn)(IG2 + KG) + tr(P2
n)(IG2 + KGG)Ωn ⊗Ωn

+ (IG2 + KG)E[uinu′in ⊗mnu′in] + E[uinu′in ⊗ uinm′n](IG2 + KG)

+ δn
(
E[uinu′in ⊗ uinu′in]− vec(Ωn) vec(Ωn)

′ − (IG2 + KGG)Ωn ⊗Ωn
)

,
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where the first equality uses (SA–9a)–(SA–9c), and the second equality uses (SA–9d)–(SA–9f). The result then
follows by applying the identities (SA–8) and A1 ⊗ A2 = Kd(A2 ⊗ A1) for any A1, A2 ∈ Rd×d (Magnus and
Neudecker, 1979, Theorem 3.1(ix)).

The proof of part (ii) adapts the arguments in Chao, Swanson, Hausman, Newey and Woutersen (2012) and
Hansen, Hausman and Newey (2008). By the Cramér–Wold device, it suffices to prove the result for

vec(A)′ vec(Qn) = tr(A′Qn)

where A ∈ RG×G is an arbitrary matrix of constants. Since Qn is symmetric, we can without loss of generality
assume that A is also symmetric. Expanding the expression, and using symmetry of Pn yields

tr(AQn −E[AQn]) =
n

∑
i=1

n

∑
j=1

(mjn + ujn)
′A(min + uin)pij −

n

∑
i=1

n

∑
j=1

m′jn Amin pij −
n

∑
i=1

pii tr(AΩn)

=
n

∑
i=1

Win +
n

∑
i=2

i−1

∑
j=1

2piju′in Aujn =
n

∑
i=1

yin,

where yin = Win + 2Sin for i ≥ 2, y1n = W1n and

Win = 2e′inPn Mn Auin + pii(u′in Auin − tr(AΩn)),

Sin =
i−1

∑
j=1

piju′in Aujn,

Note that yin is a martingale difference array with respect to the filtration Fin = σ(u1n, . . . , ui−1,n). By the
martingale central limit theorem, it therefore suffices to show that for some ε > 0,

n

∑
i=1

E[|yin|2+ε] = o(1), (SA–10)

and that the conditional variance ∑n
i=1 E[y2

in | Fi−1,n] converges. By the Loève cr-inequality if

E[|u′in Auin − tr(AΩn)|4]
n

∑
i=1

p4
ii = o(1), (SA–11)

n

∑
i=2

E[S4
in] = o(1), and (SA–12)

n

∑
i=1

E[(e′inPn Mn Auin)
4] = o(1), (SA–13)

then (SA–10) holds with ε = 2. Now, (SA–11) follows from Assumptions (ii)b and (ii)c. To show (SA–12), note that
expanding the expression yields

n

∑
i=2

E[S4
in] = 2

n

∑
i=2

i−1

∑
j=1

i−1

∑
k=1

p2
ij p

2
ikE[(u′jn Auin)

2(u′in Aukn)
2] ≤ C

n

∑
i=2

i−1

∑
j=1

i−1

∑
k=1

p2
ij p

2
ik ≤ C

n

∑
i=1

 n

∑
j=1

p2
ij

2

,

for some constant C, which is o(1) by Assumption (ii)c. Next, to show (SA–13), note that

n

∑
i=1

E[(e′inPn Mn Auin)
4] ≤ E[‖Auin‖4]

n

∑
i=1
‖e′inPn Mn‖4,

which is also o(1) by Assumptions (ii)b and (ii)d.
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It remains to show convergence of the conditional variance. By Assumption (ii)a, it suffices to show that

n

∑
i=1

E[y2
in | Fi−1,n]− var(tr(AQn))

p→ 0. (SA–14)

Since E[W2
in | Fi−1,n] = E[W2

in], and since var(tr(AQn)) = ∑n
i=1 E[W2

in] + 4 ∑n
i=2 E[S2

in], the left-hand side of (SA–14)
can be written as

n

∑
i=1

E[y2
in | Fi−1,n]− var(tr(AQn)) = 4

n

∑
i=2

(
E[S2

in | Fi−1,n]−E[S2
in]
)
+ 4

n

∑
i=2

E[WinSin | Fi−1,n]. (SA–15)

Letting PL
n denote the lower triangular matrix with elements pij1{i > j}, we can write the second sum in (SA–15) as

n

∑
i=2

E[WinSin | Fi−1] =
n

∑
i=1

n

∑
j=1

(PL
n )ijE[Winu′in]Aujn = tr

(
U′PL

n
′
E[DWU]A

)
=

G

∑
g=1

e′gGU′PL
n
′
wg,

where DW denotes a diagonal matrix with elements (DW)ii = Win, and wg = E[DWU]AegG. The variance of the
summand on the right-hand side is given by

E[(e′gU′PL
n
′
wg)

2] = Ωggw′gPL
n PL

n
′
wg ≤ Ωgg‖PL

n PL
n
′‖F‖wg‖2

= Ωgg‖PL
n PL

n
′‖F

n

∑
i=1

E[Winu′in Aeg]
2 ≤ Ωgge′g AΩn Aeg‖PL

n PL
n
′‖F

n

∑
i=1

E[W2
in],

where ‖·‖F denotes the Frobenius norm. It follows by Loève Cr inequality and Assumption (ii)a that ∑n
i=1 E[W2

in] is
bounded, and

‖PL
n PL

n
′‖2

F = ∑
k<i

p4
ik + 2 ∑

k<`<i
p2

ik p2
i` + 2 ∑

k<i<j
p2

ik p2
jk + 4 ∑

k<`<i<j
pik pjk pi`pj`

≤ 5 ∑
i
(∑

j
p2

ij)
2 + 4 ∑

k<`<i<j
pik pjk pi`pj` = o(1),

where the last equality follows by Assumption (ii)c. Hence, by Markov inequality, the second term in (SA–15) is
op(1). Next, consider the first term in (SA–15), which can be written as

n

∑
i=2

(
E[S2

in | Fi−1,n]−E[S2
in]
)
=

n

∑
i=2

 i−1

∑
k=1

i−1

∑
j=1

pij piku′kn AΩAujn −
i−1

∑
j=1

p2
ij tr(ΩAΩA)


=

n

∑
i=2

i−1

∑
j=1

p2
ij(u
′
jn AΩAujn − tr(ΩAΩA)) + 2

n

∑
i=2

i−1

∑
k=1

k−1

∑
j=1

pij piku′kn AΩAujn.

(SA–16)

Variance of the first term in (SA–16) is given by

var

 n

∑
i=2

i−1

∑
j=1

p2
ij(u
′
jn AΩAujn − tr(ΩAΩA))

 = E[(u′in AΩAuin − tr(ΩAΩA))2]
n

∑
i=2

i−1

∑
j=1

n

∑
`=j+1

p2
`j p

2
ij,

which converges to zero since the triple sum ∑n
i=2 ∑i−1

j=1 ∑n
`=j+1 p2

`j p
2
ij is bounded by

n

∑
i=1

n

∑
j=1

n

∑
`=1

p2
`j p

2
ij =

n

∑
i=1

 n

∑
j=1

p2
ij

2

= o(1), (SA–17)
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where the last equality follows by Assumption (ii)c. Variance of the second term in (SA–16) given by

var

 n

∑
i=2

i−1

∑
k=1

k−1

∑
j=1

pij piku′kn AΩAujn

 = tr((AΩ)4)
n

∑
i=2

i−1

∑
k=1

k−1

∑
j=1

n

∑
`=k+1

pij pik p`j p`k

= tr((AΩ)4)

 ∑
j<k<i

p2
ij p

2
ik + 2 ∑

j<k<i<`

pji pik p`j p`k

 ,

where the first sum is again bounded by (SA–17), and the second term equals ∑i<j<k<` pik pi`pjk pj`, which is o(1)
by Assumption (ii)c. Therefore, by Markov inequality, the first term in (SA–15) is op(1), so that (SA–14) holds,
which proves the theorem. �
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