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Appendix A Proofs and additional theoretical results

Appendix A.1 gives proofs and additional details for the results in Sections 4.1 and 4.2. Appendix A.2
gives proofs and additional details for the results in Sections 4.3 and 5.3.

A.1 Proofs and additional details for OLS regression

Since Propositions 1 and 2 are special cases or Propositions 3 and 4, we only prove Propositions 3, 4
and 5. We give the proofs under a slightly more general setup that allows for a linearization error in
the potential outcome equation. We introduce this more general setup in Appendix A.1.1, where we
also collect the assumptions that we impose on the DGP. We collect some auxiliary Lemmata used in
the proofs in Appendix A.1.2, and we prove these propositions in Appendices A.1.3, A.1.3 and A.1.5.
Appendix A.1.6 discusses inference when the effects βis are heterogeneous.

Throughout the Appendix, we assume that ∑S
s=1 wis ≤ 1 for all i. Thus, ∑S

s=1 ns ≤ N, where
ns = ∑N

i=1 wis denotes the size of sector s. We use the notation AS � BS to denote AS = O(BS), i.e.
there exists a constant C independent of S such that AS ≤ CBS. Let F0 denote the σ-field generated by
(Z, U, Y(0), B, W) (for the case with no covariates, F0 denotes the σ-field generated by (Y(0), B, W)).
Define wst = ∑N

i=1 wiswit, X̃s = Xs −Z′sγ, and σ2
s = var(Xs | F0). Finally, let rN = (∑s n2

s )
−1, and let

EW denote expectation conditional on W.

A.1.1 General setup and assumptions

We first list and discuss the regularity conditions needed for the results in Section 4.1. We then
generalize the setup from Section 4.2 by allowing for a linearization error in the potential outcome
equation (11). Unless stated otherwise, all limits are taken as S→ ∞. We leave the dependence of the
number of regions N = NS on S implicit.

For the results in Section 4.1, we assume that the observed data (Y, X, W) is generated by the
variables (Y(0), B, W,X), which we model as a triangular array, so that the distribution of the data
may change with the sample size.1 The additional regularity conditions we impose on these variables,
in addition to Assumptions 1 and 2 as follows:

Assumption A.1. (i) The support of βis is bounded; (ii) 1
N ∑N

i=1 ∑S
s=1 var(Xs | F0)w2

is converges in
probability to a strictly positive non-random limit; (iii) For some ν > 0, E[|Xs|2+ν | F0] exists and
is uniformly bounded, and conditional on W, the second moments of Yi(0) exist, and are bounded
uniformly over i; (iv) For some ν > 0, E[|Xs|4+ν | F0] is uniformly bounded, and conditional on W,
the fourth moments of Yi(0) exist, and are bounded uniformly over i.

The bounded support condition on βis in Assumption A.1(i) is made to keep the proofs simple
and can be relaxed. Assumption A.1(ii) is a standard regularity condition ensuring that the shocks
X have sufficient variation so that the denominator of β̂, scaled by N, does not converge to zero.

1In other words, to allow the distribution of the data to change with the sample size S, we implicitly index the data by
S. Making this index explicit, for each S, the data is thus given by the array {(YiS(0), βisS, wisS,XsS) : i = 1, . . . , NS, s =
1, . . . , S}.
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This requires that there is at least one “non-negligible” sector in most regions in the sense that its
share wis is bounded away from zero. This implies that ∑S

s=1 ns/N is also bounded away from zero.
Assumption A.1(iii) imposes some mild assumptions on the existence of moments of X and Yi(0).
Assumption A.1(iv), which is only needed for asymptotic normality, strengthens this condition.

For the results in Section 4.2, we generalize the setup in the main text by allowing for a lineariza-
tion error in the expression for potential outcomes,

Yi(x1, . . . ,xS) = Yi(0) +
S

∑
s=1

wisxsβis + Li(x1, . . . ,xS),
S

∑
s=1

wis ≤ 1, (A.1)

and we weaken Assumption 3(i) by replacing it with the assumption that the observed outcome is
given by Yi = Yi(X1, . . . ,XS), such that eq. (A.1) holds with Li(X1, . . . ,XS) = Li.

We assume that the observed data (Y,X, Z, W) is generated by the triangular array of variables
(Y(0), B, W, U,X,Z, L). Let δ̌ = (Z′Z)−1Z′(Y− Xβ) denote the regression coefficient in a regression
of Y−Xβ on Z, that is, the regression coefficient on Zi in a regression in which β̂ is restricted to equal
to the true value β.

Assumption A.2. (i) N−1 ∑N
i=1 E[L2

i ]
1/2 → 0, and conditional on W, the second moments of Ui and

Zs exist and are bounded uniformly over i and s; (ii) Z′Z/N converges in probability to a positive
definite non-random limit; (iii) (∑s n2

s )
−1/2 ∑N

i=1 E[L2
i ]

1/2 → 0, maxi E[L4
i |W]→ 0, and conditional on

W, the fourth moments of Zs, and Ui exist and are bounded uniformly over s and i; (iv) δ̌− δ = Op(qs)

for some sequence qS → 0; (v) q2
SN/ ∑s n2

s ·∑i E[(U′i γ)
2]→ 0 and γ′U′ε = op((∑s n2

s )
1/2).

Assumption A.2(i) imposes some mild moment restrictions on the controls Zi. It also requires that
on average, the variance of the linearization error Li vanishes with sample size. This ensures that the
linearization error does not impact the consistency of β̂. Assumption A.2(ii) ensures that the controls
are not collinear.

Assumptions A.2(iii) to A.2(v) are only needed for asymptotic normality. Assumption A.2(iii)
strengthens the moment conditions in Assumption A.2(i). It also imposes a stricter condition on the
linearization error: it requires that, on average over N, the standard deviation of Li is of smaller
order than (∑s n2

s )
1/2/N, the rate of convergence of β̂. A sufficient condition is that Li = op(S−1/2).

This ensures that the linearization error is of smaller order than the variance of the estimator, so that
the distribution of β̂ does not suffer from asymptotic bias. This formalizes the assumption that the
linearization error is “small”. The condition that maxi E[L4

i | W] → 0 is only needed for showing
consistency of the standard error estimator; it is not needed for asymptotic normality. Assump-
tion A.2(iv) requires that δ̌ is consistent, which ensures that the error in estimation of δ does not
affect the asymptotic distribution of β̂. Finally, Assumption A.2(v) imposes conditions on U′i γ, the
measurement error for controls that matter, which ensure that measurement error in the controls that
matter does not impact the asymptotic distribution of β̂. They are stated as high-level conditions to
cover a range of different cases, and depend on the rate of convergence qS of δ̌. In typical cases, the
rate will be qS = (∑s n2

s )
1/2/N, the same as that of β̂, and the condition q2

SN/ ∑s n2
s ·∑i E[(U′i γ)

2]→ 0
is implied by Assumption 3(iii). Let U1i denote the subset of elements of Ui for which γk 6= 0, and let
U2i denote the remaining elements. If Ui1 is mean zero and independent across i conditional on the
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remaining variables ((Y(0), W, B,Z,X, U2)), so that these elements are pure measurement error, then
the second condition is implied by Assumption 3(iv).

A.1.2 Auxiliary results

Lemma A.1. {AS1, . . . ,ASS}∞
S=1 be a triangular array of random variables. Fix η ≥ 1, and let ASi =

∑S
s=1 wisASs, i = 1 . . . , NS. Suppose E[|ASs|η | W] exists and is uniformly bounded. Then E[|ASi|η | W]

exists and is bounded uniformly over S and i.

Proof. The result follows by triangle inequality for η = 1. Suppose therefore that η > 1. By Hölder’s
inequality,

E[|ASi|η |W] = E

[∣∣∣∣∣ S

∑
s=1

w
η−1

η

is w
1
η

isASs

∣∣∣∣∣
η

|W
]
≤
(

S

∑
s=1

wis

)η−1 S

∑
s=1

wisE[|ASs|η |W]

≤ max
s

E[|ASs|η |W] · (∑S
s=1 wis)

η ≤ maxs E[|ASs|η |W],

which yields the result.

Lemma A.2. {AS1, . . . , ASNS}∞
S=1 be a triangular array of random variables. Suppose E[A2

Si | W] exists and
is uniformly bounded. Then ∑S

s=1 E
[
(∑N

i=1 wis ASi)
2 |W

]
� ∑s n2

s .

Proof. By Cauchy-Schwarz inequality,

S

∑
s=1

E

( N

∑
i=1

wis ASi

)2 ∣∣∣ W

 ≤ S

∑
s=1

N

∑
i=1

N

∑
j=1

wiswjsE[A2
Si |W]1/2E[A2

Sj |W]1/2

�
S

∑
s=1

N

∑
i=1

N

∑
j=1

wiswjs =
S

∑
s=1

n2
s .

Lemma A.3. Let {AS1, . . . , ASNS , BS1, . . . , BSNS ,AS1, . . . ,ASS}∞
S=1 be a triangular array of random variables.

Suppose E[A4
Si | W], E[B4

Si | W], and E[A2
Ss | W] exist and are uniformly bounded. Then (∑s n2

s )
−1 ·

∑i,j,s wiswjs ASiBSjASs = Op(1).

Proof. Let RS = (∑s n2
s )
−1 ∑i,j,s wiswjs ASiBSjASs. By the triangle and Cauchy-Schwarz inequalities,

E[|RS| |W] ≤ 1
∑s n2

s
∑
i,j,s

wiswjsE[|ASiBSjASs| |W]

≤ 1
∑s n2

s
∑
i,j,s

wiswjsE[|BSj|4 |W]1/4E[|ASi|4 |W]1/4E[A2
Ss |W]1/2 � 1

∑s n2
s

∑
i,j,s

wiswjs = 1.

The result then follows by Markov inequality.
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A.1.3 Proof of Proposition 3

First we show that
Z′WX̃ = Op(1/

√
rN). (A.2)

Conditional on W, the left-hand side has mean zero by Assumption 3(ii), and by Assumption 2(i), the
variance of the kth row given by

var

(
∑
i,s

wisX̃sZik |W
)

= ∑
s

EWσ2
s

(
∑

i
wisZik

)2

�∑
s

EW

(
∑

i
wisZik

)2

.

By Lemma A.1, Assumption A.2(i), and the Cr-inequality, EW [Z2
ik] = EW [(∑s wisZsk + Uik)

2] is uni-
formly bounded. Therefore, by Lemma A.2, the right-hand side is bounded by ∑s n2

s , so the result
follows by Markov inequality and dominated convergence theorem.

Since X = WX̃ + Zγ−Uγ, it follows from eq. (A.2) and Assumption A.2(ii) that

γ̂− γ = (Z′Z/N)−1Z′WX̃/N − (Z′Z/N)−1Z′Uγ/N = op(1), (A.3)

where γ̂ = (Z′Z)−1Z′X, and the last equality follows since ∑s n2
s /N2 ≤ maxs ns/N → 0 by Assump-

tion 2(ii), and since Z′Uγ/N = op(1) by the Cauchy-Schwarz inequality and Assumption 3(iii).
Next, we will show that

Ẍ′Ẍ/N =
1
N ∑

i,s
w2

isσ
2
s + op(1). (A.4)

To this end, we have

Ẍ′Ẍ/N = (WX̃ −Uγ− Z(γ̂− γ))′(WX̃ −Uγ− Z(γ̂− γ))/N

= (WX̃)′(WX̃)/N + op(1)

=
1
N ∑

s
wssσ

2
s +

2
N ∑

s<t
wstX̃sX̃t +

1
N ∑

s
wss(X̃

2
s − σ2

s ) + op(1).

where the first line follows from the decomposition

Ẍ = X− Z(Z′Z)−1Z′X = X− Zγ̂ = WX̃ −Uγ− Z(γ̂− γ), (A.5)

the second line follows by the Cauchy-Schwarz inequality, Assumption 3(iii), and eq. (A.3), and the
third line follows by expanding (WX̃)′(WX̃)/N. Therefore, to show eq. (A.4), it suffices to show
that the second and third term in the above expression are op(1). Since the second term has mean
zero conditional on W, it suffices to show that its variance converges to zero. To that end,

var

(
2
N ∑

s<t
X̃sX̃twst |W

)
=

4
N2 ∑

s<t
EW [σ2

s σ2
t ]w

2
st �

1
N2 ∑

s,t
w2

st =
1

N2 ∑
i,j,s,t

wiswitwjswjt

≤ 1
N2 ∑

i,j,s,t
wiswitwjs ≤

1
N2 ∑

i,j,s
wiswjs =

1
N2 ∑

s
n2

s ≤
maxt nt ∑s ns

N2 → 0.
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where the convergence to 0 follows by Assumption 2(ii). By the inequality of von Bahr and Esseen,
Assumption A.1(iii), and the inequality wss ≤ ns,

E[N−1∣∣∑s(X̃
2
s − σ2

s )wss
∣∣1+ν/2 | F0] ≤

2
N1+ν/2 ∑

s
w1+ν/2

ss E[
∣∣X̃2

s − σ2
s
∣∣1+ν/2 | F0]

� 1
N1+ν/2 ∑

s
w1+ν/2

ss ≤ (max
s

ns/N)ν/2, (A.6)

which converges to zero by Assumption 2(ii). Equation (A.4) then follows by Markov inequality.
Next, we show that

Ẍ′Y/N =
1
N ∑

i,s
σ2

s w2
isβis + oP(1) (A.7)

Using eq. (A.5), we can write the left-hand side as

Ẍ′Y/N = X̃′W ′Y/N − γ′U′Y/N −Y′Z/N · (γ̂− γ)

= X̃′W ′Y/N + op(1)

=
1
N ∑

s,i
wisX̃sLi +

1
N ∑

s,i
w2

is(X̃sXs − σ2
s )βis +

1
N ∑

s,i
wisX̃sYi(0)

+
1
N ∑

s<t
∑

i
wiswitX̃sXtβit +

1
N ∑

s<t
∑

i
wiswitX̃tXsβis +

1
N ∑

s,i
w2

isσ
2
s βis + op(1)

where the second line follows since by the Cr-inequality, Lemma A.1, Assumptions A.1(i), A.2(i)
and A.1(iii), N−1 ∑i E[Y2

i ] is bounded, so that Y′Z/N = Op(1) and γ′U′Y/N = op(1) by Cauchy-
Schwarz inequality and Assumption 3(iii), and the third line follows by expanding X̃′W ′Y. We
therefore need to show that the first five terms in the expression above are op(1). By the Cauchy-
Schwarz inequality, the expectation of the absolute value of the first term is bounded by

N−1 ∑
i

E[L2
i ]

1/2(E ∑
s

w2
isσ

2
s )

1/2 � N−1 ∑
i

E[L2
i ]

1/2,

which converges to zero by Assumption A.2(i). Thus, the first term is op(1) by Markov inequality
and the dominated convergence theorem. The second term is op(1) by an argument analogous to
eq. (A.6). The third to fifth terms are mean zero conditional on F0, so it suffices to show that their
variances conditional on W converge to zero. The variance of the third summand is bounded by

var

(
1
N ∑

s
X̃s ∑

i
wisYi(0) |W

)
=

1
N2 ∑

s
EWσ2

s

(
∑

i
wisYi(0)

)2

� 1
N2 ∑

s
EW

(
∑

i
wisYi(0)

)2

,

which converges to zero by Lemma A.2. The variance of the fourth term is bounded by

var

(
1
N ∑

s<t
∑

i
wiswitX̃sXtβit |W

)
=

1
N2 ∑

s<t,t′
∑
i,i′

wiswitσ
2
s EW [XtXt′ ]βitwi′swi′t′βi′t′
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� 1
N2 ∑

s,t,t′,i,i′
wiswitwi′swi′t′ ≤

1
N2 ∑

s
n2

s ≤ max
s

ns/N → 0.

Variance of the fifth term converges to zero by analogous arguments.
Combining eq. (A.4) with eq. (A.7) and Assumption A.1(ii) then yields the result.

A.1.4 Proof of Proposition 4

Using eq. (A.5), we have

r1/2
N (Ẍ′Ẍ)(β̂− β) = r1/2

N X′(I − Z(Z′Z)−1Z′)(Zδ + ε) = r1/2
N X′(I − Z(Z′Z)−1Z′)ε

= r1/2
N X̃′W ′ε− r1/2

N γ′U′ε− r1/2
N (γ̂− γ)′Z′ε.

The third term can be written as

r1/2
N (γ̂− γ)′Z′ε = r1/2

N ε′Z(Z′Z)−1(Z′WX̃ − Z′Uγ) = r1/2
N (δ̌− δ)′(Z′WX̃ − Z′Uγ)

= (δ̌− δ)′(Op(1)− r1/2
N Z′Uγ)

= op(1)−Op(1) · qSr1/2
N Z′Uγ = op(1),

where the first line follows from the decomposition in eq. (A.3), the second line follows from eq. (A.2),
the third line follows by Assumption A.2(iv), and the last equality follows since by Cauchy-Schwarz

inequality and Assumption A.2(v), qSr1/2
N E[|Z′kUγ|] �

√
q2

SrN N ∑i E(U′i γ)
2 → 0. Since r1/2

N γ′U′ε =

op(1) by Assumption A.2(v), and since by eq. (A.4) and Assumption A.1(ii), (Ẍ′Ẍ/N)−1 = (1 +

op(1)) · (N−1 ∑i,s πis)
−1, it follows that

N
(∑s n2

s )
1/2 (β̂− β) = (1 + op(1))

1
N−1 ∑i,s πis

r1/2
N ∑

s,i
X̃swisεi + op(1).

Therefore, it suffices to show

r1/2
N ∑

s,i
X̃swisεi = N(0, plimVN) + op(1). (A.8)

Define Vi = Yi(0)− Z′i δ + ∑t witZ
′
tγ(βit − β), and

as = ∑
i

wisVi, bst = ∑
i

wiswit(βit − β). (A.9)

Then we can write εi = Vi + ∑t witX̃t(βit − β) + Li. Since

E|r1/2
N ∑

i,s
X̃swisLi| ≤ r1/2

N ∑
i
(∑

s
Ew2

isσ
2
s )

1/2E[L2
i ]

1/2 � r1/2
N ∑

i
E[L2

i ]
1/2 → 0

9



by Assumption A.2(iii), and since 0 = ∑i,s πis(βis − β) = ∑s σ2
s bss, we can decompose

r1/2
N ∑

s,i
X̃swisεi = r1/2

N ∑
s
X̃s ∑

i
wis

(
Vi + ∑

t
witX̃t(βit − β) + Li

)
= r1/2

N ∑
s
Ys + oP(1),

where

Ys = X̃sas + (X̃2
s − σ2

s )bss +
s−1

∑
t=1

X̃sX̃t(bst + bts).

Observe that Ys is a martingale difference array with respect to the filtration Fs = σ(X1, . . . ,Xs,F0).
By the dominated convergence theorem and the martingale central limit theorem, it suffices to

show that r1+ν/4
N ∑S

s=1 EW [Y2+ν/2
s ]→ 0 for some ν > 0 so that the Lindeberg condition holds, and that

the conditional variance converges,

rN

S

∑
s=1

E[Y2
s | Fs−1]− VN = op(1).

To verify the Lindeberg condition, by the Cr-inequality, it suffices to show that

r2
N ∑

s
EW [X̃4

s a4
s ]→ 0, r1+ν/4

N ∑
s

EW [(X̃2
s − σ2

s )
2+ν/2b2+ν/2

ss ]→ 0,

r2
N ∑

s
EW

(
s−1

∑
t=1

X̃sX̃tbst

)4

→ 0, r2
N ∑

s
EW

(
s−1

∑
t=1

X̃sX̃tbts

)4

→ 0.

Note that since E(∑t witZ
′
tγ(βit− β))4 � (∑t wit)

4 � 1, it follows from Assumptions A.2(iii) and A.1(iv),
and the Cr inequality that the fourth moment of Vi exists and is bounded. Therefore, by arguments
as in the proof of Lemma A.2, ∑s EW [a4

s ] � ∑s n4
s , so that

r2
N ∑

s
EW [X̃4

s a4
s ] = r2

N ∑
s

EW [E[X̃4
s | F0]a4

s ] � r2
N ∑

s
EW [a4

s ] � r2
N ∑

s
n4

s ≤ max
s

n2
s rN → 0 (A.10)

by Assumption 2(iii). Second, since βis is bounded by Assumption A.1(i), we have bss � ∑i w2
is ≤ ns,

so that
r1+ν/4

N ∑
s

EW [(X̃2
s − σ2

s )
2+ν/2b2+ν/2

ss ] � r1+ν/4
N ∑

s
n2+ν/2

s ≤ (rN max
s

n2
s )

ν/4 → 0.

Third, by similar arguments

r2
N ∑

s
EW

(
s−1

∑
t=1

X̃sX̃tbst

)4

= r2
N ∑

s
EW E[X̃4

s | F0]E

(s−1

∑
t=1

X̃tbst

)4

| F0


� r2

N ∑
s

(
s−1

∑
t=1

∑
i

wiswit

)4

≤ r2
N ∑

s
n4

s → 0.

The claim that r2
N ∑s EW

(
∑s−1

t=1 X̃sX̃tbts

)4
→ 0 follows by similar arguments.

10



It remains to verify that the conditional variance converges. Since VN can be written as

VN =
1

∑S
s=1 n2

s
var

(
∑

i
(Xi − Z′i γ)εi | F0

)
= rN ∑

s
E[Y2

s | F0] + oP(1)

= rN ∑
s

[
E
[
(X̃sas + (X̃2

s − σ2
s )bss)

2 | F0
]
+

s−1

∑
t=1

σ2
s σ2

t (bst + bts)
2

]
+ op(1),

we can decompose
rN ∑

s
E[Y2

s | Fs−1]− VN = 2D1 + D2 + 2D3 + op(1),

where

D1 = rN ∑
s
(σ2

s as + E[X̃3
s | F0]bss)

s−1

∑
t=1

X̃t(bst + bts),

D2 = rN ∑
s

σ2
s

s−1

∑
t=1

(X̃2
t − σ2

t )(bst + bts)
2,

D3 = rN ∑
s

σ2
s

s−1

∑
t=1

t−1

∑
u=1

X̃tX̃u(bst + bts)(bsu + bus).

It therefore suffices to show that Dj = op(1) for j = 1, 2, 3. Since E[Dj | F0] = 0, it suffices to show that
var(Dj | W) = EW [var(Dj | F0)] converges to zero. Since bst + bts � wst, and since EW [|asat|] � nsnt,
and |bss| � wss ≤ ns, it follows that

var(D1 |W) = r2
N ∑

t
EW

σ2
t

(
S

∑
s=t+1

(bst + bts)(σ
2
s as + E[X̃3

s | F0]bss)

)2


� r2
N ∑

t

(
S

∑
s=t+1

wstns

)2

≤ r2
N max

s
n2

s ∑
t

(
∑

s
wst

)2

= rN max
s

n2
s → 0,

where the convergence to zero follows by Assumption 2(iii). By similar arguments, since wst ≤ ns

var(D2 |W) = r2
N ∑

t
EW(X̃2

t − σ2
t )

2

(
S

∑
s=t+1

σ2
s (bst + bts)

2

)2

� r2
N ∑

t

(
S

∑
s=t+1

w2
st

)2

≤ r2
N ∑

t

(
S

∑
s=1

nswst

)2

≤ rN max
s

n2
s → 0.

Finally,

var(D3 |W) = r2
N ∑

t

S

∑
u=t+1

EWσ2
t σ2

u

(
S

∑
s=u+1

σ2
s (bst + bts)(bsu + bus)

)2

� r2
N ∑

t

S

∑
u=t+1

(
S

∑
s=u+1

wstwsu

)2

≤ r2
N ∑

s,t,u,v
wstwsuwvtwvu ≤ rN max

s
n2

s → 0,
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where the last line follows from the fact that since ∑s wst = nt and wst ≤ ns,

∑
s,t,u,v

wstwsuwvtwvu ≤ max
s

ns ∑
s,t,u,v

wsuwvtwvu = max
s

ns ∑
u,v

nunvwvu

≤ max
s

n2
s ∑

u,v
nvwvu = max

s
n2

s /rN . (A.11)

Consequently, Dj = op(1) for j = 1, 2, 3, the conditional variance converges, and the theorem follows.

A.1.5 Proof of Proposition 5

We’ll prove a more general result that doesn’t assume constant treatment effects. In particular, we
will show that under the conditions of the proposition when the condition βis = β is dropped, the
variance estimator V̂N = rN ∑s X̂sR̂2

s , where rN = 1/ ∑S
s=1 n2

s satisfies

V̂N = rN

S

∑
s=1

E[X̃2
s R2

s | F0] + op(1), (A.12)

where, using the definitions of as and bst in eq. (A.9),

Rs =
N

∑
i=1

wisεi = as +
N

∑
i=1

wisLi +
S

∑
t=1

X̃tbst.

Since under constant treatment effects, VN = rN ∑S
s=1 E[X̃2

s R2
s | F0], the assertion of the proposition

follows from eq. (A.12).
Throughout the proof, we write EF0 [·] and EW [·] to denote expectations conditional on F0, and W,

respectively. Let θ̃ = (β̃, δ̃′)′, θ = (β, δ), Mi = (Xi, Z′i)
′. We can decompose the variance estimator as

V̂N = rN ∑
s
(X̂2

s − X̃2
s )R̂2

s + rN ∑
s
X̃2

s (R̂2
s − R2

s ) + rN ∑
s
(X̃2

s R2
s − EF0 [X̃

2
s R2

s ]) + rN ∑
s

EF0 [X̃
2
s R2

s ].

(A.13)
We need to show that the first three terms are op(1). Since ε̃i = εi + M′i(θ − θ̃), with εi = Vi + Li +

∑t witX̃t(βit − β), we can decompose

R̂2
s = ∑

i,j
wiswjsε̃i ε̃j = R2

s + 2 ∑
i,j

wjswis M′i(θ − θ̃)εj + ∑
i,j

wiswjs M′i(θ − θ̃)M′j(θ − θ̃). (A.14)

Therefore, the second term in eq. (A.13) satisfies

rN ∑
s
X̃2

s (R̂2
s − R2

s ) = 2(θ − θ̃)′
[

rN ∑
s,i,j

wiswjsX̃
2
s Miεj

]
+ (θ − θ̃)′

[
rN ∑

s,i,j
X̃2

s wiswjs Mi M′j

]
(θ − θ̃)

= (θ − θ̃)′Op(1) + (θ − θ̃)′Op(1)(θ − θ̃) = op(1),

where the second line follows by applying Lemma A.3 to the terms in square brackets. Next, the
third term in (A.13) can be decomposed as
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rN ∑
s
(X̃2

s R2
s − EF0 [X̃

2
s R2

s ]) =

+ rN ∑
s

b2
ss(X̃

4
s − EF0 [X

4
s ]) + rN ∑

s<t
(b2

st + b2
ts)(X̃

2
s X̃

2
t − σ2

s σ2
t ) + 2rN ∑

s
∑
t<u

bstbsuX̃
2
s X̃tX̃u

+ rN ∑
s
(X̃2

s − σ2
s )a2

s + rN ∑
i,j,s

wjswis(X̃
2
s LiLj − EF0 [X̃

2
s LiLj]) + 2rN ∑

i,s
wisas(X̃

2
s Li − EF0 [X̃

2
s Li])

+ 2rN ∑
s<t

asbstX̃
2
s X̃t + 2rN ∑

s<t
atbtsX̃

2
t X̃s + 2rN ∑

s
asbss(X̃

3
s − EF0 [X̃

3
s ])

+ rN ∑
i,s,t

wisbst(X̃
2
s X̃tLi − EF0 [X̃

2
s X̃tLi]). (A.15)

We will show that all terms are of the order op(1). By the inequality of von Bahr and Esseen, since bss

is bounded by a constant times wss ≤ ns,

EF0 |rN ∑
s

b2
ss(X̃

4
s − EF0 [X

4
s ])|1+ν/4 � r1+ν/4

N ∑
s

n2+ν/2
s EF0 |(X̃4

s − EF0 [X
4
s ])|1+ν/4 ≤ (max

s
n2

s rN)
ν/4 → 0

by Assumption 2(iii), so that the first term is op(1). The second term can be written as

rN ∑
s<t

(b2
st + b2

ts)(X̃
2
s − σ2

s )(X̃
2
t − σ2

t ) + rN ∑
s 6=t

(b2
st + b2

ts)(X̃
2
s − σ2

s )σ
2
t

The conditional variance of both summands is bounded by a constant times r2
N ∑s(∑t w2

st)
2 ≤ r2

N ·
∑s n4

s → 0, so that the second term is also op(1). The third term admits the decomposition

2rN ∑
s

∑
t<u

bstbsuX̃
2
s X̃tX̃u = 2rN ∑

s,t
∑

s 6∈{t,u}
bstbsuX̃

2
s X̃tX̃u + 2rN ∑

t 6=u
bttbtuEF0 [X̃

3
t ]X̃u

2rN ∑
u<t

bttbtu(X̃
3
t − EF0 [X̃

3
t ])X̃u + 2rN ∑

t<u
bttbtu(X̃

3
t − EF0 [X̃

3
t ])X̃u.

The conditional variance of the first summand is bounded by a constant times r2
N ∑t,u,s,v wstwsuwvtwvu,

which converges to zero by the inequality in eq. (A.11). The conditional variance of the second
summand is bounded by a constant times r2

N ∑s,t,u wttwtuwsswsu ≤ r2
N maxs n2

s ∑s n2
s → 0. Since

(X̃3
t − EF0 [X̃

3
t ])∑t−1

u=1 bttbtuX̃u and X̃u ∑u−1
t=1 bttbtu(X̃3

t − EF0 [X̃
3
t ]) are both martingale differences, by

the inequality of von Bahr and Esseen, the 4/3-th absolute moment of the last two terms is bounded
by a constant times r4/3

N ∑s,t w4/3
tt w4/3

ts ≤ (maxs n2
s rN)

1/3rN ∑t n2
t → 0. Thus, all summands in the above

display are of the order op(1), and the third term in eq. (A.15) is therefore also op(1). The fourth term
is op(1) by arguments in eq. (A.10). By the triangle and Cauchy-Schwarz inequalities, the conditional
expectation of the absolute value of the fifth term is bounded by

2rN ∑
i,j,s

wjswisEW [X̃4
s ]

1/2EW [L4
i ]

1/4EW [L4
j ]

1/4 � max
i

EW [L4
j ]

1/2 → 0.

Similarly, conditional expectation of the absolute value of the sixth term is bounded by

4rN ∑
i,j,s

wiswjsEW [V4
j ]

1/4E[X̃4
s ]

1/2EW [L4
i ]

1/4 � max
i

EW [L4
j ]

1/4 → 0.
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Thus, by the Markov inequality, the fifth and sixth terms are both of the order op(1). The condi-
tional variance of the seventh and eighth terms is bounded by a constant times r2

N ∑s,t,u nsnuwstwut ≤
rN maxs n2

s → 0, so that they are both op(1) by Markov inequality. By the inequality of von Bahr
and Esseen, the 4/3-th absolute moment of the last ninth term is bounded by a constant times
r4/3

N ∑s EW [|as|4/3]n4/3
s � (maxs n2

s rN)
1/3 → 0, since by Jensen’s inequality, E|as|4/3 ≤ (Ea2

s )
2/3, which

is bounded by a constant times n4/3
s . Finally, the expectation of the absolute value of the last term

in eq. (A.15) is bounded by a constant times

rN ∑
i,s,t

wiswstEW [X̃4
s ]

1/2EW [X̃4
t ]

1/4EW [L4
i ]

1/4 � max
i

EW [L4
i ]

1/4 → 0.

It remains to show that the first term in eq. (A.13) is op(1). It follows from eq. (A.5) and eq. (24)
that

X̂ = (W ′W)−1W ′Ẍ = X̃ − (W ′W)−1W ′U(γ̂− γ)−Z(γ̂− γ)− (W ′W)−1W ′Uγ,

where γ̂ = (Z′Z)−1Z′X. Let U = (W ′W)−1W ′U, and denote the sth row by U′s. Since U4
sk =

(∑i((W ′W)−1W ′)siUik)
4, it follows by the Cauchy-Schwarz inequality that

E[U4
sk |W] ≤ max

s
E[(∑

i
((W ′W)−1W ′)siUik)

4 |W] � max
s

(∑
i
|((W ′W)−1W ′)si|)4,

which is bounded assumption of the proposition. Therefore, the fourth moments of Us are bounded
uniformly over s. Observe also that EW [ε4

i ] is bounded uniformly over s by assumptions of the
proposition. Therefore, by applying Lemma A.3 after using the expansion in eq. (A.14), we get

rN ∑
s
(X̂2

s − X̃2
s )R̂2

s = rN ∑
s

R̂2
s (U

′
sγ)

2 − 2rN ∑
s

R̂2
sX̃sU

′
sγ

+ rN ∑
s

R̂2
s
[
2U′sγ− 2X̃s + (Zs +Us)

′(γ̂− γ)
]
(Zs +Us)

′(γ̂− γ)

= rN ∑
s

R2
s (U

′
sγ)

2 − 2rN ∑
s

R2
sX̃sU

′
sγ + Op(1)(γ̂− γ) + op(1).

By Cauchy-Schwarz inequality,

rN ∑
s

EW |R2
s (U

′
sγ)

2| ≤ rN ∑
s
(EW [R4

s ])
1/2(EW(U′sγ)

4)1/2 � max
s

(EW(U′sγ)
4)1/2rN ∑

s
n2

s → 0,

since maxs EW [(U′sγ)
4] � maxi EW(U′i γ)

4 maxs(∑i|((W ′W)−1W ′)si|)4, which converges to zero by as-
sumption of the proposition. By similar arguments, 2rN ∑s EW |R2

sX̃sU
′
sγ| → 0 also, so that

rN ∑
s
(X̂2

s − X̃2
s )R̂2

s = op(1) + Op(1)(γ̂− γ) = op(1),

where the second equality follows from eq. (A.3).
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A.1.6 Inference under heterogeneous effects

For valid (but perhaps conservative) inference under heterogeneous effects, we need to ensure that
when βis 6= β, eq. (32) holds with inequality, that is,

∑S
s=1 X̂

2
s R̂2

s

∑S
s=1 n2

s
≥ VN + op(1). (A.16)

To discuss conditions under which this is the case, suppose, for simplicity, that Li = 0 so that eq. (11)
holds, and Rs = ∑s wisεi, where εi = Yi(0)− Z′i δ + ∑s Xswis(βis − β) is the regression residual. Then
the “middle sandwich” in the asymptotic variance sandwich formula, VN , as defined in Proposition 4,
can be decomposed into three terms:

VN =
var

(
∑s X̃sRs | F0

)
∑S

s=1 n2
s

=
∑s E[X̃2

s R2
s | F0]

∑S
s=1 n2

s
− ∑s E[X̃sRs | F0]2

∑S
s=1 n2

s
+

∑s 6=t cov(X̃sRs, X̃tRt | F0)

∑S
s=1 n2

s

= D1 + D2 + D3, (A.17)

where

D1 =
∑s E[X̃2

s R2
s | F0]

∑S
s=1 n2

s
, D2 = −∑s

(
∑i σ2

s w2
is(βis − β)

)2

∑S
s=1 n2

s
,

D3 =
∑s 6=t σ2

s σ2
t ∑i,j wiswit(βit − β)wjtwjs(β js − β)

∑S
s=1 n2

s
.

As shown in the proof of Proposition 5 (see eq. (A.12)), the standard error estimator consistently
estimates D1. Under homogeneous effects, D2 = D3 = 0, and it follows that the standard error
estimator is consistent. To ensure valid inference under heterogeneous effects, one needs to ensure
that D2 + D3 ≤ op(1). This is the case under several sufficient conditions, and we give two such
conditions below.

The term D2 reflects the variability of the treatment effect and it is always negative. It therefore
makes the variance estimate that we propose conservative if D3 = op(1). An analogous term, also
reflecting the variability of the treatment effect, is present in randomized, and cluster-randomized
trials, which is why the robust and cluster-robust standard error estimators yield conservative infer-
ence in these settings (see, for example Imbens and Rubin, 2015, Chapter 6). The term D3 reflects
correlation between the treatment effects. It arises due to aggregating the sectoral shocks Xs to a
regional level to form the shifter Xi, and it has no analog in cluster-randomized trials. Indeed, in the
example with “concentrated sectors”, which is analogous to cluster-randomized trials if there are no
covariates, the term equals zero, since in that case wiswit = 0 for s 6= t. Our standard errors are thus
valid, although conservative, in this case.

More generally, a sufficient condition for validity of our standard error estimator under treatment
effect heterogeneity is that TN = ∑s 6=t(∑i wiswit)

2/ ∑s n2
s → 0, since D3 = Op(TN). The condition

TN → 0 requires that the shares are sufficiently concentrated so that not too many regions “specialize”
in more than one sector (in the sense that the sectoral share wis is bounded away from zero as S→ ∞
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for more than one sector). For example, TN → 0 if the share of the second-largest sector goes to zero
as S → ∞, that is maxi,s 6=si wis → 0, where si denotes the largest sector in region i. This follows from
the inequalities

∑
i,j

∑
s 6=t

wiswitwjswjt = ∑
i,j,s,t

I(s = si, t 6= si)wiswitwjswjt + ∑
i,j

∑
s 6=t

I(s 6= si)wiswitwjswjt

≤ ∑
i,j,s,t

I(t 6= si)wiswitwjswjt + ∑
i,j,s,t

I(s 6= si)wiswitwjswjt

≤ 2 max
i,s 6=si

wis ∑
i,j,s,t

witwjswjt ≤ 2 max
i,s 6=si

wis ∑
t

n2
t = o(rN).

For illustration, in the empirical application in Section 7.1, TN = 0.0014.
A second sufficient condition for the asymptotic negligibility of D3 is that the conditional variance

of the shifters Xs, σ2
s = E[(Xs − Z′sγ)

2 | F0] and the weighted treatment effects σ2
s βis are mean-

independent of the shares W, provided some additional mild regularity conditions are satisfied, as
shown in the lemma below. Importantly, this condition still allows the treatment effects to depend
on the controls Z, or other aspects of the model, such as Yi(0): the covariance assumptions in the
lemma allow the treatment effects βis to be correlated within a region and/or within a sector. The
assumption that ∑i ∑s 6=t w2

isw
2
it/ ∑s′ n2

s′ → 0 holds if either a vanishing fraction of regions “specialize”
in more than one sector (in the sense that the sectoral share wis is bounded away from zero as S→ ∞
for more than one sector). It also holds if S/ ∑s ns → 0, that is, the number of regions grows faster
than the number of sectors.2 For illustration, the quantity equals 0.00022 in the empirical example in
Section 7.1. The lemma uses the notation defined at the beginning of Appendix A.1.5.

Lemma A.4. Suppose that the assumptions of Proposition 4 hold. Suppose, in addition, that the conditional
expectations E[σ2

s βis | W] = E[(Xs −Z′sγ)
2βis | W] and E[σ2

s | W] = E[(Xs −Z′sγ)
2 | W] do not depend

on W, i, or s. Suppose also that cov(σ2
s βis, σ2

t β jt | W) = 0 unless i = j or s = t, that cov((σ2
s βis, σ2

s ), σ2
t |

W) = 0 unless s = t, and that ∑s 6=t ∑i w2
isw

2
it/ ∑s n2

s → 0. Then D3 = op(1).

Proof. By Assumptions A.1(i) and A.1(iii),

rN ∑
s 6=t

∑
i

EW |σ2
s σ2

t w2
isw

2
it(βit − β)(β js − β)| � rN ∑

s 6=t
∑

i
w2

isw
2
it,

and the right-hand side converges to zero by assumption of the lemma. Therefore, by Markov in-
equality, D3 = rN ∑s 6=t ∑i 6=j wiswitσ

2
t (βit − β)wjtwjsσ

2
s (β js − β) + op(1). By Assumptions A.1(i), A.2(iii)

and A.1(iv), and assumptions of the lemma, the variance of ∑i,s w2
isσ

2
s βis/N and of ∑i,s w2

isσ
2
s /N con-

ditional on W is bounded by a constant times ∑i,j,s w2
isw

2
js/N2 + ∑i,s,t w2

isw
2
it/N2 ≤ 2 maxs ns/N → 0.

Therefore, by Assumption A.1(ii), β = µ/σ + op(1), where µ = EW [(Xs −Z′sγ)
2βis] and σ = EW [σ2

s ].
It then follows that

D3 = rN ∑
s 6=t

∑
i 6=j

wiswitwjtwjs(σ
2
s β js − µ)(σ2

t βit − µ)− 2rN ∑
s 6=t

∑
i 6=j

wiswitwjtwjs(µ− σ2
t µ/σ)(σ2

s β js − µ)

2This follows from the inequalities ∑i,s,t w2
isw2

it ≤ ∑s ns, and ∑s n2
s ≥ (∑s ns)2/S.
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+ rN ∑
s 6=t

∑
i 6=j

wiswitwjtwjs(µ− σ2
s µ/σ)(µ− σ2

t µ/σ) + op(1).

Each term in the above display has mean zero, and variance bounded by a constant times

r2
N ∑

s 6=t
(∑

i 6=j
wiswitwjtwjs)

2 + r2
N ∑

i 6=j
(∑

s 6=t
wiswitwjtwjs)

2

≤ r2
N max

s
n2

s ∑
i,j,s,t

wiswitwjswjt + r2
N ∑

i,j,s,t
witwjtwiswjs ≤ 2rN max

s
n2

s → 0.

Therefore, D3 = op(1) by Markov inequality and dominated convergence theorem.

Although both the condition TN → 0 and the conditions in Lemma A.4 may be restrictive in
some applications, note that both of these conditions are merely sufficient, but not necessary for
D3 + D2 ≤ op(1).

A.2 Proofs and additional details for IV regression

We prove eqs. (38) and (45), and show that the bias of the estimator α̃ is of the order 1
N ∑i,s wisw̌is/ňs.

We also discuss how the case with estimated shifters relates to the literature on many instruments.

A.2.1 Assumptions

To compactly state the assumptions, let F0 = (Z, U, Y1(0), Y2(0), B, W, W̌), and put W̌ = W, and
ψis = 0 if the shifters X are observed.

We impose an instrumental variables version of the regularity conditions Assumptions A.1 and A.2:

Assumption A.3. (i) For some ν > 0, E[X2+ν
s | F0] exists and is uniformly bounded. The support

of βis is bounded. Conditional on (W, W̌), the second moments of Y1i(0), Y2i(0), Ui and Zs exist,
and are bounded uniformly over i and s. Z′Z/N converges in probability to a positive definite non-
random limits; (ii) For some ν > 0, E[|Xs|4+ν | F0, Ψ] is uniformly bounded, and Xs are independent
across s conditional on (F0, Ψ), with E[Xs | F0, Ψ] = E[Xs | Z]. Conditional on (W, W̌), the fourth
moments of Y1i(0), Ui and Zs exist, and are bounded uniformly over i and s. Assumption A.2(iv) and
Assumption A.2(v) hold δ = E[Z′Z]−1E[Z′Y1(0)], δ̌ = (Z′Z)−1Z′Y1(0), and εi = Y1i −Y2iα− Z′i δ.

Assumption A.3(i) is needed for consistency, and Assumption A.3(ii) is needed for asymptotic
normality. When the shifters are observed, these assumptions are natural analogs of the regular-
ity conditions in the OLS case that are needed for consistency (Assumptions A.1(i) and A.1(iii)
and Assumptions A.2(i) and A.2(ii)) and asymptotic normality (Assumption A.1(iv) and Assump-
tions A.2(iii) to A.2(v)). When the shifters are not directly observed, Assumption A.3(ii) strengthens
Assumption 4(ii) so that it holds conditionally on Ψ also.

If Xi is not observed, we need to impose additional conditions on ψis and the weights w̌is:

Assumption A.4. Let A−i denote the vector A with the ith element removed. Let F−i = σ(Y1,−i(0),
Y2,−i(0), U−i, W, W̌,Z). (i) For all s and i, E[w̌isψis | F−i] = 0, and E[w̌2

isψ
2
is | F0] is bounded
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by a universal constant times w̌2
is; (ii) For all s, t, and all i 6= j, E[w̌isw̌jtψisψjt | F−i] = 0; (iii)

maxi,s w̌is/ ∑N
j=1 w̌js is bounded away from 1; (iv) maxi ∑s

ns
ňs

w̌is is bounded; (v) There exist variables
{Ci, ηi}N

i=1 such that (Yi1(0), Ui) = Ci + ηi, and conditional on (C, W,Z), {w̌i1ψi1, . . . , w̌iSψiS, ηi} are
independent across i, with uniformly bounded second moments, and E[(w̌isψis, ηi) | C, W, W̌,Z] = 0.
Conditional on (W, W̌), the fourth moments of ηi and Ci are uniformly bounded; (vi) EW,W̌ [w̌isψjs]

4

is bounded by a constant times w̌4
is; (vii) N/(∑s n2

s )
2 → 0.

Assumption A.4(i) requires that the local shock ψis in region i is mean zero, and unrelated to the
regional variables (Y1j(0), Y2j(0), Uj) in other regions. Importantly, it allows these local shocks to be
correlated with the regional variables in region i. In particular, in some applications, it may be the
case that Y2i = ∑s wisXis + ηi, with the additional term ηi potentially zero. In this case ψis is always
mechanically correlated with Y2i (and hence also Y1i if there is endogeneity). As we will show below,
this correlation causes bias in the estimator α̃ that ignores the estimation error in the shifters.

Assumption A.4(ii) requires that these local shocks are uncorrelated across regions: this ensures
consistency of the leave-one-out estimator. One could relax this assumption and instead only require
no correlation across clusters of regions, in which case one would have to leave out region i’s cluster
when constructing an estimate of Xi. The local shocks are allowed to be correlated across industries
in the same region. The scaling by w̌is in the statement of the assumption allows for the possibility
that Xis gives an uninformative signal about Xs if w̌is = 0. Assumption A.4(iii) imposes two mild
regularity conditions on the weights; it ensures that no single weight w̌is is so large that it dominates
a particular sector, which is necessary for the leave-one-out estimator to be well-defined.

Assumption A.4(iv) ensures that the weights w̌is are balanced in the sense that no single region
i is asymptotically non-negligible. The condition holds under equal weighting, w̌is = 1, since in
this case ∑s nsw̌is/ňs = ∑s ns/N ≤ 1. Oftentimes, the weights w̌is take the form w̌is = Liwis, where
Li is a measure of the size or region i. In this case, ∑s nsw̌is/ňs = ∑s

Liwis
Ls

, where Ls = ňs/ns =

∑i Liwis/ ∑j wjs is the sector-weighted average size of a region. Thus, the condition requires that the
sector-weighted size of region i, wisLi, is non-negligible relative to the national average for at most
a fixed number of sectors. Since ∑s nsw̌is/ňs ≤ maxi Li

minj Lj
, a sufficient condition is that the ratio of the

largest to the smallest region is bounded.
Assumptions A.4(v) to A.4(vii) are only needed for asymptotic normality. Assumption A.4(v)

effectively imposes that only the part of (Yi1(0), Ui) that’s independent of ψi is allowed to be correlated
across i; the part that’s related to ψi must be independent across i. Assumption A.4(vii) imposes a
very mild condition on the sector sizes, and holds, for example, if ns ≥ 1.

A.2.2 Asymptotic results

When the shifters are observed, we obtain the following result, which implies eq. (38) in the main
text:

Proposition A.1. Suppose that Assumptions 2(i) and 2(ii) and Assumption 4 hold with F0 = (Z, U, Y1(0),
Y2(0), B, W), and that Assumption A.3(i) holds. Then the estimator α̂ in eq. (36) is consistent. If, in addition,
Assumption 2(iii) and Assumption A.3(ii) hold, then α̂ satisfies eq. (38), provided VN converges to a non-random
limit.
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The consistency result follows since by arguments analogous to those in the proof of Proposition 3
(see, in particular, eq. (A.7)), N−1 ∑i ẌiY1i(0) = op(1), and N−1 ∑i ẌiY2i(0) = N−1 ∑i,s σ2

s w2
isβis + op(1).

Furthermore, since N−1 ∑i,s σ2
s w2

isβis 6= 0 by Assumption 4(iv), it follows by Slutsky’s lemma that

α̂− α =
N−1 ∑i ẌiY1i(0)
N−1 ∑i ẌiY2i(0)

= op(1).

The asymptotic normality result follows since r1/2
N ∑i ẌiY1i(0) = N(0,VN) + op(1) by arguments anal-

ogous to those in proof of Proposition 4 (see, in particular, eq. (A.8)).

Proposition A.2. Suppose that Assumptions 2(i) and 2(ii) and Assumption 4 hold with F0 = (Z, U, Y1(0),
Y2(0), B, W, W̌), and that Assumption A.3(i) and Assumptions A.4(i) to A.4(iv) hold. Then the estimator α̂− is
consistent for α. Furthermore, the estimator α̃ satisfies α̃ = α + Op

(
1
N ∑i,s

wisw̌is
ňs

)
, provided that ( ¨̂X′Y2/N)2

converges to a strictly positive probability limit.

The asymptotic bias α̃ is analogous to the own observation bias of the two-stage least squares
(2SLS) estimator in settings with many instruments. To see the connection, consider the special
case in which Y2i = ∑s wisXis = ∑s wisXs + ∑s wisψis, and each region specializes in a single sector,
wis = I{s(i) = s}, with w̌is = wis. Then we can write Y2i = Xs(i)+ψis(i), and X̂i =

1
ns

∑i I{s(i) = s}Y2i.
This setting is isomorphic to a many instrument setting, where the instruments are group indicators
I{s(i) = s}, individuals are assigned to groups, and the average treatment intensity depends on
group membership (for example, the endogenous variable may be the length of a sentence, the groups
are groups of individuals assigned to the same judge, and judges differ in their average sentencing
severity Xs). Then the first-stage predictor used by the 2SLS estimator is X̂i. Since X̂i puts weight
1/ns on the first-stage regression error ψis(i), this generates a bias in the 2SLS estimate, which persists
in large samples unless the weight 1/ns is negligible. In our setting, Proposition A.2 shows that the
bias is of the order 1

N ∑i,s
wisw̌is

ňs
≤ 1

N ∑i,s
w̌is
ňs

= S/N. Thus, a sufficient condition for consistency is
that the number of sectors grows more slowly than the number of regions. This is analogous to the
requirement for 2SLS consistency in the many instruments literature that the number of instruments
grows more slowly than the number of observations.

Proposition A.3. Suppose that Assumptions 2 and 4 hold with F0 = (Z, U, Y1(0), Y2(0), B, W, W̌), and
that Assumptions A.3 and A.4 hold. Suppose that VN and WN , defined in eq. (45), converge in probability to
non-random limits. Then

N√
∑S

s=1 n2
s

(α̂− − α) = N

(
0,

VN +WN( 1
N ∑i ẌiY2i

)2

)
+ op(1).

The additional term WN in the expression for the asymptotic variance of α̂−, which is absent if X
is observed, is of the order

1
∑s n2

s
∑

j

(
∑

s

nsw̌js

ňs

)2

+
1

∑s n2
s

∑
i,j,s,t

wisw̌js

ňs

wjtw̌it

ňt
� N + S

∑s n2
s
� S/N + (S/N)2,
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where the second inequality follows Assumption A.4(iv), and the last inequality follows by `1-`2

norm inequality
√

S ∑s n2
s ≥ ∑s ns, and we assume that ∑s wis is bounded away from zero so that

∑s ns is of the same order as N. Therefore, if the number of regions grows faster than the number
of sectors, the term will be asymptotically negligible. This is similar to the result in the many IV
literature that the usual standard error formula for the jackknife IV estimator is valid if the number
of instruments grows more slowly than the sample size. The term WN also has a similar structure to
the many-instrument term in the standard error for jackknife IV (see Chao et al. (2012)).

A.2.3 Proof of Proposition A.2

By the arguments in the proof of Proposition 3, for the first part of the proposition, it suffices to show
that ( ¨̂X− − Ẍ)′Y1/N = op(1) and ( ¨̂X− − Ẍ)′Y2/N = op(1), which in turn follows if we can show that
for Ai ∈ {Y1i, Y2i, Zi},

1
N ∑

i
(X̂i,− − Xi)Ai =

1
N ∑

j,i,s
I{j 6= i}

wisw̌js

ňs,−i
ψjs Ai = op(1), (A.18)

where ňs,−i = ∑N
j=1 w̌js− w̌is. By Assumption A.4(i), conditional on W, this term has mean zero. Since

by Assumption A.4(ii), I{j 6= j′} I{j 6= i} I{j′ 6= i′}EW,W̌ [wjsψjs Ai · wj′tψj′t Ai′ ] = 0 unless j = i′ and
j′ = i, the variance of this term is given by

1
N2 ∑

j,i,i′,s,t
I{j 6= i, i′}wiswi′t

EW,W̌ [w̌jsψjs Aiw̌jtψjt Ai′ ]

ňs,−iňt,−i′

+
1

N2 ∑
j,i,s,t

I{j 6= i}wiswjt
EW,W̌ [w̌jsψjsw̌itψit Ai Aj]

ňs,−iňt,−j
.

Now, by Assumption A.3(i), EW,W̌ [w̌jsψjs Aiw̌jtψjt Ai′ ] � w̌jsw̌jtEW,W̌ [Ai Ai′ ], which is bounded by a
constant times w̌jsw̌jt since the second moment of Ai is uniformly bounded by Assumption A.4(i).
Similarly, EW,W̌ [w̌jsψjsw̌itψit Ai Aj] is bounded by a constant times w̌jsw̌it. Therefore, the expression in
the preceding display is bounded by a constant times

1
N2 ∑

j,i,i′,s,t
wiswi′t

w̌jsw̌jt

ňs,−iňt,−i′
+

1
N2 ∑

j,i,s,t
wiswjt

w̌jsw̌it

ňs,−iňt,−j

≤ 1
N2 max

is

ň2
s

ň2
s,−i

∑
j

(
∑

s
ns

w̌js

ňs

)2

+ N

 � 1
N

,

where the first inequality follows since ∑j,i,s,t wiswjt
w̌jsw̌it
ňs ňt

≤ ∑j,i,s,t wiswjt
w̌js
ňs
≤ ∑j,s ns

w̌js
ňs

= N, and the
second inequality follows since Assumption A.4(iii) implies maxis ňs/ňs,−i = 1/(1−maxis w̌is/ňis) is

bounded, and since Assumption A.4(iv) implies that ∑j

(
∑s ns

w̌js
ňs

)2
� ∑j 1 = N. Therefore, eq. (A.18)

holds by Markov inequality and the dominated convergence theorem.
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To show the second part of the proposition, decompose

1
N ∑

i
Ai(X̂i − X̂i,−) =

1
N ∑

i,s

wisw̌is

ňs
ψis Ai −

1
N ∑

i,j,s
I{j 6= i} w̌is

ňs

wisw̌js

ňs,−i
ψjs Ai.

By arguments similar to those above, conditional on (W, W̌), the second term has mean zero and
variance that converges to zero. By Assumption A.4(i) and Jensen’s inequality, the mean of the
first term is of the order 1

N ∑i,s
wisw̌is

ňs
. Consequently, provided that ( ¨̂X′Y2/N)2 converges to a strictly

positive limit, we have

α̃− α =
Op(

1
N ∑i,s

wisw̌is
ňs

)

¨̂X′Y2/N
= Op

(
1
N ∑

i,s

wisw̌is

ňs

)
,

as required.

A.2.4 Proof of Proposition A.3

Since Nr1/2
N (α̂− − α) = r1/2

N
ˆ̈X′−Y1(0)/ ˆ̈X′−Y2/N = r1/2

N
ˆ̈X′−Y1(0) · (βFSN−1 ∑i,s w2

isσ
2
s )
−1(1 + oP(1)), it

suffices to show that
r1/2

N
ˆ̈X′−Y1(0) = N(0,VN +WN) + op(1).

By arguments as in the proof of Proposition 4,

r1/2
N

ˆ̈X′−Y1(0) = r1/2
N (WX̃ −Uγ + (X̂− − X))′(Z(δ− δ̌) + ε∆)

= r1/2
N (WX̃)′ε∆ + r1/2

N (X̂− − X)′(Z(δ− δ̌) + ε∆) + op(1)

= r1/2
N (WX̃ + (X̂− − X))′ε∆ + op(1),

where the last line follows since (X̂− − X)′Z/N = op(1) by eq. (A.18). Let C∆,i = CiY(0) − C′iUδ −
∑s wisZ

′
sδ and η∆,i = ηiY(0) − η′iUδ, so that ε∆,i = Yi1(0)− Z′i δ = η∆,i + C∆,i. Then we can decompose

r1/2
N (WX̃ + (X̂− − X))′ε∆ = r1/2

N

N+S

∑
j=1

Yj,

where

Yj =

∑N
i=1 ∑S

s=1 wisw̌js
I{j 6=i}ψjsC∆,i

ňs,−i
+ ∑

j−1
i=1 ∑S

s=1

[
wisw̌jsψjsη∆,i

ňs,−i
+

w̌iswjsη∆,jψis
ňs,−j

]
, j = 1, . . . , N,

X̃j−N ∑i wi,j−Nε∆,i, j = N + 1, . . . , N + S.

Let H denote the matrix with rows η′i , and define the σ-fields Gi = σ(W, W̌,Z, C, η1, . . . , , ηi, ψ1,
. . . , ψi), i = 1, . . . , N, Gi = σ(W, W̌,Z, C, H, Ψ,X1, . . . ,Xj−N), j = N + 1, . . . , N + S. Then, under
Assumption A.4(v), Yj is a martingale difference array with respect to the filtration Gj. Since by
the arguments in the proof of Proposition 4, r1+ν/4

N ∑N+S
j=N+1 EW,W̌ [Y2+ν/2

j ] → 0, and rN ∑N+S
j=N+1 E[Y2

j |
Gj−1]− VN = op(1), it suffices to show that r2

N ∑N
j=1 EW,W̌ [Y4

j ] → 0, and rN ∑N
j=1 E[Y2

j | Gj−1]−WN =

op(1). The result then follows by a martingale central limit theorem.
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Since ňs/ňs,−i is bounded, and ∑s wjs ≤ 1, and since ∑S
s=1

nsw̌js
ňs

is bounded by Assumption A.4(iv),
we have the bound

r2
N

N

∑
j=1

EW,W̌

(
j−1

∑
i=1

S

∑
s=1

wisw̌js
ψjsη∆,i

ňs,−i

)4

� r2
N ∑

j

(
j−1

∑
i=1

S

∑
s=1

wisw̌js

ňs

)4

≤ r2
N

N

∑
j=1

(
S

∑
s=1

nsw̌js

ňs

)4

≤ r2
N N,

which converges to zero by Assumption A.4(vii). By an analogous argument, the conditional expecta-

tion of r2
N ∑N

j=1

(
∑N

i=1 ∑S
s=1 wisw̌js

I{j 6=i}ψjsC∆,i
ňs,−i

)4
and of r2

N ∑N
j=1

(
∑

j−1
i=1 ∑S

s=1 w̌iswjs
η∆,jψis
ňs,−j

)4
is also bounded

by r2
N N, so that r2

N ∑N
j=1 EW,W̌ [Y4

j ]→ 0 by Cr-inequality.
It remains to show that the conditional variance rN ∑N

j=1 E[Y2
j | Gj−1] converges. Expanding the

expectation yields

rN

N

∑
j=1

E[Y2
j | Gj−1] = 2rN ∑

i,j,s,t

j−1

∑
i′

I{j 6= i}EG0 [w̌jsw̌jtψjsψjt]

ňs,−i

wiswi′tC∆,iη∆,i′

ňt,−i′

+ 2rN ∑
i,j,s,t

j−1

∑
i′=1

I{j 6= i}EG0 [w̌jswjtψjsη∆,j]

ňs,−i

wisw̌i′tC∆,iψi′t

ňt,−j

+ rN ∑
j,s,t

j−1

∑
i=1

j−1

∑
i′=1

I{i 6= i′}
EG0 [w̌jsw̌jtψjsψjt]

ňs,−i

wi′twisη∆,iη∆,i′

ňt,−i′

+ 2rN ∑
j,s,t

j−1

∑
i=1

j−1

∑
i′=1

I{i 6= i′}
EG0 [w̌jswjtψjsη∆,j]

ňs,−i

wisw̌i′tη∆,iψi′t

ňt,−j

rN ∑
j,s,t

j−1

∑
i=1

j−1

∑
i′=1

I{i 6= i′}
wjtwjsEG0 [η

2
∆,j]

ňs,−j

w̌i′tw̌isψi′tψis

ňt,−j

+ rN ∑
j,s,t

j−1

∑
i=1

wjtwjsEG0 [η∆,jη∆,j]

ňs,−j

w̌isw̌itψisψit

ňt,−j
+ 2rN ∑

j,s,t

j−1

∑
i=1

EG0 [w̌jswjtψjsη∆,j]

ňs,−i

wisw̌itη∆,iψit

ňt,−j

+ rN ∑
j,s,t

j−1

∑
i=1

EG0 [w̌jsw̌jtψjsψjt]

ňs,−i

wiswitη
2
∆,i

ňt,−i
+ rN

N

∑
j=1

EG0

(
N

∑
i=1

S

∑
s=1

I{j 6= i}wisw̌jsψjsC∆,i

ňs,−i

)2

.

Conditional on (W, W̌), the first five terms are mean zero. The variance of the first term is bounded
by a constant times

r2
N ∑

i′

(
∑

i,j,s,t

wiswi′tw̌jsw̌jt

ňsňt

)2

= r2
N ∑

i′

(
∑
j,t

wi′tw̌jt

ňt
∑

s

nsw̌js

ňs

)2

� r2
N N.

Similarly, the variance of the second, third, fourth, and fifth term can be shown to be bounded by a
constant times r2

N N. Next, the expectation conditional on (W, W̌) of the absolute value of the sixth
term is bounded by a constant times

rN ∑
i,j

(
∑

s

w̌iswjs

ňs

)(
∑

t

wjtw̌it

ňt

)
≤ rN ∑

i
max
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∑

j

(
∑

s

w̌iswjs

ňs

)(
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t

wjtw̌i′t

ňt

)
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= rN ∑
i

max
i′

∑
j

(
∑

s

w̌iswjs

ňs

)(
∑

t

wjtw̌i′t

ňt

)

Consequently, by Markov inequality,

rN

N

∑
j=1

E[Y2
j | Gj−1] =

rN ∑
j,s,t

j−1

∑
i=1

wjtwjsEG0 [η∆,jη∆,j]

ňs,−j

w̌isw̌itψisψit

ňt,−j
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j,s,t

j−1

∑
i=1

EG0 [w̌jsw̌jtψjsψjt]
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ňt,−i
+ rN

N

∑
j=1

EG0

(
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i=1

S

∑
s=1

I{j 6= i}wisw̌jsψjsC∆,i

ňs,−i

)2

+ op(1). (A.19)

Similarly, expanding the expression for WN yields

WN =
1

rN
∑

i,i′,j,s,t
I{j 6= i, i′} I{i 6= i′}

w̌jsw̌jtψjtψjs

ňs,−i
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1
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ňs,−i

)2

.

Conditional on (W, W̌), the first five terms are mean zero. The variance of the first term is bounded
by a constant times

1
r2

N
∑
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(
∑

i,j,s,t

w̌jsw̌jt
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wiswi′t

ňt
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Similarly, the variance of the second, third, fourth and fifth term can also be shown to be bounded by
a constant times Nr2

N . Therefore by Markov inequality, in view of eq. (A.19),

rN

N

∑
j=1

E[Y2
j | Gj−1]−WN = rN ∑

j,s,t

j−1

∑
i=1

wjtwjsEG0([η
2
∆,j]− η2

∆,j)

ňs,−j

w̌isw̌itψisψit

ňt,−j
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+ 2rN ∑
j,s,t

j−1

∑
i=1

w̌jswjt(EG0 [ψjsη∆,j]− ψjsη∆,j)

ňs,−i

wisw̌itη∆,iψit

ňt,−j

+ rN ∑
j,s,t

j−1

∑
i=1

w̌jsw̌jt(EG0 [ψjsψjt]− ψjsψjt)

ňs,−i

wiswitη
2
∆,i

ňt,−i

+ rN

N

∑
j=1

∑
i,i′,s,t

I{j 6= i, i′}wisC∆,iwi′tC∆,i′

ňs,−i

w̌jtw̌js(EG0 [ψjsψjt]− ψjsψjt)

ňt,−i′
+ op(1).

All terms in this expression have mean zero conditional on W, and the variance of each term can be
shown to be bounded by a constant times rN N, so that rN ∑N

j=1 E[Y2
j | Gj−1]−WN = op(1) as required.

Appendix B Stylized economic model: baseline microfoundation

Appendices B.1 and B.2 provide a microfoundation for the stylized economic model presented in
Section 3.1. In Appendix B.3, we use this microfoundation to derive expressions analogous to those in
eqs. (8) and (9) in Section 3.2. In Appendix B.4, we exploit again our microfoundation and outline a set
of restrictions on the model fundamentals such our main identification restriction, Assumption 1(ii)
in Section 4.1, holds.

B.1 Environment

We consider a model with multiple sectors s = 1, . . . , S and multiple regions i, j = 1, . . . , N. Regions
are partitioned into countries indexed by c = 1, . . . , C, and we denote the set of regions located in
a country c by Nc. Region i has a population of Mi individuals who cannot move across regions.
Each individual belongs to a different group, g = 1, . . . , G. The share of group g in the population of
region i is nig.

Production. Each sector s in region i has a representative firm that produces a differentiated good
using only local labor. For simplicity, we assume that workers of different groups are perfect substi-
tutes in production. The quantity Qis produced by sector s in region i is produced using labor with
productivity Ais; i.e.

Qis = AisLis, (B.1)

where Lis denotes the number of workers (irrespective of their group) employed by the representative
firm in this sector-region pair. Regions thus differ in terms of their sector-specific productivity Ais.

Preferences for consumption goods. Every individual has identical nested preferences over the
sector- and region-specific differentiated goods. Specifically, we assume that individuals have Cobb-
Douglas preferences over sectoral composite goods,

Cj =
S

∏
s=1

(
Cjs
)γs , (B.2)
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where Cj is the utility level of a worker located in region j that obtains utility Cjs from consuming
goods in sector s, and Cjs is a CES aggregator of the sector s goods produced in different regions:

Cjs =

[
N

∑
i=1

(
cijs
) σs−1

σs

] σs
σs−1

, σs ∈ (1, ∞), (B.3)

where cijs denotes the consumption in region j of the sector s good produced in region i. This
preference structure has been previously used in Armington (1969), Anderson (1979) and multiple
papers since (e.g. Anderson and van Wincoop, 2003; Arkolakis, Costinot and Rodríguez-Clare, 2012).

Preferences for sectors and non-employment. Individuals of every group g have the choice of
being employed in one of the sectors s = 1, . . . , S of the economy or opting for non-employment,
which we index as s = 0. Conditional on being employed, all workers of group g have identical
homogeneous preferences over their sector of employment, but workers differ in their preferences for
non-employment. Specifically, conditional on obtaining utility Cj from the consumption of goods, the
utility of a worker ι of group g living in region j is

U(ι | Cj) =

u(ι)Cj if employed in any sector s = 1, . . . , S,

Cj if not employed (s = 0).
(B.4)

We assume that each individual ι belonging to group g and living in a region located in country c
independently draws u(ι) from a Pareto distribution with scale parameter νcg and shape parameter
φ, so that the cumulative distribution function of u(ι) is given by

Fu
ig(u) = 1−

(
u

υcg

)−φ

, u ≥ υcg, φ > 1. (B.5)

If a worker living in region j chooses to be employed, she will earn wage ωj. In equilibrium, wages
are equalized across sectors and groups because (i) firms are indifferent between workers of different
groups, (ii) workers are indifferent about the sector of employment, and (iii) workers are freely mobile
across sectors. If a worker chooses to not be employed, she receives a benefit bj. We denote the total
number of employed workers of group g in region j by Ljg, the total employment in region j as
Lj = ∑G

g=1 Ljg, and the employment rate in j as Ej ≡ Lj/Mj. 3

Market structure. Goods and labor markets are perfectly competitive.

Trade costs. We assume that there are no trade costs, which implies that the equilibrium price of
the good produced in a region is the same in every other region; i.e. pijs = pis for j = 1, . . . , N. Thus,

3We assume that benefits are paid by a national government that imposes a flat tax χc on all income earned in country
c. The budget constraint of the government is thus ∑j∈Nc

{χc(ωjEj + bj(1− Ej))Mj} = ∑j∈Nc
{bj(1− Ej)Mj}. Alternatively,

we could think of the option s = 0 as home production and assume that workers that opt for home production in region j
obtain bj units of the final good, which they consume. This alternative model is isomorphic to that in the main text.
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for every sector s there is a composite sectoral good that has identical price Ps in all regions; i.e.

(Ps)
1−σs =

S

∑
s=1

(pis)
1−σs , (B.6)

and the final good’s price is P = ∏S
s=1(Ps)γs .

B.2 Equilibrium

We now characterize the equilibrium wage ωj and total employment Lj of all regions j = 1, . . . , N.

Consumption. We first solve the expenditure minimization problem of an individual residing in
region j. Given the sector-level utility in eq. (B.3) and the condition that pijs = pis for j = 1, . . . , N, all
regions j have identical spending shares xis on goods from region i, given by

xis =

(
pis

Ps

)1−σs

. (B.7)

Labor supply. Every worker maximizes the utility function in eq. (B.4) in order to decide whether
to be employed. Consequently, conditional on the wage ωi and the non-employment benefit bi, the
total employment of individuals of group g in region i is Lig = nig Mi Pr [ui(ι)ωi > bi]. It therefore
follows from eq. (B.5) that Li = ∑G

g=1 Ljg is

Li = ω
φ
i vi (B.8)

such that

vi = νi

G

∑
g=1

nigνcg (B.9)

with νi ≡ Mib
−φ
i , and νcg ≡ υ

φ
cg.

Producer’s problem. In perfect competition, firms must earn zero profits and, therefore,

pis =
ωi

Ais
. (B.10)

Goods market clearing. Given that labor is the only factor of production and firms earn no profits,
the income of all individuals living in region i is Wi ≡ ∑s ωiLis, and world income is W ≡ ∑i Wi.
We normalize world income to one, W = 1. Given preferences in eq. (B.2), all individuals spend a
share γs of their income on sector s, so that world demand for the differentiated good s produced in
region i is xisγs. Goods market clearing requires world demand for good s produced in region i to
equal total revenue of the representative firm operating in sector s in region i, ωiLis. Thus, using the
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expression in eq. (B.7), we obtain

Lis = (ωi)
−σs (AisPs)

σs−1 γs. (B.11)

Note that this labor demand equation is analogous to that in eq. (2) of Section 3, with the region- and
sector-specific demand shifter Dis defined as Dis = (AisPs)

σs−1 γs.
If, without loss of generality, we split the region- and sector-specific productivity Ais into a country

and sector-specific component Acs and a residual Ãis,

Ais = Acs Ãis. (B.12)

Labor market clearing. Given the sector- and region-specific labor demand in eq. (B.11), total labor
demand in region i is

Li =
S

∑
s=1

(ωi)
−σs (AisPs)

σs−1 γs. (B.13)

Labor market clearing requires labor supply in eq. (B.8) to equal labor demand in eq. (B.13):

vi(ωi)
φ =

S

∑
s=1

(ωi)
−σs (AisPs)

σs−1 γs. (B.14)

Equilibrium. Given technology parameters {Acs}C,S
c=1,s=1 and {Ãis}N,S

i=1,s=1, preference parameters
{(σs, γs)}S

s=1, labor supply parameters φ, {νi}N
i=1, {nig}N,G

i=1,g=1 and {νcg}C,G
c=1,g=1, and normalizing world

income to equal 1, W = 1, we can use eqs. (B.6), (B.9), (B.10), (B.12) and (B.14) to solve for the equi-
librium wage in every world region, {ωi}N

i=1, the equilibrium price of every sector-region specific
good {pis}N,S

i=1,s=1, and the sectoral price indices {Ps}S
s=1. Given these equilibrium wages and sectoral

price indices, we can use eq. (B.13) to solve for the equilibrium level of employment in every region,
{Li}N

i=1.

B.3 Labor market impact of sectoral shocks: equilibrium relationships

We assume that, in every period, the model described in Appendices B.1 and B.2 characterizes the
labor market equilibrium in every region i = 1, . . . , N. Across periods, we assume that the parameters
{σs}S

s=1, {nig}N,G
i=1,g=1, and φ are fixed, and that all changes in the labor market outcomes {ωi, Li}N

i=1

are generated by changes in technology {Acs}C,S
c=1,s=1 and {Ãis}N,S

i=1,s=1, sectoral preferences {γs}S
s=1,

and labor supply parameters {νi}N
i=1 and {νcg}C,G

c=1,g=1.
We focus here on understanding how changes in these exogenous parameters affect the labor

market equilibrium in all regions located in a given country c; i.e. all regions belonging to the set Nc.
In our model, the sectoral prices mediate the impact of all foreign technology and labor supply

shocks on the labor market equilibrium of every region in country c; i.e. the changes in {(ωi, Li)}i∈Nc

depend on the changes in {Ãis}S
s=1,i/∈Nc

, {νi}i/∈Nc , and {νc′g}G
g=1,c′ 6=c only through changes in {Ps}S

s=1.
Therefore, we can write the changes in wages and employment in every region i of the population of
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interest Nc as a function of the changes in the sectoral prices, and the changes in the productivity and
labor supply shocks in region i.

Isomorphism. As in Section 3.2, we use ẑ = log(zt/z0) to denote log-changes in any given variable
z between some initial period t = 0 and any other period t. Up to a first-order approximation around
the initial equilibrium, eqs. (B.13) and (B.14) imply that

L̂i =
S

∑
s=1

l0
is

[
θisP̂s + λi((σs − 1)Âcs + γ̂s) + λi((σs − 1) ˆ̃Ais)

]
+ (1− λi)(

G

∑
g=1

w̃igν̂cg + ν̂i), (B.15)

with l0
is ≡ L0

is/L0
i , w̃ig ≡ L0

ig/L0
i , θis = (σs − 1)λi and λi ≡ φ

[
φ + ∑s l0

isσs
]−1. Combining eqs. (B.8),

(B.9) and (B.15), we can similarly obtain

ω̂i =
S

∑
s=1

l0
is

[
θisP̂s + λi((σs − 1)Âcs + γ̂s) + λi((σs − 1) ˆ̃Ais)

]
− φ−1λi(

G

∑
g=1

w̃igν̂cg + ν̂i). (B.16)

Given our emphasis on understanding the changes in labor market outcomes for regions located in
the same country, all regions in the population of interest will share the same value of Acs for every
sector s, and the same value of ν̂cg for every labor group g; thus, we can simplify the notation by
writing Âcs = Âs and ν̂cg = ν̂g for all s and g, respectively. Given this notational simplification and
the following equivalences

χs = Ps, (B.17)

µs = (As)
σs−1γs, (B.18)

ηis = (Ãis)
σs−1, (B.19)

we can easily see that the expressions in eqs. (B.15) and (B.16) are identical to those in eqs. (8) and (9)
in Section 3.2, respectively. Consequently, the environment described in Appendices B.1 and B.2 does
indeed provide a microfoundation for the equilibrium relationships in eqs. (8) and (9).

B.4 Identification of labor market impact of sectoral prices

As the mapping in eq. (B.17) illustrates, we may think of the changes in sectoral prices {P̂s}S
s=1 as our

sectoral shocks of interest. Given data on changes in a labor market outcome (e.g. changes in the em-
ployment rate L̂i) for all units of a population of interest formed by all regions of a particular country
c, and data on the changes in sectoral prices {P̂s}S

s=1, Assumption 1(ii) in Section 4.1 indicates that
identifying the coefficient in front of a shift-share term that aggregates these sectoral price changes
requires that these are as good as randomly allocated.

In the context of the equilibrium relationship in eq. (B.15), the sectoral price changes {P̂s}S
s=1 will

satisfy Assumption 1(ii) if they are mean independent of: country c-specific sectoral productivity
changes {Âcs}S

s=1; country c-specific labor-group supply shocks {ν̂cg}G
g=1; region and sector-specific

productivity shocks, for all sectors and all regions in country c, { ˆ̃Ais}S
s=1,i∈Nc

; region-specific labor
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supply shocks, for all regions in country c, {ν̂i}i∈Nc . This mean independence restriction will hold if
the following two conditions are satisfied.

First, country c is “small”; i.e. all labor demand and labor supply shocks in country c have no
impact on the changes in sectoral prices {P̂s}S

s=1.
Second, labor demand and labor supply shocks affecting any region i in the country or population

of interest c are mean independent of any labor demand and labor supply shock affecting any other
region of the world economy that is “large” (i.e. any other region whose labor demand and supply
shocks have an impact on the changes in sectoral prices).

In summary, if the vector of shifters of interest {Xs}S
s=1 corresponds to the sectoral price changes

{P̂s}S
s=1, the researcher is interested on the impact of these shifters on a collection of “small” regions,

and labor market shocks in these “small” regions are independent of the corresponding shocks in
any “large” region, then the identification condition in Assumption 1(ii) is satisfied.

B.4.1 Impact of labor demand and supply shocks on sector-specific price indices

In general equilibrium, the price change in every sector s, P̂s, depends on the shocks Acs, ˆ̃Ais, γ̂s, ν̂i,
and νcg of all sectors, labor groups, and regions in the world economy. Specifically, the change in the
sector-specific price index is

P̂s = −∑
s′

αss′
N

∑
j=1

x0
js′(Âjs′ + λ̃jv̂j − λ̃j ∑

k
l0
jk[γ̂k + (σk − 1)Âjk]), (B.20)

where λ̃j ≡
[
φ + ∑s l0

isσs
]−1, {αss′}S,S

s=1,s′=1 are positive constants, and x0
js is the share of the world

production in sector s that corresponds to region j in the initial equilibrium; i.e. x0
js ≡ X0

js/ ∑N
i=1 X0

is.
Imposing that all regions in a country c verify that x0

js ≈ 0 for all j ∈ Nc and for s = 1, . . . , S, we can
rewrite the change in the sector-specific price index as

P̂s = −∑
s′

αss′ ∑
j/∈Nc

x0
js′(Âjs′ + λ̃jv̂j − λ̃j ∑

k
l0
jk[γ̂k + (σk − 1)Âjk]). (B.21)

In this case, P̂s does not depend on the labor supply shocks and technology shocks in any region
j included in country c; i.e. P̂s depends neither on {Âcs}S

s=1, nor {ν̂cg}G
g=1, nor { ˆ̃Ais}S

s=1,i∈Nc
, nor

{ν̂i}i∈Nc .

Proof of eq. (B.20). Equations (B.7) and (B.14) imply that

P̂s −∑
k

α̃skP̂k = ∑
j

x0
js(λ̃j ∑

k
l0
jk[γ̂k + (σk − 1)Âjk]− λ̃jv̂j − Âjs),

where α̃sk ≡ ∑j x0
jsl

0
jkλ̃j(σk − 1). Let us use bold variables to denote vectors, y ≡ [ys]s, and bar bold

variables to denote matrices, ā ≡ [ask]s,k. Thus, we can rewrite the equation above in matrix form as

(I − ᾱ) P̂ = η̂,
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with η̂s ≡ ∑j x0
js

(
λ̃j ∑k l0

jk

[
γ̂k + (σk − 1)Âjk

]
− λ̃jv̂j − Âjs

)
. In order to obtain eq. (B.20), it is sufficient

to show that (I − ᾱ) is a nonsingular m-matrix and, therefore, it has a positive inverse matrix. To
establish this result, notice first that α̃sk ∈ (0, 1) for every s and k; to show this, it is sufficient to show
that, for every j, k, and s, it holds that 0 < x0

js < 1 and

0 < l0
jkλ̃j(σk − 1) =

l0
jk(σk − 1)

φ + ∑k l0
jkσk

<
l0
jkσk

φ + ∑k l0
jkσk

< 1,

where the last two inequalities arise from σk > 1 and φ > 0.
Finally, to show that (I − ᾱ) is nonsingular, it is sufficient to establish that it is diagonal dominant:

|1− α̃sk| −∑
k 6=s
|α̃sk| = 1−∑

j
x0

js

l0
js(σs − 1)

φ + ∑k l0
jkσk
−∑

k 6=s
∑

j
x0

js

l0
jk(σk − 1)

φ + ∑k l0
jkσk

,

= ∑
j

x0
js

(
1−

∑k l0
jk(σk − 1)

φ + ∑k l0
jkσk

)

= ∑
j

x0
js

(
φ + 1

φ + ∑k l0
jkσk

)
> 0. �

Appendix C Stylized economic model: Extensions

In Appendices C.1 and C.2, we provide alternative microfoundations for the equilibrium relationship
in eq. (8). Finally, in Appendix C.3, we incorporate migration into the baseline microfoundation
described in Appendix B.

C.1 Sector-specific factors of production

We extend here the model described in Appendix B to incorporate other factors of production. In
particular, we introduce a sector-specific factor, as in Jones (1971) and, more recently, Kovak (2013).

C.1.1 Environment

The only difference with respect to the setting described in Appendix B.1 is that the production
function in eq. (B.1) is substituted for a Cobb-Douglas production function that combines labor and
capital inputs:

Qis = Ais (Lis)
1−θs (Kis)

θs .

We assume that capital is a sector-specific factor of production (sector-s capital has no use in any
other sector) and that, for every sector, each region has an endowment of sector-specific capital K̄is.

C.1.2 Equilibrium

Consumption. The consumer’s problem is identical to that in Appendix B.2.
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Labor supply. The labor supply decision is identical to that in Appendix B.2.

Producer’s problem. Conditional on the region-i equilibrium wage ωi and rental rate of sector-s
capital Ris, the cost minimization problem of the sector-s region-i representative firm and the market
clearing condition for sector-s region-i specific capital imply that

1− αs

αs

K̄is

Lis
=

ωi

Ris
.

Conditional on the sector-s region-i final good price pis, the firm’s zero profit condition implies that

pis Aisα̃s = (ωi)
1−θis (Ris)

θis ,

where α̃s ≡ (αs)
αs (1− αs)

1−αs . The combination of these two conditions yields the demand for labor
in sector s and region i,

Lis =
1− αs

αs
K̄is

(
pis Aisα̃s

ωi

) 1
αs

, (C.1)

and the total sales of the sector-s region-i good as a function of the output price pis,

Xis =
1

1− αs
ωiLis =

K̄is

αs
(pis Aisα̃s)

1
αs (ωi)

1− 1
αs . (C.2)

Goods market clearing. Applying the same normalization as in Appendix B.1, W = 1, the total
expenditure in the sector-s region-i good is equal to xisγs, with xis defined in eq. (B.7) as a function
of the equilibrium prices pis. Equating xisγs and eq. (C.2), we can solve for the equilibrium value of
pis as a function of the sector-s price index Ps:

pis =

[
K̄is

αs
(Aisα̃s)

1
αs (ωi)

1− 1
αs
(Ps)1−σs

γs

]−θisηis

, (C.3)

where δs ≡ (1 + αs(σs − 1))−1 ∈ (0, 1). Additionally, combining eqs. (C.1) and (C.3), we obtain an
expression for labor demand in sector-s region-i as a function of the equilibrium wage ωi, the sector-s
price Ps and other exogenous determinants:

Lis = κisγ
δs
s (AisPs)

(σs−1)δs (ωi)
−σsδs , (C.4)

where κis ≡ (1− αs)(K̄isα̃
1

αs
s /αs)1−δs . Note that this labor demand equation is analogous to that in

eq. (2), with the region- and sector-specific demand shifter Dis defined as

Dis = κis(γs)
δs (AisPs)

(σs−1)δs ,

and with the labor demand elasticity now defined as σsδs. Note that the labor demand elasticity in
eq. (2) is identical to that in eq. (C.4) in the specific case in which δs = 1, which will hold when
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αs = 0. Without loss of generality, we split the region- and sector-specific productivity Ais according
to eq. (B.12).

Labor market clearing. Given the sector- and region-specific labor demand in eq. (C.4), total labor
demand in region i is

Li =
S

∑
s=1

κisγ
δs
s (AisPs)

(σs−1)δs (ωi)
−σsδs . (C.5)

Labor market clearing requires labor supply in eq. (B.8) to equal labor demand in eq. (C.5):

vi(ωi)
φ =

S

∑
s=1

κisγ
δis
s (AisPs)

(σs−1)δis (ωi)
−σsδis , j = 1, . . . , N. (C.6)

Equilibrium. Given the technology parameters {αs}S
s=1, {Acs}C,S

c=1,s=1 and {Ãis}N,S
i=1,s=1, sector- and

region-specific capital inputs {K̄is}N,S
i=1,s=1, preference parameters {(σs, γs)}S

s=1, labor supply parame-
ters φ, {νi}N

i=1, {nig}N,G
i=1,g=1 and {νcg}C,G

c=1,g=1, and normalizing world income to equal 1, W = 1, we can
use eqs. (B.6), (B.9), (B.12), (C.3) and (C.6) to solve for the equilibrium wage in every world region,
{ωi}N

i=1, the equilibrium price of every sector-region specific good {pis}N,S
i=1,s=1, and the sectoral price

indices {Ps}S
s=1. Given these equilibrium wages and sectoral price indices, we can use eq. (C.5) to

solve for the equilibrium level of employment in every region, {Li}N
i=1.

C.1.3 Labor market impact of sectoral shocks

We assume that, in every period, the model described in Appendices C.1.1 and C.1.2 characterizes
the labor market equilibrium in every region i = 1, . . . , N. Across periods, we assume that the param-
eters {(σs, αs)}S

s=1, {nig}N,G
i=1,g=1, and φ are fixed, and that all changes in the labor market outcomes

{ωi, Li}N
i=1 are generated by changes in technology {Acs}C,S

c=1,s=1 and {Ãis}N,S
i=1,s=1, sectoral preferences

{γs}S
s=1, and labor supply parameters {νi}N

i=1 and {νcg}C,G
c=1,g=1. We focus here on understanding how

changes in these exogenous parameters affect the labor market equilibrium in all regions located in a
given country c; i.e. all regions belonging to the set Nc.

Isomorphism. Following steps analogous to those in Appendix B.3, we can show that eqs. (C.5)
and (C.6) imply that

L̂i =
S

∑
s=1

l0
is

[
θisP̂s + λi((σs − 1)δs Âcs + δsγ̂s) + λi((σs − 1)δs

ˆ̃Ais + κ̂is)
]

+ (1− λi) (
G

∑
g=1

w̃igν̂cg + ν̂i), (C.7)

with θis = (σs − 1)δsλi and λi ≡ φ(φ + ∑s l0
isσsδs)−1. As in Appendix B.3, given our emphasis on

understanding the changes in labor market outcomes for regions located in the same country, all
regions in the population of interest will share the same value of Acs for every sector s, and the
same value of ν̂cg for every labor group g; thus, we can simplify the notation by writing Âcs = Âs
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and ν̂cg = ν̂g for all s and g, respectively. Given this notational simplification and the following
equivalences

χs = Ps, (C.8)

µs = (As)
(σs−1)δs(γs)

δs , (C.9)

ηis = κis(Ãis)
(σs−1)δs . (C.10)

we can easily see that the expression in eq. (C.7) is identical to that in eq. (8) in Section 3.2. Conse-
quently, the environment described in Appendices C.1.1 and C.1.2 does indeed provide a microfoun-
dation for the equilibrium relationship in eq. (8).

C.2 Sector-specific preferences

We extend the model described in Appendix B to allow workers to have idiosyncratic preferences for
being employed in the different s = 1, . . . , S sectors and for being non-employed s = 0. In order to
maintain the analysis simple, we assume here that there is a single worker group G = 1.

C.2.1 Environment

The only difference with respect to the setting described in Appendix B.1 is that the utility function in
eqs. (B.4) and (B.5) is substituted by an alternative utility function that features workers idiosyncratic
preferences for being employed in the different s = 1, . . . , S sectors and for being non-employed s = 0.
Specifically, we assume here that, conditional on obtaining utility Ci from the consumption of goods,
the utility of a worker ι living in region i is

Uis = us(ι)Ci, (C.11)

and, to simplify the analysis, we assume that us(ι) is i.i.d. across individuals ι and sectors s with a
Fréchet cumulative distribution function; i.e. for every region i = 1, . . . , N and sector s = 0, . . . , S,

Fu(u) = e−visu−φ
, φ > 1. (C.12)

This modeling of workers’ sorting patterns across sectors is similar to that in Galle, Rodríguez-Clare
and Yi (2018) and Burstein, Morales and Vogel (2019). See Adão (2016) for a framework that relaxes
the distributional assumption in eq. (C.12). Given that individuals have heterogeneous preferences
for employment in different sectors, workers are no longer indifferent across sectors and, thus, equi-
librium wages {ωis}S

s=1 may vary across sectors within a region i. As in the main text, we assume that
workers that choose the non-employment sector s = 0 in region i receive non-employment benefits bi.

C.2.2 Equilibrium

Consumption. The consumer’s problem is identical to that in Appendix B.2.
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Labor supply. Conditional on the equilibrium wages {ωis}S
s=1, the labor supply in sector s = 1, . . . , S

of region i is

Lis = Mi
vis(ωis)

φ

Φi
with Φi ≡ vi0bφ

i +
S

∑
s=1

vis(ωis)
φ, (C.13)

and the labor supply in the non-employment sector s = 0 is

Li0 = Mi
vi0(bi)

φ

Φi
. (C.14)

Producer’s problem. In perfect competition, firms must earn zero profits and, therefore,

pis =
ωis

Ais
. (C.15)

Goods market clearing. The conditions determining the equilibrium in the good’s market and,
consequently, the region- and sector-specific labor demand equations are identical to those in Ap-
pendix B.2.

Labor market clearing. Combining the region- and sector-specific labor supply in eq. (C.13) with
the region- and sector-specific labor demand in eq. (B.11), and imposing the normalization W = 1,
the labor market clearing condition in every sector s = 1, . . . , S and region i = 1, . . . , N is

Mi
vis(ωis)

φ

Φi
= (ωis)

−σs (AisPs)
σs−1 γs. (C.16)

Equilibrium. Given productivity parameters {Acs}C,S
c=1,s=1 and {Ãis}N,S

i=1,s=1, preference parameters
{σs, γs}S

s=1, labor supply parameters φ and {vis}N,S
i=1,s=0, and normalizing world income to equal 1,

W = 1, we can use eqs. (B.6), (B.12), (C.15) and (C.16) to solve for the equilibrium wage in every sector
and region, {ωis}N,S

i=1,s=1, the equilibrium price of every sector- and region-specific good {pis}N,S
i=1,s=1,

and the sectoral price indices {Ps}S
s=1. Given these equilibrium wages and sectoral price indices, we

can use eqs. (C.13) and (C.14) to solve for the equilibrium level of employment in every sector and
region, {Lis}N,S

i=1,s=0.

C.2.3 Labor market impact of sectoral shocks

We assume that, in every period, the model described in Appendices C.2.1 and C.2.2 characterizes the
labor market equilibrium in every region i = 1, . . . , N. Across periods, we assume that the parameters
{σs}S

s=1, and φ are fixed, and that all changes in the labor market outcomes {ωi, Li}N
i=1 are generated

by changes in technology {Acs}C,S
c=1,s=1 and {Ãis}N,S

i=1,s=1, sectoral preferences {γs}S
s=1, and labor supply

parameters {vis}N,S
i=1,s=1. We focus here on understanding how changes in these exogenous parameters

affect the labor market equilibrium in all regions located in a given country c; i.e. all regions belonging
to the set Nc.
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Isomorphism. Given that the total population of a region, Mi, is fixed across time periods, it holds
that, to a first-order approximation, l0

i0 L̂i0 + (1− l0
i0)L̂i = 0, where L̂i denotes the log-change in total

population in region i. Therefore, the change in total employment in region i may be written as

L̂i = −
l0
i0

1− l0
i0

L̂i0

=
l0
i0

1− l0
i0
(Φ̂i − φb̂i − v̂i0)

=
l0
i0

1− l0
i0
(

S

∑
s=0

l0
isv̂is + φl0

i0b̂i + φ
S

∑
s=1

l0
isω̂is − φb̂i − v̂i0). (C.17)

From eq. (C.16), we can express the changes in wages in every sector and every region of country c
as

ω̂is = (φ + σs)
−1 (Φ̂i + γ̂s + (σs − 1)(Âis + P̂s)− v̂is

)
. (C.18)

Combining eqs. (C.17) and (C.18), we can re-express the change in total employment in region i as

L̂i =
S

∑
s=1

l0
is[θisP̂s + λi(φ + σs)

−1((σs − 1)Âcs + γ̂s) + λi(φ + σs)
−1(σs − 1) ˆ̃Ais] + ν̂i, (C.19)

where ν̂i = l0
i0(1− l0

i0)
−1(v̂i− φb̂i− v̂i0), v̂i = (1− φ ∑S

s=1 l0
is(φ+ σs)−1)−1(φl0

i0b̂i + l0
i0v̂i0 +∑S

s=1 l0
isσs(φ+

σs)−1v̂is), βis = (σs − 1)(φ + σs)−1λi, and λi = φl0
i0(1− l0

i0)
−1(1− φ ∑S

s=1 l0
is(φ + σs)−1)−1.

As in Appendix B.3, given our emphasis on understanding the changes in labor market outcomes
for regions located in the same country, all regions in the population of interest will share the same
value of Acs for every sector s; thus, we can simplify the notation by writing Âcs = Âs for all s. Given
this notational simplification, the following equivalences

χs = Ps,

µs = (As)
(σs−1)(φ+σs)−1

(γs)
(φ+σs)−1

,

ηis = (Ãis)
(σs−1)(φ+σs)−1

,

and the adjustment of the expression for λi and ν̂i, the expression in eq. (C.19) is identical to that in
eq. (8) in Section 3.2. Consequently, the environment described in Appendices C.2.1 and C.2.2 does
indeed provide a microfoundation for the equilibrium relationship in eq. (8).

C.3 Allowing for regional migration

We extend here the baseline environment described in Appendix B.1 to allow for mobility of individ-
uals across regions within a single country c. As in Appendix C.2, to maintain the analysis simple,
we focus on the special case with a single worker group, G = 1.
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C.3.1 Environment

We still assume that the number of individuals living in each country c is fixed and equal to Mc. The
only difference with respect to the setting described in Appendix B.1 is that the mass of individuals
living in a region i, Mi, is no longer fixed. We assume that, before the realization of the shock u(ι)
in eq. (B.4), individuals must decide their preferred region of residence taking into account their
idiosyncratic preferences for local amenities in each region. Specifically, we assume that the utility to
individual ι of residing in region i is

U(ι) = ũi(ι) (Ūi(ωi/P, bi/P)− 1) (C.20)

where Ūi(ωi/P, bi/P) is the expected utility of residing in region i, as determined by eqs. (B.4)
and (B.5), and ũi(ι) is the idiosyncratic amenity level of region i for individual ι. For simplicity,
we assume that individuals draw their idiosyncratic amenity level independently (across individuals
and regions) from a Type I extreme value distribution:

ũi(ι) ∼ Fũ(ũ) = e−ũ−φ̃
, φ̃ > 0. (C.21)

A similar modeling of labor mobility has been previously imposed, among others, in Allen and
Arkolakis (2016), Redding (2016), Allen, Arkolakis and Takahashi (2018), and Fajgelbaum et al. (2019),
among others. See Redding and Rossi-Hansberg (2017) for additional references.

C.3.2 Equilibrium

Consumption. The consumer’s problem is identical to that in Appendix B.2.

Labor supply. To characterize the labor supply in region i, we first compute Ūi(wi/P, bi/P):

Ūi(ωi/P, bi/P) =
ωi

P

∫ ∞

bi/ωi

udFu(u) +
bi

P

∫ bi/ωi

νi

dFu(u),

= φ
ωi

P

∫ ∞

bi/ωi

( u
νi

)−φ
du +

bi

P

∫ bi/ωi

νi

φ

νi

( u
νi

)−φ−1
du,

=
φ

φ− 1
ωi

P
ν

φ
i

(ωi

bi

)φ−1
+

bi

P

(
1− ν

φ
i

(ωi

bi

)φ)
,

=
bi

P

(
1 +

1
φ− 1

ν
φ
i

(ωi

bi

)φ)
.

To simplify the analysis, we assume that the unemployment benefit is identical in all regions and
equal to the price index P; i.e. bi = P for all i ∈ N. Defining vi ≡ (νi/bi)

φ as in eq. (B.8), the
assumption that bi = P for all i ∈ N implies that vi ≡ νi/P and, thus,

Ūi(ωi/P, bi/P) = 1 +
1

φ− 1
vi

(ωi

P

)φ
,

36



and the share of national population in region i is

Mi = Pr
[
ũi(ι) (Ūi(ωi/P, bi/P)− 1) > ũj(ι)

(
Ūj(ωj/P, bj/P)− 1

)
, ∀j ∈ Nc

]
= Pr

[
ũi(ι)vi(ωi)

φ > ũj(ι)vj(ωj)
φ, ∀j ∈ Nc

]
.

Given the distributional assumption in eq. (C.21), it holds that

Mi =
vi(ωi)

φm

Φc
Mc such that Φc = ∑

j∈Nc

vj(ωj)
φm and φm ≡ φ̃φ. (C.22)

Given the value of Mi, total employment in region i is determined as in eq. (B.8). Therefore, the total
labor supply in region i is

Li =
vi(ωi)

φm

∑j∈Nc
vj(ωj)φm

Mcvi(ωi)
φ. (C.23)

Producer’s problem. The producer’s problem is identical to that in Appendix B.2.

Goods market clearing. The conditions determining the equilibrium in the good’s market and,
consequently, the region- and sector-specific labor demand equations are identical to those in Ap-
pendix B.2.

Labor market clearing. Combining the region- and sector-specific labor supply in eq. (C.23) with
the aggregate labor demand in eq. (B.13), and imposing the normalization W = 1, the labor market
clearing condition in every region i ∈ Nc is

vi(ωi)
φm

∑j∈Nc
vj(ωj)φm

Mcvi(ωi)
φ = ∑

s
(ωi)

−σs (AisPs)
σs−1 γs, (C.24)

or, equivalently,
(Φc)

−1Mcvi(ωi)
φ+φm = ∑

s
(ωi)

−σs (AisPs)
σs−1 γs, (C.25)

for every region i in every country c.

Equilibrium. Given productivity parameters {Acs}C,S
c=1,s=1 and {Ãis}N,S

i=1,s=1, preference parameters
{σs, γs}S

s=1, labor supply parameters, φ, φm, and {vi}N
i=1, and normalizing world income to equal 1,

W = 1, we can use eqs. (B.6), (B.10), (B.12) and (C.25) to solve for the equilibrium wage in every
region, {ωi}N

j=1, the equilibrium price of every sector- and region-specific good {pis}N,S
i=1,s=1, and the

sectoral price indices {Ps}S
s=1. Given these equilibrium wages and sectoral price indices, we can use

eq. (C.23) to solve for the equilibrium level of employment in every region, {Li}N
i=1.

C.3.3 Labor market impact of sectoral shocks

We assume that, in every period, the model described in Appendices C.3.1 and C.3.2 characterizes
the labor market equilibrium in every region i = 1, . . . , N. Across periods, we assume that the param-
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eters {σs}S
s=1, φ and φm are fixed, and that all changes in the labor market outcomes {ωi, Li}N

i=1 are
generated by changes in technology {Acs}C,S

c=1,s=1 and {Ãis}N,S
i=1,s=1, sectoral preferences {γs}S

s=1, and
labor supply parameters {vi}N

i=1. We focus here on understanding how changes in these exogenous
parameters affect the labor market equilibrium in all regions located in a given country c; i.e. all
regions belonging to the set Nc.

Isomorphism. According to eq. (C.23), the change in employment in any region i in country c is

L̂i = 2v̂i + (φ + φm)ω̂i − Φ̂c. (C.26)

Assuming that {Mc}C
c=1, {σs}S

s=1, and (φ, φm) are fixed and totally differentiating eq. (C.24) with
respect to the remaining determinants of ω̂i, we can express the changes in wages in every region i
of country c as

ω̂i = λiΦ̂c + λi

S

∑
s=1

l0
is
[
γ̂s + (σs − 1)(Âis + P̂s)

]
− λiv̂i, (C.27)

where λi ≡ (φ + φm + ∑s l0
isσs)−1. Using the expression in eq. (C.22), we can also express

Φ̂c = ∑
i∈Nc

m0
i (φmω̂i + v̂i) , (C.28)

where m0
i is the share of individuals living in country c that had residence in region i at the initial

period 0; i.e. m0
i ≡ M0

i /M0
c , with M0

c ≡ ∑i∈Nc
M0

i .
Combining eqs. (C.26) and (C.27), we can express the change in total employment in region i as

L̂i = [(φ + φm)λi − 1]Φ̂c +
S

∑
s=1

l0
is[θisP̂s + λi(φ + φm)((σs − 1)Âcs + γ̂s) + λi(φ + φm)(σs − 1) ˆ̃Ais]

+ [2− (φ + φm)λi]v̂i (C.29)

where θis = (σs − 1)(φ + φm)λi. As in Appendix B.3, given our emphasis on understanding the
changes in labor market outcomes for regions located in the same country, all regions in the popula-
tion of interest will share the same value of Acs for every sector s; thus, we can simplify the notation
used in eq. (C.29) by writing Âcs = Âs for all s. Given this notational simplification, if it were to be
the case that Φ̂c = 0, the expression in eq. (C.29) would be analogous to that in eq. (8) under the
following equivalences

χs = Ps,

µs = (As)
(σs−1)(φ+φm)(γs)

(φ+φm),

ηis = (Ãis)
(σs−1)(φ+φm),

and the necessary adjustment of the expression for λi and ν̂i. However, the term Φ̂c will generally
not be zero and, as indicated in eq. (C.28), it will generally capture the effect of shocks to all regions
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in the same country c as the region of interest i. In the specific case in which σs = σ for all sectors s,
it will be the case that λi = λ for all regions i, and, consequently, the term [(φ + φm)λi − 1]Φ̂c will be
common to all regions i belonging to the same country c. In this special case, the parameter θis will
no longer capture the total effect of the price shifters P̂s but the differential effect of this price shifter
on region i relative to all other regions in the same country c.

Appendix D Additional placebo exercises

This section presents additional placebo exercises that complement the results in Sections 2 and 6.
Appendix D.1 reports the empirical distribution of the estimated coefficients and standard errors
of the baseline placebo exercise in Sections 2 and 6. Appendix D.2 investigates the importance
of controlling for the size of the residual sector in shift-share specifications. In Appendix D.3, we
present results illustrating the impact of confounding sector-level shocks on different estimators of
the coefficient on the shift-share covariate of interest. Appendix D.4 investigates the consequences
of serial correlation in panel data applications of shift-share specifications. Appendix D.5 analyzes
the consequences of misspecification of our baseline linearly additive potential outcome framework.
Appendix D.6 reports results investigating the performance of inference procedures in the presence
of unobserved shift-share components whose shares differ from those of the shift-share variable of
interest. Appendix D.7 studies the consequences of treatment heterogeneity. In Appendix D.8, we
provide additional results for the placebo exercises described in Sections 2 and 6. <

D.1 Placebo exercise: empirical distributions

Figure D.1 reports the empirical distribution of the estimated coefficients when: (a) the dependent
variable is the 2000–2007 change in each CZ’s employment rate; in each simulation draw m, we draw
a random vector (Xm

1 , . . . ,Xm
S−1) of i.i.d. normal random variables with zero mean and variance

var(Xm
s ) = 5, and set Xm

S = 0; and (c) the vector of controls Zi only includes a constant. The empirical
distribution of the estimated coefficients resembles a normal distribution centered around β = 0. For
more details in the placebo exercise that generates this distribution of estimated coefficients, see
Section 2.
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Figure D.1: Empirical distribution of estimated coefficients in the placebo exercise.

Notes: The blue line indicates the average estimated coefficient; the red lines indicate the 2.5% and 97.5% percentiles of dis-
tribution of β̂m across the m = 1, . . . , 30, 000 simulations. The dependent variable is the 2000–2007 change in the employment
rate.

D.2 Controlling for size of the residual sector

In the placebo simulations described in Tables 1 to 3, we have drawn the shifters from a mean-zero
distribution. In Table D.1, we depart from the mean-zero assumption.

As discussed in Section 4.2, controlling for the region-specific sum of shares, ∑S
s=1 wis, is important

if the shifters have non-zero mean. In our placebo setting, this is equivalent to controlling for the CZ-
specific share of employment in the non-manufacturing sector in 1990, 1− ∑S

s=1 wis; we refer to this
control here as the “residual sector control”. Panel A in Table D.1 shows that, when the shifters
are mean zero, the mean of β̂ is not affected by whether we include the residual sector control.
However, including the residual sector control attenuates the overrejection problem of traditional
inference methods. Intuitively, this control soaks part of the correlation in residuals that traditional
inference methods do not take into account. Panel B in Table D.1 shows that, if the shifter mean
is non-zero, the OLS estimate of β in eq. (1) suffers from substantial bias when the residual sector
control is not included in the regression; this bias disappears once it is included. Specifically, in Panel
B, Xm

s ∼ N(1, 5), and the estimator in the first row of this panel suffers from negative bias because
the positive mean of the shifters creates a positive correlation between the shift-share regressor of
interest and the control ∑S

s=1 wis, which captures the larger secular decline in the employment rate in
regions initially specialized in manufacturing production.
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Table D.1: Controlling for the size of the residual sector in each CZ

Estimate Median eff. s.e. Rejection rate

Mean Std. dev Robust Cluster AKM AKM0 Robust Cluster AKM AKM0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Shifters with mean equal to zero
No controls 0.01 1.99 0.74 0.92 1.91 2.23 48.0% 37.7% 7.6% 4.5%
Control: 1−∑S

s=1 wis −0.02 1.43 0.74 0.84 1.31 1.52 33.6% 28.4% 11.2% 4.7%

Panel B: Shifters with mean different from zero
No controls −4.67 1.28 0.71 0.94 1.48 1.66 99.1% 97.8% 85.4% 87.6%
Control: 1−∑S

s=1 wis 0.00 1.43 0.74 0.84 1.31 1.52 33.3% 27.8% 11.1% 4.6%

Notes: All estimates in this table use the change in the share of the working-age population employed in each CZ as the outcome variable
Yi in eq. (1). This table indicates the median and standard deviation of the OLS estimates of β in eq. (1) across the placebo samples
(columns (1) and (2)), the median effective standard error estimates (columns (3) to (6)), and the percentage of placebo samples for
which we reject the null hypothesis H0 : β = 0 using a 5% significance level test (columns (7) to (10)). Robust is the Eicker-Huber-White
standard error; Cluster is the standard error that clusters CZs in the same state; AKM is the standard error in Remark 5; AKM0 is the
confidence interval in Remark 6. For each inference procedure, the median effective standard error is equal to the median length of the
corresponding 95% confidence interval divided by 2× 1.96. Results are based on 30,000 placebo samples. In Panel A, (Xm

1 , . . . ,Xm
S ) is

drawn i.i.d. from a normal distribution with zero mean and variance equal to five in each placebo sample. In Panel B, (Xm
1 , . . . ,Xm

S ) is
drawn i.i.d. from a normal distribution with mean equal to one and variance equal to five in each placebo sample. For each of the two
panels, the first row presents results in which no control is accounted for in the estimating equation; the second row presents results in
which we control for the size of the residual sector.

D.3 Confounding sector-level shocks: omitted variable bias and solutions

In this appendix, we illustrate the consequences of violations of the assumption that the shifters
(X1, . . . ,XS) are independent of other shocks affecting the outcome variable of interest. Specifically,
we show the impact that the presence of latent sector-specific shocks correlated with the shifters
(X1, . . . ,XS) has on the properties of the OLS estimator of the coefficient on the shift-share regressor
of interest Xi ≡ ∑S

s=1 Xs. We also illustrate the properties of two solutions to this problem: (i) the
inclusion of regional controls as a proxy for sector-level unobserved shocks (see Section 4.2), and
(ii) the use of a shift-share instrumental variable constructed as a weighted average of exogenous
sector-level shocks (see Section 4.3).

To generate the shifters of interest, the confounding sectoral shocks, and the exogenous sector-
specific shocks that will enter the instrumental variable, we extend the baseline placebo exercise and,
for each sector s and simulation m, we take a draw of a three-dimensional vector

(Xa,m
s ,Xb,m

s ,Xc,m
s ) ∼ N(0; Σ̃),

where Xa
s is the shifter of interest, Xb

s is the unobserved confounding shock, Xc
s is an exogenous

shifter. Specifically, the matrix Σ̃ is such that var(Xa
s ) = var(Xb

s ) = var(Xc
s ) = σ̃, cov(Xa

s ,Xb
s ) =

cov(Xa
s ,Xc

s ) = ρ̃σ̃, and cov(Xb
s ,Xc

s ) = 0. Thus, we impose that Xa
s has a correlation of ρ̃ with both

Xb
s and Xc

s , but Xb
s and Xc

s are independent. In our simulations, we set ρ̃ = 0.7 and σ̃ = 12.
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To assign the role of a confounding effect to Xb
s , we generate an outcome variable as

Ym
i = Yobs

i + δ
S

∑
s=1

wisX
b,m
s ,

where Yobs
i is the observed 2000–2007 change in the employment rate in CZ i, and δ is a parameter

controlling the impact of the unobserved sectoral shocks (Xb
1 , . . . ,Xb

S ) on the simulated outcome Ym
i .

Thus, the parameter δ captures the magnitude of the impact that the unobserved shocks (Xb
1 , . . . ,Xb

S )

have on the outcome variable. We simulate data both with δ = 0 and with δ = 6.
In addition, we assume that we observe a regional variable that is a noisy measure of CZ i’s

exposure to the unobserved sectoral shocks (Xb
1 , . . . ,Xb

S ),

Xb,m
i = um

i + ∑
s

wisX
b,m
s where um

i ∼ N(0, σu).

The parameter σu thus modulates the measurement error in Xb
i as a proxy for the impact of the

unobserved shocks (Xb
1 , . . . ,Xb

S ) on CZ i. We simulate data both with σu = 0 and with σu = 6.4

For each set of parameters (δ, σu) and for each simulation draw, we compute three estimators
of the impact of Xa

i ≡ ∑S
s=1 wisX

a
s on Yi. First, we ignore the possible endogeneity problem and

compute the OLS estimator without controls; i.e. the estimator in eq. (13). Second, we consider the
OLS estimator of the coefficient on Xa

i in a regression that includes Xb
i as a proxy for the vector of

unobserved confounding sectoral shocks; i.e. the estimator in eq. (23). Third, we consider the IV
estimator that uses Xc

i ≡ ∑i wisX
c
s as the instrumental variable; i.e. the estimator in eq. (36). For each

of these three estimators, we implement four inference procedures: Robust, Cluster, AKM and AKM0.
All results are reported in Table D.2.

When there is no confounding sectoral shock (δ = 0), Panel A shows that all three estimators yield
an average coefficient close to zero. Panels B and C report results in the presence of confounding
sectoral shocks (δ > 0); in this case, the OLS estimator of the coefficient on Xa

i in a simple regression
of Yi on Xa

i without additional covariates is positively biased (β̂ = 4.2). The introduction of the
regional control only yields unbiased estimates when it is a good proxy for the latent confounding
sectoral shock (i.e. if σu = 0 as in Panel B). In contrast, the IV estimate always yields an average
estimated coefficient close to zero.

As illustrated in Table D.2, traditional inference methods always under-predict the dispersion in
the estimated coefficient. As discussed in eq. (21), this is driven by the correlation between the un-
observable residuals of regions with similar sector employment compositions. The AKM and AKM0
inference procedures impose no assumption on the cross-regional pattern of correlation in the regres-
sion residuals and yield, on average, estimates of the median length of the 95% confidence interval
that are equal or higher to the standard deviation of the empirical distribution of estimates. As a
result, as Table D.2 reports, while traditional methods overreject the null H0 : β = 0 in the context of
both OLS and IV estimation procedures, our methods yield the correct test size for both estimators.

4Using the notation in Section 4.2, the simulated variable Xa
s corresponds to Xs, the simulated variable Xb

s is an element
of Zs, ui corresponds to Ui, and Xb

i to Zi. The value of the parameter γ in eq. (26) is thus equal to ρ̃.
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Table D.2: Magnitude of standard errors and rejection rates—Confounding effects

Estimate Median eff. s.e. Reject. H0 : β = 0 at 5%

Mean Std. dev Robust Cluster AKM AKM0 Robust Cluster AKM AKM0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: No confounding effect (δ = 0)
OLS no controls 0.00 1.28 0.47 0.59 1.23 1.43 48.2% 37.6% 7.7% 4.5%
OLS with controls 0.00 1.80 0.67 0.83 1.72 1.97 47.6% 37.9% 7.9% 4.7%
2SLS 0.00 1.84 0.69 0.85 1.76 2.02 47.7% 37.7% 7.7% 4.6%

Panel B: Confounding effect (δ = 6) and perfect regional control (σu = 0)
OLS no controls 4.19 1.47 0.58 0.70 1.38 1.60 97.9% 96.8% 80.9% 72.2%
OLS with controls −0.01 1.81 0.67 0.83 1.72 1.97 48.2% 38.3% 8.1% 4.6%
2SLS −0.01 1.85 0.69 0.85 1.75 2.02 48.1% 38.3% 8.0% 4.7%

Panel C: Confounding effect (δ = 6) and imperfect regional control (σu = 2)
OLS no controls 4.20 1.47 0.58 0.70 1.37 1.60 97.9% 96.8% 81.4% 72.6%
OLS with controls 4.10 1.46 0.58 0.70 1.39 1.61 97.7% 96.3% 79.4% 71.3%
2SLS −0.22 2.46 0.93 1.10 2.12 2.66 41.7% 34.0% 8.1% 4.6%

Notes: All estimates in this table use the change in the share of the working-age population employed in each CZ as the outcome
variable Yi in eq. (1). This table indicates the median and standard deviation of the OLS estimates of β in eq. (1) across the placebo
samples (columns (1) and (2)), the median effective standard error estimates (columns (3) to (6)), and the percentage of placebo
samples for which we reject the null hypothesis H0 : β = 0 using a 5% significance level test (columns (7) to (10)). The median
effective standard error refers to the median length of the 95% confidence interval across the simulated datasets divided by 2× 1.96
Robust is the Eicker-Huber-White standard error; Cluster is the standard error that clusters CZs in the same state; AKM is the standard
error in Remark 5; AKM0 is the confidence interval in Remark 6. All results are based on 30,000 simulation draws.
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D.4 Panel data: serial correlation in residuals and shifters

In this appendix, we focus on panel data applications and perform several placebo exercises that
illustrate the consequences of serial correlation in either the shifters (X1, . . . ,XS) or the regression
residuals on the properties of several standard error estimates. For each of our placebo exercises, we
generate 30, 000 placebo samples indexed by m. Each of them contains 722 regions, 397 sectors, and
2 periods: the first period corresponds to 1990–2000 changes, and the second period corresponds to
2000–2007 changes. As in the baseline placebo, each region corresponds to a U.S. Commuting Zone
(CZ), and each sector corresponds to a 4-digit SIC manufacturing industry. We index each region by j
and each sector by k. When implementing the AKM and AKM0 in this context, we follow the approach
in Section 5.2 by defining “generalized regions” as i = (j, t), “generalized sectors” as s = (k, t), and
shares wis as in eq. (41).

As in our baseline placebo, each simulated sample m has identical values of the shares {wis}N,S
i=1,s=1.

Specifically, the shares in periods 1 and 2 correspond to employment shares in 1990 and 2000, respec-
tively. Depending on the placebo exercise, the placebo samples may differ across simulated samples in
terms of the outcomes {Yi}N

i=1. Finally, all placebo samples always differ in the shifters (X1, . . . ,XS).
For each simulated sample m, we draw the random vector of shifters (Xm

1 , . . . ,Xm
S ) from the joint

distribution

(Xm
1 , . . . ,Xm

S ) ∼ N
(
0, Σ2) , (D.1)

where Σ2 is a S × S covariance matrix with Σ2
sk = (1− ρ2)σ2 I{s = k} + ρ2σ2 I{c(s) = c(k)} and,

for every s, c(s) indicates the “cluster” that the generalized sector s belongs to. We incorporate
serial correlation in the sector-level shocks by defining clusters of generalized sectors associated with
the same underlying sector in different periods. We follow the baseline placebo by setting σ2 = 5.
The value of ρ2 controls the degree of correlation across shifters of different generalized sectors that
correspond to the same underlying industrial sector at different points in time.

For each simulated sample m, we generate the outcome of region i in the placebo sample m as

Ym
i = Yi + ηm

i , (D.2)

where Yi denotes the change in the employment rate in the generalized region i. By changing the
distribution from which the term ηm

i is drawn, we change the distribution of the regression residuals.
We implement different placebo exercises in which {ηm

i }N
i=1 is drawn from different distributions.

In some placebo exercises, we allow for serial correlation in ηi for every region i but impose that
ηi is independent of ηj for any two different regions i and j; specifically,

(ηm
1 , . . . , ηm

1444) ∼ N(0, Σ1), (D.3)

where Σ1 is a 1444× 1444 covariance matrix with Σ1
ii′ = (1− ρ1)σ1 I{i = i′}+ ρ1σ1 I{j(i) = j(i′)} and

j(i) is the region associated with the generalized observation i. We set σ1 = Var(Yi)/2 and generate
different placebo samples for different values of ρ1. The value of ρ1 controls the degree of correlation
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across regression residuals of different generalized regions that correspond to the same geographic
region at different points in time.

In some other placebo exercises, we assume that ηm
i has a shift-share structure with shares identical

to those entering the shift-share component of interest. Specifically, we assume that

ηm
i =

S

∑
s=1

wisµ
m
s such that (µm

1 , . . . , µm
S ) ∼ N

(
0, Σ2) , (D.4)

where Σ2 is identical to the variance matrix of the shifters (Xm
1 , . . . ,Xm

S ) introduced in eq. (D.1).
We start by evaluating the robustness of our results to the existence of serial correlation in regional

outcomes or regression residuals. In Panel A of Table D.3, we implement a placebo exercise in which
the shifters are drawn according to eq. (D.1) with ρ2 = 0 (i.e. no serial correlation in sectoral shifters)
and the outcome variables are drawn according to eqs. (D.2) and (D.3) with three different values of
ρ1 (i.e. different degree of serial correlation in the regression residuals). The rejection rates of all six
inference procedures we consider (Robust, Cluster, AKM and AKM0, the last two both in a version that
assumes that the shifters are independent, and in a version that allows them to be serially correlated)
are robust to different degrees of serial correlation in the regression residuals. The reason is that, as
illustrated in column (4) of Table D.3, the standard deviation of the estimator β̂ is invariant to these
patterns of serial correlation in the regression residuals.

In Panel B, we implement a placebo exercise in which the shifters are drawn according to eq. (D.1)
with ρ2 equal to either 0, 0.5 or 1 (i.e. different degrees of serial correlation in sectoral shifters) and the
distribution of the simulated outcome variables is identical to their empirical distribution (i.e. ηm

i = 0
for every region i and placebo sample m). The results indicate that the larger the serial correlation
in the sector-level shifters, the larger the rejection rates implied by the Robust and Cluster standard
errors, as well as those implied by an implementation of the AKM and AKM0 inference procedures
that wrongly assumes that the shifters are independent across generalized sectors. Conversely, as
illustrated in columns (15) and (16) in Panel B of Table D.3, the AKM and AKM0 become very close
to the nominal rejection rate of 5% once we cluster across generalized sectors that correspond to the
same underlying sector at different points in time.

In Panel C, we depart from the setting described in Panel B in that we draw values of ηm
i according

to the distribution described in eq. (D.4). The sector-level shifters entering the shift-share covariate of
interest Xm

i and the term ηm
i are thus drawn from the same distribution. The results are very similar

to those in Panel B.
Finally, in Panel D, we draw shifters (Xm

1 , . . . ,Xm
S ) that are not only serially correlated but also

correlated across 4-digit industries belonging to the same 3-digit sector. Columns (11) to (14) show
that, when ignored by the corresponding inference procedure, such correlation patterns in the shifters
of interest lead to an overrejection problem, the severity of which depends on the correlation in the
shifters. Columns (15) and (16) show that this overrejection problem disappears when we implement
the AKM and AKM0 inference procedures clustering across all generalized shifters that correspond to
pairs of a 4-digit sectors and time period such that the 4-digit sector is associated to the same 3-digit
industry.
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Table D.3: Magnitude of standard errors and rejection rates: panel data with serially correlated shifters

Serial Correl. Estimate Median eff. s.e. Rejection rate of H0 : β = 0 at 5%

ρ1 ρ2 Mean Std. dev Robust Cluster AKM AKM0 AKM AKM0 Robust Cluster AKM AKM0 AKM AKM0
(cluster) (cluster) (cluster) (cluster)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Panel A: Correlation over time in a residual region-level component
0 0 −0.01 1.12 0.55 0.67 1.06 1.15 1.05 1.17 34.3% 24.0% 6.7% 5.0% 7.0% 4.8%

0.5 0 −0.01 1.10 0.55 0.66 1.07 0.00 1.06 1.18 32.7% 24.6% 6.6% 5.0% 6.7% 4.8%
1 0 −0.01 1.09 0.55 0.66 1.05 0.00 1.05 1.16 32.7% 24.2% 5.9% 4.7% 6.5% 4.3%

Panel B: Correlation over time in shifter of interest
0 0 −0.01 1.05 0.46 0.60 1.02 1.1 1.01 1.12 39.4% 27.0% 6.4% 4.6% 6.7% 4.5%
0 0.5 0.00 1.13 0.47 0.59 1.04 1.12 1.09 1.22 42.9% 31.6% 8.1% 6.1% 6.9% 4.7%
0 1 0.00 1.22 0.47 0.57 1.07 1.14 1.18 1.37 46.2% 36.5% 10.1% 7.9% 7.6% 4.5%

Panel C: Correlation over time in shifter of interest and in a residual shift-share component
0 0 0.00 1.06 0.47 0.60 1.03 1.11 1.02 1.14 39.7% 27.5% 6.7% 4.8% 6.9% 4.7%
0 0.5 0.00 1.14 0.47 0.59 1.05 1.12 1.1 1.23 42.6% 31.5% 8.0% 6.2% 6.8% 4.5%
0 1 0.01 1.22 0.48 0.58 1.07 1.14 1.19 1.38 45.8% 36.1% 9.6% 7.5% 7.2% 4.2%

Panel D: Correlation over time and within 3-digit sectors in shifter of interest and in a residual shift-share component
0 0 0.00 1.06 0.46 0.60 1.03 1.11 1.01 1.16 39.6% 27.1% 6.6% 4.9% 7.2% 4.7%
0 0.5 0.02 1.24 0.47 0.61 1.03 1.1 1.19 1.39 47.3% 34.6% 11.8% 9.8% 7.4% 4.5%
0 1 0.00 1.40 0.47 0.61 1.02 1.09 1.35 1.68 53.5% 41.7% 16.9% 14.5% 8.1% 4.2%

Notes: All estimates in this table use the change in the share of the working-age population employed in each CZ as the outcome variable Yi in eq. (1). This table indicates the
median and standard deviation of the OLS estimates of β in eq. (1) across the placebo samples (columns (1) and (2)), the median effective standard error estimates (columns (3)
to (8)), and the percentage of placebo samples for which we reject the null hypothesis H0 : β = 0 using a 5% significance level test (columns (8) to (15)). The median effective
standard error refers to the median length of the 95% confidence interval across the simulated datasets divided by 2× 1.96 Robust is the Eicker-Huber-White standard error;
Cluster is the standard error that clusters CZs in the same state; AKM is the standard error in Remark 5; AKM0 is the confidence interval in Remark 6. In Panels A, B, and C,
AKM (cluster) and AKM0 (cluster) assume that the shifter corresponding to each 4-digit SIC shifter is distributed independently of those corresponding to other 4-digit shifter, but
allow for correlation over time in these 4-digit SIC shifters. In Panel D, AKM (cluster) and AKM0 (cluster) additionally allow for correlation across 4-digit SIC shifters that belong
to the same 3-digit SIC sector. All results are based on 30,000 simulation draws.
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D.5 Misspecification in linearly additive potential outcome framework

In this appendix section, we study the consequences of potential misspecification in the linearly
additive potential outcome framework introduced in eq. (11) in Section 3.3. The extent to which this
linearly additive framework is misspecified obviously depends on what the true potential outcome
framework is. Inspired by the economic model described in Section 3, we outline a nonlinear potential
outcome framework in Appendix D.5.1. In Appendix D.5.2, we determine theoretically the asymptotic
properties of the OLS estimator of the coefficient on the shift-share component in the linearly additive
potential outcome framework; specifically, we compare the treatment effects implied by the linear
framework to those implied by the nonlinear one. In Appendix D.5.3, we present simulation results
that quantify the bias in the estimation of treatment effects that arise from assuming a linearly additive
potential outcome framework when the true one corresponds to the nonlinear framework described
in Appendix D.5.1.

D.5.1 Nonlinear potential outcome framework

Consider the special case of the model of Section 3 in which the labor demand elasticity is identical
in all sectors, i.e. σs = σ for all s. We also set ρs ≡ 1 for all s. In this case, region i’s labor demand in
sector s is

Lis = (ωi)
−σ (χsµsηis) ,

which implies that the total labor demand in region i is

Li = (ωi)
−σ

S

∑
s=1

(χsµsηis) .

By equalizing this expression with the expression for region i’s labor supply in eq. (4) in Section 3,
we obtain the following relationship between equilibrium wages in region i and both labor supply
and labor demand shocks in i:

log ωi = β̌ log

(
S

∑
s=1

(χsµsηis)

)
− β̌ log νi (D.5)

where β̌ ≡ (φ + σ)−1.
We focus here on determining the impact on log-changes in regional wages ωi of log-changes

in the sectoral demand shifters {χs}S
s=1; i.e. using the notation introduced in Section 3.2, we focus

on characterizing the impact of {χ̂s}S
s=1 on ω̂i. Because of the nonlinear nature of the relationship

between labor demand shocks and wages in eq. (D.5), the impact of {χ̂s}S
s=1 on ω̂i depends on the

changes in all other labor demand and supply shocks. For simplicity, we focus on the case in which
all these other labor demand and supply shocks remain constant at their initial level. From eq. (D.5),
the wages in the new and old equilibria are given by

log ωi = β̌ log

(
S

∑
s=1

χ0
s µ0

s η0
ise

χ̂s

)
− β̌ log ν0

i ,

47



log ω0
i = β̌ log

(
S

∑
s=1

χ0
s µ0

s η0
is

)
− β̌ log ν0

i ,

where we use a superscript zero to denote the value of the variables in the initial equilibrium and the
absence of superscript denotes the value of the corresponding variable in the new equilibrium. By
taking the difference between these two expressions,

ω̂i = β̌ log

(
S

∑
s=1

χ0
s µ0

s η0
is

∑S
k=1 χ0

kµ0
kη0

ik

eχ̂s

)
= β̌ log

(
S

∑
s=1

L0
is

(
ω0

i

)σ

∑S
k=1 L0

ik

(
ω0

i

)σ eχ̂s

)
= β̌ log

(
S

∑
s=1

L0
is

L0
i

eχ̂s

)
(D.6)

where the second equality follows from rearranging the terms in the labor demand expression in
eq. (2) in Section 3 to obtain the equality χ0

s µ0
s η0

is = L0
is

(
ω0

i

)σ for every region and sector, and the
third equality follows from the fact that labor market clearing yields L0

i = ∑S
s=1 L0

is.
Note that, by using data on the labor allocation across sectors for every region in some initial

equilibrium (i.e. L0
is/L0

i , for every i and s), the expression in eq. (D.6) allows to compute the effect
of changes in the sector-specific labor demand shifters {χs}S

s=1 while calibrating the value of the
overall labor demand shifter (χ0

s )
ρs µ0

s η0
is at the initial equilibrium. Furthermore, the last expression

in eq. (D.6) has the advantage that, conditional on values of {χ̂s}S
s=1 that are of interest, it depends

exclusively on the parameter β̌; specifically, it does not depend on the labor demand parameter σ.
We can map the expression in eq. (D.6) to a nonlinear potential outcome framework by setting

Xs = χ̂s, Yi = ω̂i, and wis = L0
is/L0

i for every region and sector; i.e.

Yi(X1, . . . ,XS) = β̌ log

(
S

∑
s=1

wiseXs

)
. (D.7)

According to the model in Section 3, this nonlinear potential outcome function yields the exact ex-
pression for the change in wages implied by a change in the labor demand shifters {χ̂s}S

s=1. Using
eq. (D.7) we can also compute the treatment effect on region i of changing the shifters from {Xs}S

s=1

to {X′s}S
s=1,

Yi(X1, . . . ,XS)−Yi(X
′
1, . . . ,X′S) = β̌

[
log
( S

∑
s=1

wiseXs
)
− log

( S

∑
s=1

wiseXs
)]

. (D.8)

and the average treatment effect

Ȳ(X1, . . . ,XS)− Ȳ(X′1, . . . ,X′S) = β̌
1
N

N

∑
i=1

[
log
( S

∑
s=1

wiseXs
)
− log

( S

∑
s=1

wiseXs
)]

. (D.9)

The linearly additive function in eq. (11) in Section 3.3 provides a first-order approximation to
the nonlinear function in eq. (D.8). In the next two subsections, we study the extent to which the
linear expression in eq. (11) provides an accurate approximation to the nonlinear one in eq. (D.7).
Specifically, we explore the extent to which the treatment effects in eqs. (D.8) and (D.9) are well
approximated by those computed on the basis of the linear potential outcome framework introduced
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in Section 3.3.
The extent to which the linear approximation is accurate will depend on the distribution of

{Xs}S
s=1. Throughout this section, we assume that {Xs}S

s=1 are independently drawn from a nor-
mal distribution,

Xs ∼ N(0, γ2), (D.10)

so that eXs is log-normally distributed with E[(eXs)k] = ek2γ2/2.

D.5.2 Asymptotic properties of the shift-share linear specification

We consider here the asymptotic properties of the OLS estimator of β in the linear shift-share regres-
sion,

Yi = α + β
S

∑
s=1

wisXs + εi, (D.11)

when the distribution of Xs for every sector s is given by eq. (D.10), and the distribution of Yi for
every region i is given by the potential outcome framework in eq. (D.7). Since Xs has mean zero, the
constant does not affect the regression estimand, which is given by

β =
∑N

i=1 E[XiYi]

∑N
i=1 E[X2

i ]
, (D.12)

where, under eqs. (D.7) and (D.10),

N

∑
i=1

E[X2
i ] = γ2

N

∑
i=1

S

∑
s=1

w2
is, (D.13)

and
N

∑
i=1

E[XiYi] = β̌E
N

∑
i=1

S

∑
s=1

wisXs log

(
S

∑
k=1

wikeXk

)
. (D.14)

Using eqs. (D.12) to (D.14), we can obtain an expression for β, the OLS estimand in a regression of Yi

on ∑S
s=1 wisXs,

β = β̌
∑N

i=1 ∑S
s=1 wisE[γZs log(∑S

k=1 wikeγZk)]

γ2 ∑N
i=1 ∑S

s=1 w2
is

, (D.15)

as well as for the difference between this value of β and the parameter from the nonlinear model in
eq. (D.5):

β− β̌ = β̌
∑N

i=1 ∑S
s=1 wisE[γZs log(∑S

k=1 wikeγZk)]

γ2 ∑N
i=1 ∑S

s=1 w2
is

− β̌, (D.16)

where {Zs}S
s=1 are i.i.d standard normal. As it is clear from this expression, the difference between

β and β̌ depends on the shares {wis}N,S
i=1,s=1,, the value of the γ (i.e. the standard deviation of Xs for

every s, according to eq. (D.10)), and the value of β̌ itself.
The expression analogous to that in eq. (D.8) when the linear potential outcome framework in
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eq. (11) in Section 3.3 is assumed is the following,

Yi(X1, . . . ,XS)−Yi(X
′
1, . . . ,X′S) = β

( S

∑
s=1

wis(Xs −X′s )
)

. (D.17)

and the expression analogous to that in eq. (D.8) is

Ȳ(X1, . . . ,XS)− Ȳ(X′1, . . . ,X′S) = β
1
N

N

∑
i=1

( S

∑
s=1

wis(Xs −X′s )
)

. (D.18)

D.5.3 Simulation

In this section, we construct a simulation exercise to quantify: (a) the difference between β and
β̌, using eq. (D.16) to compute such difference; (b) the correlation coefficient between the i-specific
treatment effects in eq. (D.8) and those in eq. (D.17); and, (c) the difference between the average
treatment effect in eq. (D.9) and that in eq. (D.18).

In all simulations, we calibrate the labor supply elasticity to equal 2, σ = 2, and the inverse labor
supply elasticity to equal 0.5, φ = 0.5, implying that β̌ = 0.4. To remain close to our baseline placebo
exercise, we calibrate the shares {wis}N,S

i=1,s=1 using 1990 data on sector-region employment shares
for 722 US CZs and 396 4-digit manufacturing sectors. Concerning the value of the variance of the
sectoral shifters, we present results for five different values of var(Xs) = γ2 varying between γ2 = 0.5
and γ2 = 10. For each value of γ, we then generate 30, 000 samples indexed by m such that {Xm

s }396
s=1

are independently drawn according to eq. (D.10) and {Ym
i }722

i=1 are constructed according to eq. (D.7).
For each placebo sample m, we compute the OLS estimator β̂ of the parameter β defined in

eq. (D.12), confidence intervals for β according to the Robust, Cluster, AKM and AKM0 inference pro-
cedures, the true linear approximation to the i-specific treatment effect and to the average treatment
effect (i.e. the expressions in eqs. (D.17) and (D.18) with β̌ instead of β), the estimated linear approx-
imation to the i-specific treatment effect and to the average treatment effect (i.e. the expressions in
eqs. (D.17) and (D.18) with β̂ instead of β), and the true i-specific treatment effects and their average
(i.e. the expressions in eqs. (D.8) and (D.9) with β̌ = 0.4).

A comparison of columns (2) and (3) in Table D.4 illustrates that the average across the placebo
samples generated under the same value of γ of the OLS estimates of β, β̂ ≡ (30, 000)−1 ∑30,000

m=1 β̂m

(reported in column (3)) is very close to the true value of the parameter β (reported in column (2)).
We compute this true value of β using the expression in eq. (D.15) and Monte Carlo integration based
on 50,000 draws of (Z1, . . . , ZS) from the distribution in eq. (D.10). Thus, as expected, the average
value of β̂m is very close to its theoretical value.

Columns (4)–(7) of Table D.4 report different measures of the average treatment effect across
simulated samples. Specifically, we compute in these three columns, in this order, the average across
the 30,000 placebo samples of: (a) the true linear approximation to the average treatment effect (i.e.
the expression in eq. (D.18) with the value β set to the expression in eq. (D.15)); the estimated linear
approximation to the average treatment effect (i.e. the expression in eq. (D.18) with β̂m instead of β);
and the true average treatment effect (i.e. the expression in eq. (D.9)). When the variance of sector-
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level shocks is low (γ2 = 0.1), the first row in Table D.4 shows that all these three averages are very
close to each other. As the variance of sector-level shocks grows, the remaining rows in Table D.4
show that the bias in the linear approximations to the average treatment effect grows. Columns (6)
and (7) of Table D.4 illustrate that not only the linear approximation to the average treatment effects
worsen as γ2 increases, but the average (across the 30,000 placebo samples) correlation coefficient
between the i-specific linear treatment effects in eq. (D.17) (computed with β̌ instead of β) and the
nonlinear ones in eq. (D.8) becomes much lower.

In summary, Table D.4 shows that, when the value of the variance of the sector-level shocks is
small, the difference between β and β̌ reported in eq. (D.16) is small, and the linear approximations
to the treatment effects in eqs. (D.17) and (D.18) remain very close to their non-linear counterparts
in eqs. (D.8) and (D.9). Conversely, these approximations become much worse as the variance of the
sector-level shocks increases.

In Table D.5, we study the performance of different inference methods in their capacity to provide
information about the value of β in eq. (D.15) or about the parameter β̌. Columns (2)–(6) report the
standard deviation of the OLS estimated coefficients β̂m and the average estimated standard errors
obtained with different inference procedures. Columns (7)–(10) report the rejection rate of the null
hypothesis that β = β̌ and columns (11)–(14) report the rejection rate of the null hypothesis that β

coincides with the expression in eq. (D.15). Results are similar for all levels of γ2: robust and state-
clustered standard errors significantly underestimate the standard deviation of the OLS estimator,
while the AKM and AKM0 are much closer to this standard deviation. In line with these results, when
testing the null that β coincides with the expression in eq. (D.15) at the 5% significance level, columns
(13)-(14) show that the rejection rates are close to 5% for AKM and AKM0 inference procedures, but
columns (11)–(12) show that the analogous rejection rates are around 50% for the Robust and Cluster
inference procedures. Given the difference (reported in Table D.4) between the value of β in eq. (D.15)
and the value of β̌, it is not surprising that, as illustrated in columns (7)–(10) of Table D.5, rejection
rates for the null that β equals β̌ are larger than for the null that β equals the expression in eq. (D.15),
no matter what inference procedure we use. However, it is remarkable that, when the AKM0 inference
procedure is used, these rejection rates remain quite close to 5% and always below 10%.

In summary, Table D.5 shows that, no matter what the value of the variance of the sector-level
shocks is, the relative performance of the four different inference procedures that we consider in all
our placebo simulations is consistent with what we have documented in Sections 2 and 6.1. Robust and
Cluster lead to overrejection of the estimand of the OLS estimator, while AKM and AKM0 maintain
their good coverage properties for this estimand. Interestingly, even when the OLS estimated does
not coincide with the structural parameter β̌, the AKM0 inference procedure maintains good coverage
for this structural parameter; the reason is that, as the variance of the sector-level shocks increases
and the OLS estimand becomes more different from β̌, the length of the AKM0 confidence interval
also increases, and it does so at a rate such that it contains β̌ in a fraction of placebo samples that is
always between 5% and 10%.
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Table D.4: First-order approximation error: bias in β̂ and in estimated average treatment effect

var(Xs) eq. (D.15) β̂ Avg. Treatment Effect Correlation between

Linear Non-linear linear & non-linear

Estimated True True avg. treatment effect

(1) (2) (3) (4) (5) (6) (7)

0.1 0.41 0.41 0.00 0.00 0.00 0.96
1 0.48 0.48 0.00 0.00 0.05 0.76
2 0.54 0.53 0.00 0.00 0.11 0.64
5 0.63 0.62 0.01 0.00 0.34 0.47
10 0.65 0.62 0.01 0.00 0.81 0.36

Notes: The sectoral shifters Xs are i.i.d, drawn from a normal distribution with mean zero and variance var(Xs). Column
(1) indicates the different values of var(Xs) that we consider in our simulation exercise; for each value of var(Xs) listed
in column (1), we generate 30,000 simulated samples. Given a set of draws of the shifters (Xm

1 , . . . ,Xm
s , . . . ,Xm

S ) for a
simulated sample indexed by m, their true impact on the outcome of a region i is β̌ log(∑s wis exp(Xm

s )) and the first-order
approximation to this expression is β ∑s wisX

m
s . We set β̌ = 0.4 for all our simulation exercises. Given this value of β̌

and the value of var(Xs) in column (1), we report in column (2) the value of β, the estimand of the OLS estimator in a
regression of Yi on Xi computed according to the expression in eq. (D.15). We report in column (3) the average (across the
simulated samples) value of this OLS estimator β̂m. Column (4) and (5) reports the average (across the simulated samples)
value of the linearly approximated average treatment effect in eq. (D.18), with the only difference being whether the value
of β in this expression is set to the value in eq. (D.15) or to the average of the OLS estimator β̂m. Column (6) reports
the average (across the simulated samples) value of the true average treatment effect in eq. (D.9). Column (7) reports the
median (across the simulated samples) value of the correlation coefficient between the true treatment effect in eq. (D.9)
and that arising from the first-order approximation in eq. (D.18). See the description in Appendix D.5.3 for additional
details.
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Table D.5: First-order approximation error: impact on standard errors and rejection rates.

var(Xs) Estimate Median eff. s.e. Rejection rate of H0 : β = β̌ Rejection rate of H0 : β = eq. (D.15)

Mean Std. dev Robust Cluster AKM AKM0 Robust Cluster AKM AKM0 Robust Cluster AKM AKM0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

0.1 0.41 0.07 0.03 0.03 0.07 0.08 45.3% 38.7% 9.6% 3.9% 45.1% 38.4% 9.5% 4.0%
1 0.48 0.10 0.03 0.04 0.09 0.10 60.7% 56.3% 15.3% 5.9% 52.8% 47.9% 10.4% 2.8%
2 0.53 0.14 0.04 0.05 0.12 0.14 66.7% 62.6% 17.3% 7.7% 54.1% 49.1% 9.1% 2.5%
5 0.62 0.19 0.06 0.07 0.18 0.21 72.5% 68.4% 18.2% 9.1% 53.9% 48.6% 7.7% 2.4%
10 0.62 0.22 0.07 0.08 0.22 0.25 67.8% 63.0% 14.2% 6.8% 53.5% 47.4% 7.3% 3.0%

Notes: The sectoral shifters Xs are i.i.d drawn from a normal distribution with mean zero and variance var(Xs). Column (1) indicates the different values of var(Xs) that we
consider in our simulation exercise; for each value of var(Xs) listed in column (1), we generate 30,000 simulated samples. This table indicates the median and standard deviation
of the OLS estimates of β in eq. (1) across the placebo samples (columns (1) and (2)), the median effective standard error estimates (columns (3) to (6)), the percentage of placebo
samples for which we reject the null hypothesis H0 : β = β̌ using a 5% significance level test (columns (7) to (10)), and the percentage of placebo samples for which we reject the
null hypothesis that β coincides with the expression in eq. (D.15) using a 5% significance level test (columns (11) to (14)). Robust is the Eicker-Huber-White standard error; Cluster
is the standard error that clusters CZs in the same state; AKM is the standard error in Remark 5; AKM0 is the confidence interval in Remark 6. For each inference procedure, the
median effective standard error is equal to the median length of the corresponding 95% confidence interval divided by 2× 1.96.
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D.6 Unobserved shift-share components with different shares

Equation (21) in Section 4.1 characterizes the source of the overrejection problem affecting traditional
inference methods in shift-share specifications, showing that heteroskedasticity-robust and cluster-
robust standard errors overreject whenever the correlation between residuals is positive. This positive
correlation arises when the residual has a shift-share structure in eq. (22), the unobserved shifters
may vary at the same level as the shift-share covariate of interest (e.g. sectors) or a different one (e.g.
countries of origin of immigrants). In this section, we conduct a placebo simulation to illustrate the
bias in both robust and state clustered standard errors that arises when the regression residual has a
shift-share component.

We generate 30, 000 placebo samples indexed by m with 722 US CZs and 396 4-digit SIC manufac-
turing industries. As in the baseline placebo exercise discussed in Sections 2 and 6.1, we compute the
shift-share covariate of interest using the sectoral employment shares of US CZs in 1990 and sectoral
shifters that are drawn independently from a normal distribution with mean equal zero and variance
equal to five; i.e.

Xm
i =

396

∑
s=1

wisX
m
s such that Xm

s ∼ N(0, 5).

The difference between the simulation exercise we consider here and the baseline placebo simulation
in Sections 2 and 6.1 is that the outcome variable is no longer taken from the observed data. Instead,
this outcome variable varies across placebo samples and it is drawn randomly for each simulated
sample m as

Ym
i =

396

∑
s=1

w̃isA
m
s such that Am

s ∼ N(0, 5),

where w̃is are shares that may be different from (but possibly correlated with) the baseline sectoral
employment shares in each CZ; i.e. w̃is may be different from wis. Specifically, for all placebo samples,
we generate a single set of alternative shares as

w̃is =
exp (uis + ln(wis + vis))

∑396
k=1 exp (uik + ln(wik + vik))

(
396

∑
k=1

wik

)
(D.19)

where uis and vis drawn randomly such that uis ∼ N(0, σ2
u) and vis ∼ U[0, σv].

Given a pair of values (σu, σv), for each placebo sample we compute: (a) the OLS estimator of
the regression of Ym

i on Xm
i and a constant; (b) effective standard errors according to the robust,

state-clustered, AKM and AKM0 inference procedures; (c) for each of these inference procedures, the
outcome of a 5% significance level test of hypothesis of the null hypothesis H0 : β = 0. Each row of
Table D.6 reports several summary statistics of the distribution of these quantities across the 30,000
placebo samples. Each row does so for placebo samples generated by different values of σu and σv.

The first row of Table D.6 considers the case in which σv = σu = 0. In this case, wis = w̃is for every
i and s and, thus, the correlation coefficient between the shares entering the covariate of interest and
those entering the regression residual equal 1 (see column (3) in Table D.6). In this case, as in our
baseline placebo, robust and state-cluster standard errors have rejection rates for a 5% significance
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Table D.6: Bias in standard errors when regression residual is a shift-share term with shares correlated
with those entering the shift-share covariate of interest

Estimate Median eff. s.e. Rejection rate of H0 : β = 0

σ2
u σv ρwis,w̃is Mean Std. dev Robust Cluster AKM AKM0 Robust Cluster AKM AKM0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

0 0 1.00 0.00 0.17 0.08 0.08 0.14 0.16 34.8% 31.0% 10.2% 3.7%
1 0 0.77 0.00 0.16 0.08 0.09 0.14 0.16 31.5% 27.3% 9.9% 4.0%
3 0 0.55 0.00 0.15 0.09 0.09 0.13 0.15 23.8% 22.7% 9.8% 4.1%
5 0 0.44 0.00 0.14 0.10 0.10 0.13 0.15 18.0% 17.4% 9.6% 4.3%
0 0.001 1.00 0.00 0.11 0.06 0.06 0.10 0.11 31.6% 28.7% 10.0% 3.7%
1 0.001 0.70 0.00 0.10 0.05 0.06 0.09 0.10 28.1% 26.5% 9.8% 4.2%
3 0.001 0.41 0.00 0.09 0.06 0.06 0.08 0.09 19.0% 19.3% 8.8% 4.1%
5 0.001 0.28 0.00 0.09 0.06 0.06 0.08 0.09 13.4% 14.5% 8.1% 4.4%
0 0.01 1.00 0.00 0.04 0.02 0.02 0.04 0.04 25.3% 23.4% 9.4% 3.6%
1 0.01 0.38 0.00 0.05 0.03 0.04 0.04 0.05 14.3% 14.2% 7.6% 3.8%
3 0.01 0.18 0.00 0.04 0.03 0.03 0.04 0.05 11.6% 12.3% 7.7% 4.4%
5 0.01 0.10 0.00 0.05 0.05 0.04 0.05 0.06 7.9% 9.0% 7.5% 4.2%

Notes: We impose that, for every simulated sample m = 1, . . . , 30000, the outcome variable is Ym
i = ∑s w̃isA

m
s , with Am

s drawn from a
normal distribution with mean zero and variance equal to five. The shares {w̃is}i,s vary across the cases described in each of the rows
in the table above but, for each of these rows, are fixed across the 30,000 simulated samples. Specifically, given shares {wis}i,s that
capture the employment share in CZ i employed in sector s in 1990, we generate each w̃is according to the expression in eq. (D.19), with
uis and vis drawn randomly according to the distributions uis ∼ N(0, σ2

u) and U[0, σv]. The first two columns in the table above indicate
the values of σu and σv used to generate {w̃is}i,s in each case. As illustrated in the third column, the larger the value of either σu or
σv, the lower the correlation coefficient ρwis ,w̃is between wis and w̃is across regions and sectors. Given the generated outcome variables
{Ym

i }i for each simulated sample m, we compute the OLS estimate of β in the regression Ym
i = βXm

i + εm
i , with Xm

i = ∑s wisX
m
s and

each Xm
s drawn randomly from a normal distribution with mean zero and variance equal to 5. We indicate the mean and standard

deviation of the OLS estimates of β across the simulated samples (columns (4) and (5)), the median effective standard error estimates
(columns (6) to (9)), and the percentage of placebo samples for which we reject the null hypothesis H0 : β = 0 using a 5% significance
level test (columns (10) to (13)). Robust is the Eicker-Huber-White standard error; Cluster is the standard error that clusters CZs in the
same state; AKM is the standard error in Remark 5; AKM0 is the confidence interval in Remark 6.

level test that are around 30%–35%. In contrast, the AKM and AKM0 inference procedures exhibit
rejection rates that are 10% and 4%, respectively. The remaining rows of Table D.6 show that, as we
increase the value of σv and σu, the correlation between wis and w̃is declines, which attenuates the
overrejection problem affecting testing procedures that rely on robust and state-clustered standard
errors. However, the rejection rates of these two inference methods are still above 10% even when the
correlation between wis and w̃is is as low as 0.18. For all cases, the rejection rates of the AKM and
AKM0 testing procedures remain stable and close to 5%.

D.7 Heterogeneous treatment effects

We now present a placebo exercise to evaluate the performance of our inference procedures in the
presence of heterogeneous treatment effects. For each placebo sample m, we construct the dependent
variable as

Ym
i = Yi + ∑

s
wisX

m
s βis such that βis = λwis.

In all placebo samples, Yi is the change in the share of working-age population employed in CZ i and
wis is the share of sector s in total employment of CZ i. As before, in each placebo sample, we take
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Table D.7: Heterogeneous treatment effects

Estimate Median eff. s.e. Rejection rate of H0 : β = β0

λ β0 Mean Std. dev Robust Cluster AKM AKM0 Robust Cluster AKM AKM0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

0 0.00 0.00 1.98 0.73 0.92 1.91 2.22 0.48 0.38 0.07 0.04
1 0.14 0.15 1.98 0.73 0.92 1.91 2.22 0.48 0.38 0.07 0.04
3 0.43 0.45 1.98 0.74 0.92 1.91 2.22 0.48 0.38 0.07 0.04
5 0.72 0.74 1.98 0.74 0.93 1.91 2.23 0.48 0.37 0.08 0.04

Notes: This table indicates the median and standard deviation of the OLS estimates of β in eq. (1) across the placebo
samples (columns (3) and (4)), the median effective standard error estimates (columns (5) to (8)), and the percentage
of placebo samples for which we reject the null hypothesis H0 : β = β0 using a 5% significance level test (columns
(9) to (12)) where the true value of β0 shown in column (2) is given in eq. (D.20). Robust is the Eicker-Huber-
White standard error; Cluster is the standard error that clusters CZs in the same state; AKM is the standard error in
Remark 5; AKM0 is the confidence interval in Remark 6. For each inference procedure, the median effective standard
error is equal to the median length of the corresponding 95% confidence interval divided by 2× 1.96. Results are
based on 30,000 placebo samples.

independent draws of the sector-level shifters from a normal distribution with a mean of zero and a
variance of 5.

The parameter λ controls the degree of heterogeneity in the treatment effect of the sector-level
shifters. When λ = 0, this placebo exercise is identical to our baseline placebo exercise in Section 2.
We are interested in inference on the OLS estimand. By Proposition 1, it is given by

β0 = ∑
i,s

w2
isβis/ ∑

i,s
w2

is = λ ∑
i,s

w3
is/ ∑

i,s
w2

is, (D.20)

which is linear in λ.
Table D.7 presents the results of the placebo exercise for different values of λ. For all values of

λ, the average OLS estimate in column (3) is similar to β0. Results indicate that both the standard
deviation of the OLS estimator and the performance of the inference procedures are not sensitive to
the value of λ.

D.8 Other extensions

In Table D.8, we report results analogous to those in Table D.1 for outcome variables Yi other than
the employment rate in CZ i. The rejection rates that we obtain are very similar to those reported in
Table D.1 and discussed in Section 6.2.

In Table D.9, we investigate the sensitivity of our results to an alternative definition of “region”.
We report results for a placebo exercise that is analogous to the baseline placebo exercise discussed
in Sections 2 and 6.1 except for the use of counties instead of CZs as regions. We use the County
Business Patterns data to construct employment by county and sector using the imputation procedure
in Autor, Dorn and Hanson (2013). Since this procedure does not yield wage bill information at the
county level, we only implement the placebo exercise for the outcome variables used in Panel A of
Tables 1 and 2: employment rate; employment rate in manufacturing; and, employment rate in non-
manufacturing. The results show that the rejection rates of all four inference procedures we consider
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are very similar to those obtained in the baseline placebo exercise, which are reported precisely in
Panel A of Tables 1 and 2.

In Table D.10, we investigate the sensitivity of our results to an alternative definition of “sector”.
We report results for a placebo exercise that is analogous to the baseline placebo exercise discussed
in Sections 2 and 6.1 except for the use of 331 occupations instead of 396 sectors as the unit of ob-
servation at which the shifters vary. The results in Table D.10 show that the overrejection problem
affecting tradition inference procedures is even more severe when the shift-share covariate aggre-
gates occupation-specific shifters than when it aggregates sectoral shifters. Actually, only the AKM0
inference procedure yields rejection rates for the null hypothesis H0 : β = 0 that are below the 5%
significance level of the test.
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Table D.8: Controlling for the size of the residual sector in each CZ

Estimate Median eff. s.e. Rejection rate of H0 : β = 0

Mean Std. dev Robust Cluster AKM AKM0 Robust Cluster AKM AKM0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Shifters with zero mean
Outcome variable: change in the share of working-age population in manufacturing
No controls −0.02 1.87 0.60 0.76 1.78 2.06 55.5% 44.2% 8.1% 4.2%
Control: 1−∑s wis 0.00 1.03 0.56 0.63 0.97 1.12 30.1% 25.8% 10.0% 4.4%
Change in the share of working-age population in non-manufacturing
No controls 0.00 0.94 0.58 0.67 0.89 1.04 23.0% 17.5% 8.1% 4.5%
Control: 1−∑s wis 0.00 1.05 0.60 0.68 0.97 1.12 27.5% 22.6% 9.8% 5.4%
Outcome variable: change in average log-weekly wage of all employees
No controls 0.05 2.67 1.02 1.34 2.58 3.00 47.0% 33.9% 7.8% 4.4%
Control: 1−∑s wis 0.00 1.21 0.95 1.07 1.15 1.33 12.9% 8.9% 7.9% 4.8%
Outcome variable: change in average log-weekly wage of all employees in manufacturing
No controls 0.02 2.94 1.69 2.11 2.75 3.19 27.0% 17.3% 9.3% 4.5%
Control: 1−∑s wis 0.01 2.13 1.66 1.92 1.98 2.28 12.5% 8.0% 7.7% 4.5%
Outcome variable: change in average log-weekly wage of all employees in non-manufacturing
No controls 0.00 2.62 1.05 1.33 2.56 2.98 44.5% 32.8% 7.6% 4.4%
Control: 1−∑s wis 0.00 1.24 0.98 1.08 1.17 1.35 12.8% 9.5% 8.5% 4.7%

Panel B: Shifters with non-zero mean
Outcome variable: change in the share of working-age population in manufacturing
No controls −3.92 1.12 0.57 0.81 1.34 1.51 98.7% 97.6% 80.6% 78.7%
Control: 1−∑s wis 0.00 1.05 0.56 0.63 0.97 1.12 31.1% 26.4% 10.3% 4.6%
Outcome variable: change in the share of working-age population in non-manufacturing
No controls −0.75 0.71 0.48 0.64 0.76 0.86 37.2% 22.2% 14.2% 13.9%
Control: 1−∑s wis 0.01 1.05 0.60 0.68 0.97 1.13 27.6% 22.5% 9.7% 5.2%
Outcome variable: change in average log-weekly wage of all employees
No controls −6.52 1.55 0.97 1.58 1.91 2.15 99.6% 98.3% 90.9% 90.5%
Control: 1−∑s wis 0.01 1.22 0.95 1.08 1.15 1.33 13.4% 9.1% 8.1% 4.9%
Outcome variable: change in average log-weekly wage of all employees in manufacturing
No controls −5.38 1.88 1.54 2.29 1.94 2.17 89.3% 69.8% 75.1% 71.0%
Control: 1−∑s wis −0.02 2.13 1.66 1.91 1.98 2.28 12.5% 8.1% 7.8% 4.7%
Outcome variable: change in average log-weekly wage of all employees in non-manufacturing
No controls −6.31 1.54 0.99 1.58 1.90 2.15 99.4% 97.8% 89.0% 88.6%
Control: 1−∑s wis 0.01 1.24 0.98 1.08 1.17 1.35 12.6% 9.4% 8.3% 4.7%

Notes: This table indicates the median and standard deviation of the OLS estimates of β in eq. (1) across the placebo samples (columns
(1) and (2)), the median effective standard error estimates (columns (3) to (6)), and the percentage of placebo samples for which
we reject the null hypothesis H0 : β = 0 using a 5% significance level test (columns (7) to (10)). Robust is the Eicker-Huber-White
standard error; Cluster is the standard error that clusters CZs in the same state; AKM is the standard error in Remark 5; AKM0 is the
confidence interval in Remark 6. For each inference procedure, the median effective standard error is equal to the median length of the
corresponding 95% confidence interval divided by 2× 1.96. Results are based on 30,000 placebo samples. In Panel A, (Xm

1 , . . . ,Xm
S−1)

is drawn i.i.d. from a normal distribution with zero mean and variance equal to 5 in each placebo sample. In Panel B, (Xm
1 , . . . ,Xm

S−1)
is drawn i.i.d. from a normal distribution with mean equal to one and variance equal to 5 in each placebo sample. For each of the two
panels, the first row presents results in which no control is accounted for in the estimating equation; the second row presents results
in which we control for the size of the residual sector, 1−∑s wis.
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Table D.9: Magnitude of standard errors and rejection rates: county-level analysis

Estimate Median eff. s.e. Rejection rate of H0 : β = 0

Mean Std. dev Robust Cluster AKM AKM0 Robust Cluster AKM AKM0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Change in the share of working-age population
employed (all) 0.00 0.65 0.24 0.30 0.61 0.67 47.3% 36.3% 8.0% 4.8%
employed (manuf.) 0.00 0.77 0.18 0.27 0.71 0.78 65.5% 51.4% 8.1% 4.6%
employed (non-manuf.) 0.00 0.37 0.21 0.22 0.35 0.39 27.9% 25.3% 8.8% 4.6%

Notes: This table indicates the median and standard deviation of the OLS estimates of β in eq. (1) across the placebo samples (columns
(1) and (2)), the median effective standard error estimates (columns (3) to (6)), and the percentage of placebo samples for which we reject
the null hypothesis H0 : β = 0 using a 5% significance level test (columns (7) to (10)). Robust is the Eicker-Huber-White standard error;
Cluster is the standard error that clusters CZs in the same state; AKM is the standard error in Remark 5; AKM0 is the confidence interval
in Remark 6. For each inference procedure, the median effective standard error is equal to the median length of the corresponding 95%
confidence interval divided by 2× 1.96. Results are based on 30,000 placebo samples.

Table D.10: Magnitude of standard errors and rejection rates: occupation-specific shifters

Estimate Median eff. s.e. Rejection rate of H0 : β = 0

Mean Std. dev Robust Cluster AKM AKM0 Robust Cluster AKM AKM0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Change in the share of working-age population
employed (all) 0.01 8.59 1.13 2.45 7.46 27.82 83.5% 62.4% 24.9% 4.0%
employed (manuf.) 0.02 8.13 0.80 1.82 6.55 25.50 89.7% 75.3% 32.9% 3.2%
employed (non-manuf.) −0.01 4.03 0.96 1.76 3.06 9.86 65.1% 38.4% 17.9% 3.8%

Panel B: Change in average log weekly wage
employed (all) 0.00 12.58 1.74 4.23 10.1 38.10 84.8% 62.6% 30.6% 3.4%
employed (manuf.) −0.07 11.11 3.24 6.18 9.41 31.96 56.2% 27.2% 11.7% 4.9%
employed (non-manuf.) 0.01 12.60 1.77 4.19 9.96 37.96 84.9% 64.1% 31.8% 3.2%

Notes: This table indicates the median and standard deviation of the OLS estimates of β in eq. (1) across the placebo samples (columns
(1) and (2)), the median effective standard error estimates (columns (3) to (6)), and the percentage of placebo samples for which we reject
the null hypothesis H0 : β = 0 using a 5% significance level test (columns (7) to (10)). Robust is the Eicker-Huber-White standard error;
Cluster is the standard error that clusters CZs in the same state; AKM is the standard error in Remark 5; AKM0 is the confidence interval
in Remark 6. For each inference procedure, the median effective standard error is equal to the median length of the corresponding 95%
confidence interval divided by 2× 1.96. Results are based on 30,000 placebo samples.
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Appendix E Empirical applications: additional results

E.1 Effect of Chinese exports on U.S. labor market outcomes

This section presents additional results that complement the estimates in Section 7.1 of the effect of
Chinese import competition on US local labor markets following the approach in Autor, Dorn and
Hanson (2013, ADH hereafter).

E.1.1 Placebo exercise: alternative distributions of shifters

The reduced-form and the first-stage specifications have a panel data structure discussed Section 5.2.
Since the outcome data and the share matrix W is the same as in the placebo exercise in Appendix D.4,
the results of that placebo exercise are informative about the finite-sample properties of the four
inference procedures that we consider (robust standard errors, state-clustered standard errors, and
the AKM and AKM0 procedures) in the ADH empirical application. In this section, we investigate
the robustness of the results in Appendix D.4 to alternative distributions of the sectoral shifters.
In particular, instead of assuming that the shifters are i.i.d. according to a normal distribution, we
consider distributions that are arguably closer to the distribution of the actual shifters employed in
ADH (the growth in sectoral Chinese exports to high-income countries other than the US).

First, we consider a placebo exercise that differs from that in Appendix D.4 only in that the sectoral
shifters are drawn independently from the empirical distribution of the shifters used in ADH. The
results are presented in Panel A of Table E.1. As in the analysis in Appendix D.4, although the data
generating process for our placebo exercise implies that β = 0, the rejection rates of a 5% significance
level test of the null hypothesis H0 : β = 0 are substantially above 5% when robust and state-clustered
standard errors are used. The rejection rates implied by the AKM and AKM0 procedures are much
closer to 5%, with rejection rates are close to 10%.

Second, to get closer to the specification in ADH, we incorporate into our placebo specification
the baseline set of controls that ADH use (see, e.g., column (6) of Table 3 in ADH). In particular, we
draw the sectoral shifters from the empirical distribution of shifters used in ADH after partialling out
the baseline set of controls used in ADH.5 Panel B of Table E.1 reports the results. For the Robust, Cluster
and AKM testing procedures, the rejection rates in Panel B are very similar to those in Panel A, while
the AKM0 rejection rate is much closer to the nominal level.

Next, we consider relaxing the assumption that the sectoral shifters are independent, or indepen-
dent across clusters. This specification is motivated by the concern that the 1990–2000 and 2000–2007
sector-specific growth rates in Chinese exports to high-income countries other than the US were deter-
mined at least partly by a common factor that had possibly heterogeneous effects across sectors. We
formalize this by modeling year-t imports from China of goods in sector s by high-income countries

5To partial out a set of controls (which vary by region) from the shifters (which vary by sector), we implement the
following two-step procedure. First, we obtain the residual of a regression of the shift-share instrumental variable Xi used
in ADH on the set of controls listed in column (6) of Table 3 in ADH; let Ẍi denote this residual. We then draw the shifters
from the empirical distribution of the residualized sectoral shifters Xres, which correspond to the regression coefficients
from regressing Ẍi onto the vector of shares (wi1, . . . , wiS), i.e. Xres = (W ′W)−1W ′Ẍ.
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Table E.1: Alternative distributions of sectoral shifters: placebo

Estimate Median eff. s.e. Rejection rate of H0 : β = 0

Mean Std. dev Robust Cluster AKM AKM0 Robust Cluster AKM AKM0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Empirical distribution of ADH (2013) shocks
period: 1990–2000 0.11 0.49 0.16 0.19 0.38 0.85 48.5% 39.9% 10.7% 9.3%
period: 2000–2007 0.04 0.16 0.05 0.06 0.13 0.31 47.9% 39.4% 11.0% 9.5%

Panel B: Empirical distribution of residualized ADH (2013) shocks
period: 1990–2000 0.00 0.14 0.05 0.06 0.12 0.21 46.5% 37.9% 10.4% 3.7%
period: 2000–2007 0.00 0.07 0.03 0.03 0.06 0.11 46.4% 37.7% 10.9% 3.7%

Notes: This table indicates the median and standard deviation of the OLS estimates of β in eq. (1) across the placebo samples (columns
(1) and (2)), the median effective standard error estimates (columns (3) to (6)), and the percentage of placebo samples for which
we reject the null hypothesis H0 : β = 0 using a 5% significance level test (columns (7) to (10)). Robust is the Eicker-Huber-White
standard error; Cluster is the standard error that clusters CZs in the same state; AKM is the standard error in Remark 5; AKM0 is the
confidence interval in Remark 6. For each inference procedure, the median effective standard error is equal to the median length of
the corresponding 95% confidence interval divided by 2× 1.96. Results are based on 30,000 placebo samples. In Panel A, each Xm

s is
drawn from the empirical distribution of shifters Xs observed in the data; i.e. from the empirical distribution of changes in sectoral
exports from China to high-income countries other than the US. In Panel B, each Xm

s is drawn from the empirical distribution of
residualized shifters Xs observed in the data; i.e. from the empirical distribution of the residuals of projecting the changes in sectoral
exports from China to high-income countries other than the US on the full vector of baseline controls in ADH; i.e. those in column 6
of Table 3 in Autor, Dorn and Hanson (2013).

other than the US, IMPst, as
IMPst = XCh

st + εst, (E.1)

where XCh
st is a sectoral component of Chinese exports common to all destinations (i.e. it accounts

for export supply factors), and εst is sector- and destination-specific component (i.e. it accounts for
export demand factors). We impose the following factor structure on XCh

st :

XCh
st = ηsX̄Ch

t + est. (E.2)

The term X̄Ch
t captures unobserved factors that may potentially impact Chinese exports across all

sectors (e.g. growth in Chinese labor productivity). The row-vector of sector-specific loadings ηs

indicates how Chinese exports in each sector s react to changes in the common unobserved factors
captured by X̄Ch

t (e.g. how sensitive each sector s is to growth in Chinese labor productivity). Finally,
est is a sector- and year-specific idiosyncratic component of Chinese exports. Note that, as long as the
distribution of X̄Ch

t is not degenerate, the shifter IMPst will be correlated across any two sectors s and
s′ unless the loadings ηs and ηs′ are orthogonal. This correlation in shifters violates the independence
assumption imposed by Assumption 2(i) in Section 4.1 in a way that is not accounted for by the
clustering extension considered in Section 5.1. In the placebo simulations that follow, we explore the
consequences of the violation of this assumption, as well as modifications of the AKM and AKM0
procedures that account for the potential factor structure in the shifters.

Combining eqs. (E.1) and (E.2) yields

IMPst = ηsX̄Ch
t + εst, with εst = εst + est. (E.3)
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Figure E.1: Histogram of estimates of {ηs}S
s=1

Figure E.2: Histogram of estimates of {us,2007 − us,1991}S
s=1

To remain as close as possible to the empirical application in ADH, we use annual data on sector-
specific exports from China to other high-income countries between 1991 and 2007 (which corre-
sponds to the variable IMPst above) to estimate the common factor X̄Ch

t , the factor loadings {ηs}S
s=1,

and the residuals {εst}S
s=1 for every year t and 4-digit SIC manufacturing sectors s using the interactive

fixed effects estimator in Bai (2009), as implemented by Gomez (2017).
Figure E.1 reports the histogram of the estimates of {ηs}S

s=1. There is considerable dispersion in
the factor loadings across sectors. The estimates also reveal substantial variation across sectors and
years in the idiosyncratic component of Chinese export growth εst; this can be seen in Figure E.2,
which presents a histogram of the sector-specific changes in εst between 1991 and 2007. To provide
a graphical illustration of the relative importance of the two terms entering the right-hand side of
eq. (E.3), Figure E.3 provides a scatterplot of the variables {IMPs,2007 − IMPs,1991}S

s=1 against the
estimates of the terms {ηs(X̄Ch

2007 − X̄Ch
1991)}S

s=1; these terms explain only 27% of the cross-sectoral
variation in export growth from China to high-income countries other than the US between 1991 and
2007.

Table E.2 reports the results of a placebo exercise illustrating the effects of the correlation in sec-
toral shifters implied by the estimated version of the model in eq. (E.3) on the finite-sample properties
of the AKM and AKM0 procedures. Specifically, we modify the baseline placebo exercise described
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Figure E.3: Scatterplot of {IMPs,2007 − IMPs,1991}S
s=1 against {ηs(X̄Ch

2007 − X̄Ch
1991)}S

s=1

Notes: Observed data on sector-specific export flows from China to high-income coun-
tries other than the US (i.e. IMPs,2007 − IMPs,1991) appear in the vertical axis; estimates
of ηs(X̄Ch

2007 − X̄Ch
1991) appear in the horizontal axis. The R2 of this regression is 0.273.

in Section 6.1 by instead generating the simulated sectoral shifters as

Xm
s = κηm

s ∆ ˆ̄XCh + um
s , with ∆ ˆ̄XCh = ˆ̄XCh

2007 − ˆ̄XCh
1991 (E.4)

where ˆ̄XCh
t denotes the estimate of X̄Ch

t for t = 1991 and t = 2007. The parameter κ controls the
relative importance of the factor component in the simulated shifters. For each simulated sample
m, the residuals um

s are drawn independently from a distribution that we vary across specifications.
The term ηm

s is either fixed across the placebo samples m and set to equal to the estimate η̂s, or else
drawn independently from the empirical distribution of η̂s. Whether the factor loadings ηs are fixed
across the placebo samples or random (and independent across s) is important for the properties of
the AKM and AKM0 inference procedures. If the loadings are random and independent, the shifters
Xs will also be independent across s, so that Assumption 2(i) in Section 4.1 holds, and we expect
the AKM and AKM0 inference procedures to have good asymptotic properties even if conditionally
on the loadings, the interactive fixed effects structure in eq. (E.3) applies. On the other hand, if the
loadings are fixed across simulation samples, the shifters will be correlated, so that the asymptotic
results in Section 4 do not apply.

In Panels A and B in Table E.2, we fix ηm
s = η̂s for every sector s and placebo sample m, with um

s

drawn i.i.d. from mean-zero normal distribution with variance 5 in Panel A, and from the empirical
the distribution of ε̂s,2007 − ε̂s,1991 in Panel B, where ε̂st is the interactive fixed effects estimate of the
term εst in eq. (E.3). In the first three rows of each panel, when no controls are included, larger values
of κ (which imply a larger weight on the interactive fixed effects component ηm

s ∆ ˆ̄XCh in eq. (E.4))
imply larger rejection rates of the null H0 : β = 0 when we use either the AKM or the AKM0 infer-
ence procedures. For κ = 1, which corresponds to the specification in ADH, the rejection rates for
AKM0 are close to the nominal rates, and AKM suffers from moderate overrejection. Importantly,
this overrejection problem can be fixed by controlling for the term ηm

s ∆ ˆ̄XCh as an additional covariate
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in our regression specification (see rows 4 to 6 in Panels A and B in Table E.2). This is in line with
our theory, since conditioning on this control restores the independence assumption on the shifters.
The takeaway form the results in Panels A and B in Table E.2 is thus that, if one thinks that the true
data generating process for the sectoral shifters {Xs}S

s=1 corresponds to the model in eq. (E.4), then
one should obtain a consistent estimate of ηs∆ ˆ̄XCh and control for it in the regression specification in
order to ensure that the shifters are independent conditional on the controls, so that Assumption 2(i)
holds once we condition on the control vector Zi.

In Panel C of Table E.2, instead of holding the loadings fixed, we draw both ηm
s and νm

s in each
placebo sample m from the empirical distribution of the interactive fixed effects estimates, indepen-
dently across s. This makes the shifters independent across s, so that, as discussed above, Assump-
tion 2(i) in Section 4.1 holds even without conditioning on ηs∆ ˆ̄XCh. As a result, the rejection rates for
the AKM and AKM0 inference procedures reported in Panel C are similar to those reported in Table 2
in Section 6.1 and unaffected by the value of the parameter κ in eq. (E.4). In particular, the AKM0
inference procedure yields always rejection rates that are very close to 5%.

E.1.2 Placebo exercise: accounting for controls in the first-stage regression

The placebo exercise described in Sections 2.2 and 6 use the outcome variables Yi and the shares wis

used in Autor, Dorn and Hanson (2013) for the period 2000–2007. The placebo exercise discussed
in Appendix D.4 gets closer to the reduced-form empirical specification in Autor, Dorn and Hanson
(2013) by incorporating information on outcome variables and shares both for the period 1990–2000
and for the period 2000–2007. However, these two placebo exercises implement a specification that
differs from that in Autor, Dorn and Hanson (2013) in that it includes no controls. As argued in
Section 3.3, the overrejection problem affecting robust and state-clustered standard errors that is
documented in the simulations is caused by cross-regional correlation in residuals across observations
with similar shares. The inclusion of controls may improve the performance these methods, since the
controls may soak up some (or even most) of the cross-regional correlation in the residuals.

In Table E.3, we introduce a placebo sample for the first-stage regression in Autor, Dorn and
Hanson (2013). In Panel A, when we do not include any controls, both robust and state-clustered
standard errors over-reject the null hypothesis H0 : β1 = 0. In Panel B, we include as a control the
shift-share instrumental variable used in Autor, Dorn and Hanson (2013), and the rejection rate for
these procedures decreases to about 20%. Finally, in Panel C, we additionally include all controls used
in the baseline specification in Autor, Dorn and Hanson (2013), and the Robust and Cluster rejection
rates get closer to 14%. It can also be seen from Table E.3 that the rejection rates for the AKM and
AKM0 procedures are always very close to the 5% nominal level.

E.1.3 Additional empirical results

In Tables E.4 and E.5 we extend the results presented in Table 5 in Section 7.1. Specifically, Tables E.4
and E.5 present results not only for all workers (in Panel A), but also two subsets of workers: college
graduates (in Panel B) and non-college graduates (in Panel C). Additionally, while the AKM and
AKM0 confidence intervals presented in Table 5 cluster observations belonging to the same 3-digit
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Table E.2: Simulation for common China shock with heterogeneous sectoral exposure

Estimate Median eff. s.e. Rejection rate of H0 : β = 0

κ Control for Mean Std. dev Robust Cluster AKM AKM0 Robust Cluster AKM AKM0
ηm

s ∆ ˆ̄XCh (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: ηm
s = η̂s for all m and s; um

s ∼ N(0, 5)
0 No 0.00 0.17 0.08 0.09 0.14 0.17 35.4% 31.3% 10.3% 3.9%
1 No 0.00 0.15 0.07 0.07 0.12 0.14 38.2% 33.6% 12.4% 5.1%
3 No 0.00 0.09 0.04 0.04 0.06 0.07 42.2% 35.9% 17.5% 8.4%
0 Yes 0.00 0.16 0.08 0.08 0.14 0.16 34.9% 31.6% 10.4% 4.2%
1 Yes 0.00 0.16 0.08 0.08 0.14 0.16 35.1% 31.8% 10.5% 4.3%
3 Yes 0.00 0.16 0.08 0.08 0.14 0.16 34.9% 31.9% 10.5% 4.3%

Panel B: ηm
s = η̂s for all m and s; um

s ∼ Femp

0 No 0.00 0.43 0.20 0.21 0.35 0.49 36.5% 33.2% 12.1% 3.5%
1 No 0.00 0.26 0.11 0.12 0.18 0.21 42.3% 36.3% 17.3% 8.2%
3 No 0.00 0.10 0.04 0.05 0.07 0.08 43.9% 37.3% 18.8% 9.4%
0 Yes 0.00 0.43 0.19 0.21 0.34 0.46 36.7% 33.7% 12.7% 3.9%
1 Yes 0.00 0.43 0.19 0.21 0.34 0.46 36.0% 33.1% 12.3% 3.7%
3 Yes 0.00 0.43 0.19 0.21 0.34 0.46 36.3% 33.4% 12.3% 3.6%

Panel C: (ηm
s , um

s ) ∼ Femp

0 No 0.00 0.43 0.20 0.21 0.35 0.49 36.7% 33.1% 12.0% 3.5%
1 No 0.00 0.26 0.12 0.13 0.22 0.26 36.0% 32.1% 10.5% 3.8%
3 No 0.00 0.10 0.05 0.05 0.09 0.11 35.3% 31.4% 10.3% 3.7%
0 Yes 0.00 0.43 0.19 0.21 0.34 0.46 36.2% 33.1% 12.1% 3.5%
1 Yes 0.00 0.43 0.19 0.21 0.34 0.46 37.1% 33.5% 12.4% 3.9%
3 Yes 0.00 0.42 0.18 0.20 0.32 0.42 37.8% 34.4% 13.5% 5.2%

Notes: We impose the assumption that the year-specific sectoral shifters IMPst are generated from the model in eq. (E.3). We compute
the estimates of the parameters in this model using Gomez (2017), which implements the estimation approach in Bai (2009). To
compute these estimates, we use annual data on exports from China to high-income countries other than the US, IMPst, between 1991
and 2007 (i.e. the same sectoral exports used to construct the instrumental variable in Autor, Dorn and Hanson (2013)) for all sectors
used in our baseline placebo exercise. We use these estimates to construct a treatment variable Xm

i ≡ ∑s wisX
m
s , with each Xm

s defined
as in eq. (E.4), for every simulated sample m = 1, . . . , 30, 000. The different panels impose different assumptions on the distribution of
(ηm

s , um
s ) across sectors and simulated samples. In Panels A and B in Table E.2, we fix ηm

s = η̂s for every sector s and placebo sample m.
The placebo simulations whose results we present in these two panels differ in the distribution from which um

s is drawn. In Panel A,
we draw um

s independently across sectors and placebo samples either from a normal distribution with mean zero and variance equal
to five. In Panel B, we draw um

s independently from the distribution of ε̂s,2007 − ε̂s,1991 across sectors, where, for t = 2007 and t = 1991,
ε̂st is the estimate of the term εst in eq. (E.3) (in Panel B). The placebo exercises in Panel C of Table E.2 differs from that in Panel B in
that, in the former, each ηm

s is independently drawn across sectors s and placebo samples m from the distribution of η̂s across sectors,
where η̂s is our estimate of the term ηs in eq. (E.3). In all three panels, we compute the outcome variable as Ym

i = ∑s wisµm
s , with

µm
s drawn randomly from a normal distribution with mean zero and variance equal to 5. Given the variables Ym

i and Xm
i for each

simulated sample m, we compute an estimate of β in the regression Yi = βXm
i + εi (whenever there is a ‘No’ in the second column) or

in the regression Yi = βXm
i + γ ∑s ηm

s ∆ ˆ̄XCh + εi (whenever there is a ‘Yes’ in the second column). We indicate the median and standard
deviation of the OLS estimates of β across the simulated samples (columns (1) and (2)), the median effective standard error estimates
(columns (3) to (6)), and the percentage of placebo samples for which we reject the null hypothesis H0 : β = 0 using a 5% significance
level test (columns (7) to (10)). Robust is the Eicker-Huber-White standard error; Cluster is the standard error that clusters CZs in the
same state; AKM is the standard error in Remark 5; AKM0 is the confidence interval in Remark 6.
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Table E.3: Placebo exercise for the first-stage regression in Autor, Dorn and Hanson (2013)

Estimate Median eff. s.e. Rejection rate H0 : β = 0

Mean Std. dev Robust Cluster AKM AKM0 Robust Cluster AKM AKM0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: No controls
0.01 1.73 0.72 0.81 1.63 1.88 41.5% 36.7% 6.5% 4.0%

Panel B: Controls: ADH IV
0.01 1.01 0.63 0.63 0.93 1.06 20.6% 21.3% 7.8% 4.3%

Panel C: Controls: ADH IV and all controls included in Table 3, col. 6 of in Autor et al. (2013)
0.00 0.68 0.51 0.51 0.64 0.72 14.4% 14.1% 5.6% 3.8%

Notes: This table indicates the median and standard deviation of the OLS estimates of β in eq. (1) across the placebo samples
(columns (1) and (2)), the median effective standard error estimates (columns (3) to (6)), and the percentage of placebo samples for
which we reject the null hypothesis H0 : β = 0 using a 5% significance level test (columns (7) to (10)). Robust is the Eicker-Huber-
White standard error; Cluster is the standard error that clusters CZs in the same state; AKM is the standard error in Remark 5; AKM0
is the confidence interval in Remark 6. For each inference procedure, the median effective standard error is equal to the median
length of the corresponding 95% confidence interval divided by 2× 1.96. Results are based on 30,000 placebo samples. In all three
panels, each Xm

s is i.i.d drawn from a normal distribution with mean zero and variance equal to 5. In Panel A, we introduce no
controls in the regression equation. In Panel B, we control for the instrumental variable used in Autor, Dorn and Hanson (2013);
i.e. the shift-share aggregator of changes in sectoral exports from China to high-income countries other than the US. In Panel C, we
control for the instrumental variable used in Autor, Dorn and Hanson (2013) and for the broadest set of controls used in that paper;
i.e. the set of controls used in column 6 of Table 3 of Autor, Dorn and Hanson (2013).

sector in different periods (which we denote in Tables E.4 and E.5 as AKM (3d cluster) and AKM0 (3d
cluster)), Tables E.4 and E.5 also present AKM and AKM0 confidence intervals that only cluster on
time (denoted as AKM (4d cluster) and AKM0 (4d cluster)), and AKM and AKM0 that treat shifters as
independent both across 4-digit sectors and across time periods (denoted as AKM (indep.) and AKM0
(indep.))

There are several takeaways from the results in Tables E.4 and E.5. First, accounting for the
possible correlation in the shifters has only a minimal impact on the AKM confidence intervals (i.e.
the AKM (indep.), AKM (4d cluster), and AKM (3d cluster) confidence intervals are always very similar);
the impact on the AKM0 confidence intervals is a bit larger but also quite small. Second, while the
AKM and AKM0 confidence intervals are quite similar to the Robust and Cluster ones in the case
of college graduates (Panel B), they are much larger for non-college graduates (Panel C). Finally,
similarly to what we observed in Table 5 in Section 7.1, the AKM0 confidence interval is not centered
around the point estimate: it includes more values of the parameter to the left of the point estimate
than it does to the right.
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Table E.4: Effect of Chinese on U.S. Commuting Zones in Autor, Dorn and Hanson (2013): Reduced-
Form Regression

Change in the employment share Change in avg. log weekly wage

All Manuf. Non-Manuf. All Manuf. Non-Manuf.
(1) (2) (3) (4) (5) (6)

Panel A: All Workers
β̂ -0.49 -0.38 -0.11 -0.48 0.10 -0.48
Robust [-0.71,-0.27] [-0.48,-0.28] [-0.31,0.08] [-0.80,-0.16] [-0.50,0.69] [-0.83,-0.13]
Cluster [-0.64,-0.34] [-0.45,-0.30] [-0.27,0.05] [-0.78,-0.18] [-0.51,0.70] [-0.81,-0.15]
AKM (indep.) [-0.79,-0.18] [-0.52,-0.24] [-0.33,0.10] [-0.84,-0.12] [-0.47,0.66] [-0.88,-0.08]
AKM0 (indep.) [-1.08,-0.25] [-0.63,-0.26] [-0.51,0.07] [-1.08,-0.15] [-0.91,0.58] [-1.22,-0.15]
AKM (4d cluster) [-0.79,-0.19] [-0.52,-0.23] [-0.33,0.10] [-0.87,-0.09] [-0.49,0.68] [-0.90,-0.07]
AKM0 (4d cluster) [-1.10,-0.26] [-0.66,-0.25] [-0.52,0.07] [-1.16,-0.13] [-0.99,0.59] [-1.28,-0.14]
AKM (3d cluster) [-0.81,-0.17] [-0.52,-0.23] [-0.35,0.12] [-0.88,-0.07] [-0.50,0.69] [-0.93,-0.03]
AKM0 (3d cluster) [-1.24,-0.24] [-0.67,-0.25] [-0.64,0.08] [-1.27,-0.10] [-1.16,0.61] [-1.47,-0.11]

Panel B: College Graduates
β̂ -0.27 -0.37 0.11 -0.48 0.29 -0.47
Robust [-0.42,-0.12] [-0.48,-0.26] [-0.04,0.25] [-0.82,-0.13] [-0.10,0.68] [-0.83,-0.11]
Cluster [-0.39,-0.14] [-0.48,-0.27] [-0.04,0.26] [-0.83,-0.13] [-0.14,0.72] [-0.81,-0.12]
AKM (indep.) [-0.45,-0.09] [-0.50,-0.25] [-0.03,0.24] [-0.82,-0.13] [-0.11,0.69] [-0.83,-0.11]
AKM0 (indep.) [-0.57,-0.11] [-0.56,-0.24] [-0.11,0.24] [-1.00,-0.13] [-0.35,0.68] [-1.07,-0.14]
AKM (4d cluster) [-0.45,-0.09] [-0.51,-0.23] [-0.04,0.25] [-0.85,-0.10] [-0.14,0.72] [-0.85,-0.09]
AKM0 (4d cluster) [-0.58,-0.11] [-0.59,-0.23] [-0.11,0.25] [-1.08,-0.11] [-0.41,0.70] [-1.14,-0.13]
AKM (3d cluster) [-0.45,-0.08] [-0.52,-0.23] [-0.04,0.25] [-0.88,-0.08] [-0.14,0.72] [-0.89,-0.05]
AKM0 (3d cluster) [-0.62,-0.09] [-0.59,-0.20] [-0.17,0.25] [-1.20,-0.08] [-0.46,0.73] [-1.32,-0.09]

Panel C: Non-College Graduates
β̂ -0.70 -0.37 -0.34 -0.51 -0.06 -0.52
Robust [-1.02,-0.38] [-0.48,-0.25] [-0.60,-0.07] [-0.90,-0.13] [-0.69,0.56] [-0.94,-0.10]
Cluster [-0.92,-0.48] [-0.47,-0.26] [-0.55,-0.12] [-0.84,-0.19] [-0.53,0.40] [-0.87,-0.17]
AKM (indep.) [-1.18,-0.22] [-0.55,-0.19] [-0.68,0.01] [-1.08,0.05] [-0.70,0.57] [-1.15,0.11]
AKM0 (indep.) [-1.68,-0.34] [-0.72,-0.23] [-1.01,-0.06] [-1.59,-0.06] [-1.26,0.45] [-1.78,-0.04]
AKM (4d cluster) [-1.17,-0.23] [-0.55,-0.18] [-0.67,0.00] [-1.09,0.06] [-0.70,0.57] [-1.14,0.11]
AKM0 (4d cluster) [-1.69,-0.35] [-0.74,-0.23] [-1.01,-0.07] [-1.64,-0.05] [-1.30,0.45] [-1.80,-0.04]
AKM (3d cluster) [-1.22,-0.18] [-0.55,-0.18] [-0.71,0.04] [-1.10,0.07] [-0.72,0.60] [-1.16,0.13]
AKM0 (3d cluster) [-1.95,-0.32] [-0.79,-0.23] [-1.21,-0.04] [-1.80,-0.04] [-1.55,0.46] [-2.02,-0.02]

Notes: N = 1, 444 (722 CZs × two time periods). Models are weighted by start of period CZ share of national population. All
regressions include the full vector of baseline controls in ADH; i.e. those in column 6 of Table 3 in Autor, Dorn and Hanson (2013).
95% confidence intervals in square brackets. Robust is the Eicker-Huber-White standard error; Cluster is the standard error that clusters
of CZs in the same state; AKM (indep.) is the standard error in Remark 5; AKM (4d cluster) is the standard error in eq. (40) with 4-digit
SIC clusters; AKM (3d cluster) is the standard error in eq. (40) with 3-digit SIC clusters; AKM0 (indep.) is the confidence interval in
Remark 6; AKM0 (4d cluster) is the confidence interval with 4-digit SIC clusters described in the last sentence of Section 5.1; and AKM0
(3d cluster) is the confidence interval with 3-digit SIC clusters described in the last sentence of Section 5.1.
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Table E.5: Effect of Chinese on U.S. Commuting Zones in Autor, Dorn and Hanson (2013): 2SLS
Regression

Change in the employment share Change in avg. log weekly wage

All Manuf. Non-Manuf. All Manuf. Non-Manuf.
(1) (2) (3) (4) (5) (6)

Panel A: All Workers
β̂ -0.77 -0.60 -0.18 -0.76 0.15 -0.76
Robust [-1.10,-0.45] [-0.78,-0.41] [-0.47,0.12] [-1.23,-0.29] [-0.81,1.11] [-1.27,-0.25]
Cluster [-1.12,-0.42] [-0.79,-0.40] [-0.45,0.10] [-1.26,-0.26] [-0.81,1.11] [-1.28,-0.24]
AKM (indep.) [-1.19,-0.36] [-0.81,-0.38] [-0.50,0.15] [-1.30,-0.22] [-0.76,1.06] [-1.32,-0.20]
AKM0 (indep.) [-1.40,-0.42] [-0.89,-0.39] [-0.65,0.11] [-1.48,-0.23] [-1.14,0.99] [-1.58,-0.25]
AKM (4d cluster) [-1.19,-0.36] [-0.84,-0.36] [-0.50,0.15] [-1.35,-0.17] [-0.80,1.10] [-1.36,-0.17]
AKM0 (4d cluster) [-1.46,-0.43] [-0.96,-0.38] [-0.66,0.12] [-1.61,-0.21] [-1.24,1.03] [-1.69,-0.24]
AKM (3d cluster) [-1.25,-0.30] [-0.84,-0.35] [-0.54,0.18] [-1.37,-0.15] [-0.81,1.11] [-1.42,-0.10]
AKM0 (3d cluster) [-1.69,-0.39] [-1.01,-0.36] [-0.84,0.14] [-1.77,-0.17] [-1.49,1.05] [-1.97,-0.19]

Panel B: College Graduates
β̂ -0.42 -0.59 0.17 -0.76 0.46 -0.74
Robust [-0.64,-0.20] [-0.81,-0.37] [-0.08,0.41] [-1.29,-0.22] [-0.19,1.11] [-1.29,-0.20]
Cluster [-0.67,-0.18] [-0.84,-0.34] [-0.07,0.41] [-1.37,-0.14] [-0.22,1.14] [-1.34,-0.15]
AKM (indep.) [-0.69,-0.16] [-0.83,-0.36] [-0.07,0.40] [-1.30,-0.22] [-0.22,1.14] [-1.28,-0.20]
AKM0 (indep.) [-0.78,-0.16] [-0.87,-0.33] [-0.14,0.40] [-1.44,-0.19] [-0.45,1.13] [-1.47,-0.21]
AKM (4d cluster) [-0.70,-0.15] [-0.85,-0.33] [-0.07,0.41] [-1.34,-0.17] [-0.27,1.18] [-1.31,-0.18]
AKM0 (4d cluster) [-0.82,-0.17] [-0.93,-0.32] [-0.15,0.42] [-1.56,-0.17] [-0.53,1.18] [-1.57,-0.21]
AKM (3d cluster) [-0.71,-0.13] [-0.86,-0.32] [-0.08,0.42] [-1.37,-0.14] [-0.25,1.17] [-1.37,-0.11]
AKM0 (3d cluster) [-0.90,-0.14] [-0.96,-0.27] [-0.23,0.42] [-1.71,-0.13] [-0.61,1.21] [-1.82,-0.15]

Panel C: Non-College Graduates
β̂ -1.11 -0.58 -0.53 -0.81 -0.10 -0.82
Robust [-1.58,-0.64] [-0.76,-0.40] [-0.93,-0.13] [-1.35,-0.28] [-1.07,0.87] [-1.41,-0.23]
Cluster [-1.61,-0.61] [-0.77,-0.39] [-0.94,-0.13] [-1.28,-0.34] [-0.84,0.63] [-1.31,-0.33]
AKM (indep.) [-1.76,-0.47] [-0.83,-0.33] [-1.02,-0.04] [-1.62,0.00] [-1.09,0.89] [-1.71,0.07]
AKM0 (indep.) [-2.12,-0.58] [-0.95,-0.37] [-1.27,-0.11] [-2.01,-0.10] [-1.55,0.79] [-2.20,-0.07]
AKM (4d cluster) [-1.75,-0.47] [-0.85,-0.32] [-1.01,-0.05] [-1.64,0.02] [-1.10,0.90] [-1.72,0.07]
AKM0 (4d cluster) [-2.19,-0.59] [-1.02,-0.36] [-1.29,-0.12] [-2.12,-0.09] [-1.63,0.79] [-2.28,-0.07]
AKM (3d cluster) [-1.86,-0.36] [-0.86,-0.30] [-1.09,0.03] [-1.68,0.06] [-1.14,0.93] [-1.78,0.14]
AKM0 (3d cluster) [-2.62,-0.52] [-1.13,-0.35] [-1.59,-0.07] [-2.43,-0.07] [-2.00,0.79] [-2.69,-0.04]

Notes: N = 1, 444 (722 CZs × two time periods). Models are weighted by start of period CZ share of national population. All
regressions include the full vector of baseline controls in ADH; i.e. those in column 6 of Table 3 in Autor, Dorn and Hanson (2013).
95% confidence intervals in square brackets. Robust is the Eicker-Huber-White standard error; Cluster is the standard error that clusters
of CZs in the same state; AKM (indep.) is the standard error in eq. (39); AKM (4d cluster) is the standard error in eq. (39) with an
adjustment analogous to that in eq. (40) with 4-digit SIC clusters; AKM (3d cluster) is the standard error in eq. (39) with an adjustment
analogous to that in eq. (40) with d-digit SIC clusters; AKM0 (indep.) is the confidence interval built using the standard error in eq. (39)
with the residual (I − Z′(Z′Z)−1Z′)(Y1 − Y2α0) instead of the estimate ε̂∆ = (I − Z′(Z′Z)−1Z′)(Y1 − Y2α̂); AKM0 (4d cluster) and
AKM0 (3d cluster) impose the same adjustment to the procedure in AKM (4d cluster) and AKM (3d cluster), respectively.
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E.2 Estimation of inverse labor supply elasticity

Shift-share IV regressions have been used extensively to estimate inverse local labor supply elastici-
ties. Using the notation in Section 3, we can write the inverse labor supply in each region i as

log ωi = φ̃ log Li − φ̃ log vi, with φ̃ ≡ φ−1, (E.5)

and, consequently, we can relate log changes in wages and log changes employment rates (or number
of employees) for each region i between any two time periods as

ω̂i = φ̃L̂i − φ̃(
G

∑
g=1

w̃igν̂g + ν̂i). (E.6)

E.2.1 Bias in OLS estimate of inverse labor supply elasticity

Using data on log changes in wages and employment rates for a set of regions, {(ω̂i, L̂i)}i, one may
consider using OLS to compute an estimate of φ̃. However, such estimator will be inconsistent. To
show this formally, note that, up to a first-order approximation around the initial equilibrium, we can
write the change in employment in any given region i as

L̂i =
S

∑
s=1

l0
is [θisχ̂s + λiµ̂s + λiη̂is] + (1− λi) (

G

∑
g=1

w̃igν̂g + ν̂i), (E.7)

and the change in wages as

ω̂i = φ̃
S

∑
s=1

l0
is(θisχ̂s + λiµ̂s + λiη̂is)− φ̃λi(

G

∑
g=1

w̃igν̂g + ν̂i). (E.8)

Using eq. (E.6), the probability limit of the OLS estimator of φ̃, ˆ̃φOLS, can be written as

plim( ˆ̃φOLS) =
cov(ω̂i, L̂i)

var(L̂i)
= φ̃ +

cov(−φ̃(∑G
g=1 w̃igν̂g + ν̂i), L̂i)

var(L̂i)
, (E.9)

where cov(−φ̃(∑G
g=1 w̃igν̂g + ν̂i), L̂i)/var(L̂i) captures the asymptotic bias in ˆ̃φOLS as an estimator of

φ̃. To characterize this term, we assume here that the of labor supply shocks {ν̂g}g and {ν̂i}i are
independent of the vector of all labor demand shocks ({χ̂s}s, {µ̂s}s, {η̂is}i,s) conditional on the matrix
of weights W ≡ {l0

is}i,s and the matrix of parameters B ≡ ({βis}i,s, {λi}i)

({χ̂s}s, {µ̂s}s, {η̂is}i,s) ⊥⊥ ({ν̂g}g, {ν̂i}i) | (W, B). (E.10)

Given this assumption and eq. (E.7), we can rewrite plim( ˆ̃φOLS) in eq. (E.9) as

plim( ˆ̃φOLS) = φ̃ +
cov(−φ̃(∑G

g=1 w̃igν̂g + ν̂i), (1− λi)(∑G
g=1 w̃igν̂g + ν̂i))

var(L̂i)
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= φ̃− φ̃(1− λ)
var(∑G

g=1 w̃igν̂g + ν̂i)

var(L̂i)
, (E.11)

where the second equality follows if we additionally assume that elasticity of labor demand in eq. (2)
does not vary across sectors, σs = σ for all s, so that λi = λ for all i. As indicated in Section 3.2, in
this case, λ ≡ φ[φ + σ ∑S

s=1 l0
is]
−1. Thus, if σ > 0 (which guarantees that λ < 1) and φ̃ > 0, then the

OLS will underestimate the inverse labor supply elasticity in the sense that plim( ˆ̃φOLS) < φ̃.

E.2.2 Consistency of IV estimate of inverse labor supply elasticity

Using data for a set of regions and sectors on log changes in wages and employment rates {(ω̂i, L̂i)}i,
initial employment shares {l0

is}i,s, and sectoral labor demand shifters {χ̂s}s, we can write the proba-
bility limit of the IV estimator of φ̃ that uses Xi ≡ ∑S

s=1 l0
isχ̂s as IV, ˆ̃φIV , as

plim( ˆ̃φIV) =
cov(ω̂i, Xi)

cov(L̂i, Xi)
.

Given the expressions for L̂i and ω̂i in eqs. (E.7) and (E.8), respectively, and the independence as-
sumption in eq. (E.10), we can rewrite

plim( ˆ̃φIV) =
cov(φ̃ ∑S

s=1 l0
is [θisχ̂s + λiµ̂s + λiη̂is]− φ̃λi(∑G

g=1 w̃igν̂g + ν̂i), Xi)

cov(∑S
s=1 l0

is [θisχ̂s + λiµ̂s + λiη̂is] + (1− λi) (∑G
g=1 w̃igν̂g + ν̂i), Xi)

= φ̃
cov(∑S

s=1 l0
is [θisχ̂s + λiµ̂s + λiη̂is] , Xi)

cov(∑S
s=1 l0

is [θisχ̂s + λiµ̂s + λiη̂is] , Xi)

= φ̃.

Therefore, under the distributional assumptions in eq. (E.10), the IV estimator that uses a shift-share
instrument that aggregates sector-specific labor demand shifters is a consistent estimator of the in-
verse labor supply elasticity. Notice that the heterogeneity in θis does not affect the consistency of ˆ̃φ.
However, the consistency of ˆ̃φ will depend on the specific labor demand shock being employed by
the researcher to construct its shift-share IV being independent of the specific labor supply shocks
that have been prevalent in the set of regions belonging the population of interest.

E.2.3 Evaluation of leave-one-out IV through the lens of the model in Section 3

We describe in this section how one may use the model in Section 3 to frame the approach to the
estimation of the inverse labor supply elasticity described in Section 7.2. This approach is described
in general terms in Section 5.3.

In Section 7.2, we focus on the estimation of the inverse labor supply elasticity φ̃ and we base the
estimation of this parameter on the estimating equation

ω̂i = φ̃L̂i + δZi + εi, with φ̃ = φ−1. (E.12)
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For simplicity, we assume here that we use no controls (i.e. δ = 0) and that, thus, we can rewrite the
estimating equation above as

ω̂i = φ̃L̂i + εi, with φ̃ = φ−1. (E.13)

The advantage of focusing on the version without controls is that, in this case, the model in Section 3
clarifies that εi = −φ̃(∑G

g=1 w̃igν̂g + ν̂i), where {ν̂g}g and {ν̂i}i are labor supply shocks. Thus, in the
version without controls, there is a clear mapping between the regression residual of the structural
equation, εi, and the labor supply shocks in our economic model.

As discussed in Appendix E.2.1, the OLS estimator of φ̃ will be biased. However, as discussed
in Appendix E.2.2, one may obtain a consistent estimate of φ̃ by computing an IV estimator that
instruments for the log change in employment in region i, L̂i, using as an instrument a shift-share
aggregator of labor demand shocks {Xs}s. In terms of the model in Section 3, Xs is any (possibly
sector s-specific) function of the sector s-specific labor demand shocks χs and µs (see eqs. (2) and (3)).
These sector-specific labor demand shocks are in many cases unobserved to the researcher. In these
cases, following Bartik (1991) and the subsequent literature on the estimation of inverse local labor
supply elasticities, it has become typical to estimate φ̃ using as instruments one of two different IVs:
either a shift-share aggregator of the growth in national employment in every sector s,

Xi =
S

∑
s=1

l0
is L̂s, with L̂s =

N

∑
j=1

L0
js

∑N
j′=1 L0

j′s

Lt
js − L0

js

L0
js

, (E.14)

or a shift-share aggregator of the leave-one-out measure of the growth in national employment in
sector s,

Xi,− =
S

∑
s=1

l0
is L̂s,−i, with L̂s,−i =

N

∑
j=1,j 6=i

L0
js

∑N
j′=1,j′ 6=i L0

j′s

Lt
js − L0

js

L0
js

. (E.15)

We focus here on outlining the restrictions that one should impose on the sector-specific labor
demand shifters {(χ̂s, µ̂s)}s, region- and sector-specific labor demand shifters {η̂is}i,s, group-specific
labor supply shifters, {ν̂g}g, and region-specific labor supply shifters {ν̂i}i (all of them introduced in
the model in Section 3) so that the IV estimator that uses Xi,− as an instrument yields a consistent
estimate of φ̃.

The variable Xi,− in eq. (E.15) is a valid instrument as long as we can write

L̂is = Xs + ψis, (E.16)

and the following restrictions hold

E[Xs|ω̂(0), L̂(0), L0] = E[Xs], for all s, (E.17)

E[l0
isψis|ω̂−i(0), L̂−i(0), L0] = 0, for all i and s, (E.18)

E[l0
isψisl0

jsψjs|ω̂−i(0), L̂−i(0), L0] = 0, for all i 6= j and s, (E.19)
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where ω̂−i(0) (L̂−i(0)) denotes the change in wages (employment shares) in every region other than
i when the sectoral shock of interest equals 0 for all sectors (i.e. Xs = 0 for all s), and L0 is the vector
all region- and sector-specific shares in the initial equilibrium (i.e. L0 = {l0

is}i,s).
According to the model in Section 3, we can express the changes in employment in sector s in a

region i as
L̂is = −σsω̂i + ρsχ̂s + µ̂s + η̂is.

Combining this expression with the expression for ω̂i in eq. (E.8) in Appendix E.2.1, we can rewrite
the change in employment in sector s and region i approximately as

L̂is = −σsφ̃
S

∑
s′=1

l0
is′ [θis′ χ̂s′ + λiµ̂s′ + λiη̂is′ ] + σsφ̃λi(

G

∑
g=1

w̃igν̂g + ν̂i) + ρsχ̂s + µ̂s + η̂is, (E.20)

with λi ≡ φ
[
φ + ∑S

s=1 l0
isσs

]−1
, θis ≡ ρsλi, and φ̃ = φ−1.

Without imposing any restrictions on the values of the labor demand and supply elasticities, the
expression for L̂is in eq. (E.20) will not satisfy the restrictions in eq. (E.16) to eq. (E.19). To illustrate
this point, we can map the different terms in eq. (E.20) into those in eq. (E.16) as

Xs = ρsχ̂s + µ̂s, (E.21)

ψis = −σsφ̃
S

∑
s′=1

l0
is′ [θis′ χ̂s′ + λiµ̂s′ + λiη̂is′ ] + σsφ̃λi(

G

∑
g=1

w̃igν̂g + ν̂i) + η̂is. (E.22)

Under this definition of the labor demand shock Xs, the potential outcomes ω̂i(0) and L̂i(0) are

ω̂i(0) = φ̃
S

∑
s=1

l0
isλiη̂is − φ̃λi(

G

∑
g=1

w̃igν̂g + ν̂i), (E.23)

L̂i(0) =
S

∑
s=1

l0
isλiη̂is + (1− λi) (

G

∑
g=1

w̃igν̂g + ν̂i). (E.24)

Given the expressions in eqs. (E.22) to (E.24), the restriction on ψis in eq. (E.19) will not be satisfied:
for any two regions i and i′, ψis and ψi′s are a function of the same set of sectoral demand shocks {χ̂s}s

and {µ̂s}s and, thus, ψis and ψi′s will generally be correlated with each other. Thus, unless additional
restrictions are imposed, the IV estimator that uses the variable described in eq. (E.15) as instrument
for L̂i in eq. (E.13) will not be a consistent estimator of φ̃.

However, under the restriction that σs = 0 for every sector s, the expression for L̂is in eq. (E.20)
will satisfy the restrictions in eq. (E.16) to eq. (E.19). In this case,

Xs = ρsχ̂s + µ̂s, (E.25)

ψis = η̂is, (E.26)

and ω̂i(0) and L̂i(0) correspond to the expressions in eq. (E.23) and eq. (E.24). Thus, if the sector-
specific labor demand shocks {(χ̂s, µ̂s)}s are mean independent of the region-specific labor supply
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shocks {ν̂g}g and {ν̂i}i as well as of the region- and sector-specific labor demand shocks {η̂is}i,s, the
restriction in eq. (E.17) will hold. Additionally, under the additional assumption that ηis is mean zero
and uncorrelated with ηjs for every i 6= j and s, the restrictions in eqs. (E.18) and (E.19) will hold.
Thus, if these additional restrictions on the model in Section 3 hold, the IV estimator that uses the
variable described in eq. (E.15) as instrument to estimate φ̃ in eq. (E.13) will be consistent.

There are two alternative instrumental variables that do not use data on any specific labor demand
shock and that lead to consistent estimates of the inverse labor supply elasticity φ̃ under weaker
restrictions than those needed for the instrument in eq. (E.15) to be valid.

First, conditional on a calibrated value of σs for every sector s, one may estimate φ̃ using as an
instrument for L̂i the following leave-one-out estimator:

X̃i,− =
S

∑
s=1

l0
is

ˆ̃Ls,−i, with ˆ̃Ls,−i =
N

∑
j=1,j 6=i

L0
js

∑N
j′=1,j′ 6=i L0

j′s

ˆ̃Ljs, and ˆ̃Lis = L̂is − σsω̂i. (E.27)

Combining the expression for L̂is in eq. (E.20) and the expression for ω̂i in eq. (E.8), we can write

ˆ̃Lis = ρsχ̂s + µ̂s + η̂is. (E.28)

Thus, we can define Xs and ψis as in eq. (E.25) and eq. (E.26). Consequently, as discussed above,
eqs. (E.17) to (E.19) will hold if: (a) the sector-specific labor demand shocks {(χ̂s, µ̂s)}s are mean
independent of the region-specific labor supply shocks {ν̂g}g and {ν̂i}i as well as of the region- and
sector-specific labor demand shocks {η̂is}i,s; and (b) ηis is mean zero and uncorrelated with ηjs for
every i 6= j and s. Thus, under these two sets of assumptions, the IV estimator that uses the variable
described in eq. (E.27) as instrument for L̂i in eq. (E.13) will be a consistent estimator of φ̃ no matter
what the value of the labor demand elasticities {σs}s is.

Second, under the assumption that the labor demand elasticity is constant across sectors (i.e.
σs = σ for every s), the residual from projecting L̂is, as defined in eq. (E.20), on a set of region-specific
fixed effects is equivalent to ˆ̃Lis, as defined in eq. (E.28). Therefore, once we define Xs and ψis as in
eq. (E.25) and eq. (E.26), the IV estimator that uses the variable described in eq. (E.27) as an instrument
for L̂i in eq. (E.13) will be a consistent estimator of φ̃ if two assumptions hold: (a) the sector-specific
labor demand shocks {(χ̂s, µ̂s)}s are mean independent of the region-specific labor supply shocks
{ν̂g}g and {ν̂i}i as well as of the region- and sector-specific labor demand shocks {η̂is}i,s; and (b) ηis

is mean zero and uncorrelated with ηjs for every i, j, and s.

E.2.4 Placebo exercise

In this section, we implement a placebo exercise to evaluate the finite-sample properties of our sug-
gested inference procedures when using the shift-share IVs introduced in Section 5.3. For each
placebo sample m = 1, . . . , 30, 000, we construct sector- and region-specific shocks Xm

is = Xm
s + ψm

is ,
where Xm

s and ψm
is are independently drawn from normal distributions with variances equal to 5

and 10, respectively. We then use data on employment shares of U.S. CZs by 4-digit manufacturing
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sectors, {wis}N,S
i=1,s=1 to compute

Yi2 =
S

∑
s=1

wisXm
is , Yi1 = ρ

S

∑
s=1

wisψ
m
is +

S

∑
s=1

wis Am
s ,

where Am
s is independently drawn from a normal distribution with variance equal to 20.

Our goal is to estimate the effect α of Ym
i2 on Ym

i1 ,

Ym
i1 = Ym

i2 α + εm
i . (E.29)

Note that, by the above construction, α = 0. Therefore, the residual is εm
i = Ym

i1 = ρ ∑S
s=1 wisψ

m
is +

∑S
s=1 wis Am

s , which indicates that there is a potential endogeneity problem stemming from the fact
that ψm

is affects both Ym
i1 and Ym

i2 whenever ρ 6= 0.
We consider three different shift-share IVs. First, we consider the IV constructed directly with the

shock Xm
s :

Xm
i =

S

∑
s=1

wisX
m
s .

Second, we consider an IV constructed with the aggregate growth in Xis:

X̂m
i =

S

∑
s=1

wisX̂
m
s such that X̂m

s ≡
N

∑
i=1

(
w̌is

∑N
j=1 w̌js

)
Xm

is

where w̌is = L0
is/ ∑N

j=1 L0
js is the share of CZ i in the national employment of sector s in 1990. Third,

we consider an IV constructed with leave-one-out aggregate growth in Xis:

X̂m
i,− =

S

∑
s=1

wisX̂
m
s,−i such that X̂m

s,−i ≡
N

∑
j=1,j 6=i

(
w̌js

∑N
o=1,j 6=i w̌os

)
Xm

js .

The instruments Xm
i and X̂m

i,− are always valid in our setting. However, whenever ρ 6= 0, the
instrument X̂m

i is invalid since {ψm
is}S

s=1 affect X̂m
i and εi.

Table E.6 reports the results of this placebo exercise for different values of ρ. In Panel A, we report
results using Xm

i as an instrument; we denote this instrument as the “infeasible” IV, as its construction
requires observing the shifters {Xs}s. As expected, for all values of ρ, the median α̂m across placebo
samples is zero. Because of the shift-share structure of εi, robust and state-clustered standard error
estimators underestimate the variability of the estimates, while AKM and AKM0 inference procedures
yield good coverage. Panel B presents the results based on the feasible shift-share IV X̂m

i . When us-
ing this IV, higher levels of ρ yield higher average estimates of α. This follows from the endogeneity
problem created by the fact that {ψm

is}s are part of both the dependent variable, Ym
i1 , and the instru-

ment, X̂m
i . Finally, Panel C presents results based on the leave-one-out IV X̂m

i,−. This instrument is not
affected by an endogeneity problem, as it does not use information on region i-specific shocks {ψm

is}s

when constructing the region i-specific variable X̂m
i,−. Thus, the average of the IV estimates of α that

use X̂m
i,− as an instrument is also very close to zero for all values of ρ. The results in Panel C also show
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Table E.6: Mismeasured shifter: impact on standard errors and rejection rates.

ρ Estimate Median eff. s.e. Rejection rate of H0 : β = 0

Median eff. s.e. Robust Cluster AKM AKM0 AKM AKM0 Robust Cluster AKM AKM0 AKM AKM0
Leave-one-out Leave-one-out

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Panel A: Unfeasible shift-share IV
0 0.00 0.35 0.16 0.18 0.29 0.37 − − 0.33 0.29 0.09 0.04 − −
5 0.01 0.97 0.77 0.76 0.80 1.05 − − 0.08 0.09 0.08 0.04 − −
10 −0.02 1.86 1.53 1.50 1.52 2.01 − − 0.07 0.08 0.08 0.04 − −

Panel B: Shift-share IV with aggregate sector-level growth
0 0.00 0.23 0.11 0.12 0.20 0.22 − − 0.33 0.29 0.09 0.04 − −
5 1.66 0.50 0.39 0.40 0.45 0.51 − − 0.89 0.89 0.85 0.79 − −
10 3.30 0.93 0.77 0.77 0.84 0.95 − − 0.91 0.90 0.88 0.83 − −

Panel C: Shift-share IV with aggregate sector-level growth (leave-one-out)
0 0.00 0.36 0.17 0.18 0.30 0.40 0.31 0.32 0.32 0.29 0.09 0.04 0.08 0.03
5 −0.07 1.06 0.82 0.80 0.87 1.24 0.93 0.95 0.07 0.08 0.06 0.05 0.05 0.03
10 −0.16 2.03 1.62 1.59 1.66 2.37 1.78 1.80 0.06 0.07 0.06 0.05 0.05 0.03

Notes: This table reports the median and effective standard error estimates of the IV estimates of α in eq. (E.29) across the placebo samples (columns (1) and (2)), the
median effective standard error estimates (columns (3) to (8)), and the percentage of placebo samples for which we reject the null hypothesis H0 : β = 0 using a 5%
significance level test (columns (9) to (14)). For each value of ρ, we generate 30,000 simulated samples with sector-region shocks Xm

is = Xm
s + ψm

is , where Xm
s ∼ N(0, 5)

and ψm
is ∼ N(0, 10). We then construct Yi2 = ∑S

s=1 wisXm
is and Yi1 = ρ ∑s wisψm

is + ∑s wis Am
s , where Am

s ∼ N(0, 20). Robust is the Eicker-Huber-White standard error;
Cluster is the standard error that clusters CZs in the same state; AKM is the standard error in Remark 5; AKM0 is the confidence interval in Remark 6. AKM (leave-
one-out) and AKM0 (leave-one-out) are the versions of AKM and AKM0 in Section 5.3. For each inference procedure, the median effective standard error is equal to the
median length of the corresponding 95% confidence interval divided by 2× 1.96.
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Table E.7: Estimation of inverse labor supply elasticity: robustness with different control sets

(1) (2) (3) (4)

Panel A: Bartik IV, Not leave-one-out estimator
β̂ 0.75 0.8 0.83 0.8
Robust [0.48, 1.03] [0.64, 0.97] [0.56, 1.1] [0.64, 0.96]
Cluster [0.44, 1.07] [0.60, 1.01] [0.55, 1.11] [0.59, 1.02]
AKM [0.59, 0.92] [0.62, 0.98] [0.60, 1.06] [0.62, 0.98]
AKM0 [0.56, 0.95] [0.59, 1.02] [0.61, 1.21] [0.59, 1.01]

Panel B: Bartik IV, Leave-one-out estimator
β̂ 0.76 0.82 0.83 0.81
Robust [0.48, 1.03] [0.65, 0.98] [0.56, 1.10] [0.65, 0.98]
Cluster [0.43, 1.08] [0.60, 1.03] [0.55, 1.11] [0.59, 1.04]
AKM [0.59, 0.92] [0.62, 1.01] [0.58, 1.08] [0.63, 1.00]
AKM0 [0.57, 0.96] [0.60, 1.07] [0.59, 1.28] [0.60, 1.04]
AKM (leave-one-out) [0.59, 0.92] [0.61, 1.02] [0.58, 1.08] [0.62, 1.01]
AKM0 (leave-one-out) [0.56, 0.97] [0.59, 1.09] [0.59, 1.29] [0.59, 1.06]

Controls:
Period dummies Yes Yes Yes Yes
Controls in Autor et al. (2013) No Yes No Yes
Controls in Amior and Manning (2018) No No Yes Yes

Notes: N = 1, 444 (722 CZs × 2 time periods). The dependent variable is the log-change in mean weekly earnings in CZ i, and
the regressor is the log-change in the employment rate in CZ i. Observations are weighted by the 1980 CZ share of national
population. 95% confidence intervals in square brackets. Robust is the Eicker-Huber-White standard error; Cluster is the standard
error that clusters of CZs in the same state; AKM is the standard error in eq. (40) with 3-digit SIC clusters; AKM0 is the confidence
interval with 3-digit SIC clusters described in Section 5.1; AKM (leave-one-out) is the standard error in section 5.3 with 3-digit
SIC clusters; AKM0 (leave-one-out) is the confidence interval with 3-digit SIC clusters described in section 5.3. Baseline controls
in Autor et al. (2013) are the controls in column 6 of Table 3 in ADH. Amenity controls in Amior and Manning (2018): binary
indicator for presence of coastline, three temperature indicators, log population density in 1900, log distance to the closest CZ.

that the leave-one-out versions of the AKM and AKM0 inference procedures (see Section 5.3) yield
slightly larger median effective standard errors than the baseline versions of the AKM and AKM0 pro-
cedures (see Section 4.3). In this particular application, the magnitude of the adjustment is modest:
the implied rejection rates for the null hypothesis H0 : α = 0 differ by less than 2 percentage points.

E.2.5 Additional results

Table E.7 reports estimates of the inverse labor supply elasticity with alternative sets of controls.
Column (2) replicates the estimates of Panels A and B in column (3) of Table 6. Table E.7 shows
that these results are robust to controlling (a) only for period dummies (column (1)); (b) for period
dummies and the proxies for region-specific labor supply shocks included in Amior and Manning
(2018) (column (3)); (c) for period dummies, the controls included in Autor, Dorn and Hanson (2013)
and the proxies for region-specific labor supply shocks in Amior and Manning (2018) (column (4)).
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Appendix F Effect of immigration on U.S. local labor markets

To complement the empirical applications discussed in Section 7, we present here the results of
estimating of the impact of immigration on labor market outcomes in the US. To this end, we estimate
the model

Yit = β∆ImmShareit + Z′itδ + εit, (F.1)

where, for observation or cell i, Yit is the change in a labor market outcome for native workers between
years t and t− 10, ∆ImmShareit is the change in the share of immigrants in total employment between
years t and t− 10, and Zit is a control vector that includes fixed effects.

Following Dustmann, Schönberg and Stuhler (2016), one may classify different approaches to the
estimation of β in eq. (F.1) on the basis of the definition of the cell i: in the skill-cell approach, i corre-
sponds to an education-experience cell defined at the national level (e.g. Borjas, 2003); in the spatial
approach, i corresponds to a region (e.g. Altonji and Card, 1991); in the mixed approach, i corresponds to
the intersection of a region and an occupation, or a region and an education group (e.g. Card, 2001).

In the spatial and mixed approaches, since Altonji and Card (1991) and Card (2001), it has become
common to instrument for the change in the immigrant share ∆ImmShareit using a shift-share IV:

Xit =
G

∑
g=1

ImmShareigt0

∆Immgt

Immgt0

, (F.2)

where g indexes countries (or groups of countries) of origin of immigrants, and t0 is some pre-sample
or beginning-of-the-sample time period. The variable ImmShareigt0 plays the role of the share wis in
eq. (1) and denotes the share of immigrants from origin g in total immigrant employment in cell i
in year t0; the ratio ∆Immgt/Immgt0 plays the role of the shifter Xs in eq. (1), with ∆Immgt denoting
the change in the total number of immigrants coming from origin g between years t and t− 10, and
Immgt0 denoting the total number of immigrants from region g at the national level in year t0.

When estimating the parameter of interest β in eq. (F.1), the researcher must make a choice on
the sample period or time frame of the analysis, and on the G countries (or areas) of origin used to
construct the shift-share IV. In Appendix F.1, we discuss two different sample periods previously
used in the literature, and present a list of areas of origin of immigrants for which information is
available in each of the two sample periods. In Appendix F.2, we present placebo evidence that
illustrates the finite-sample properties of the different inference procedures when applied to the two
sample periods discussed in Appendix F.1 and when using different sets of countries of origin of
immigrants to construct the shift-share IV in eq. (F.2). The main conclusion that arises from these
placebo simulations is that restricting the set of countries of origin used in the construction of the
shift-share IV to those with a relatively small value of ImmShareigt0 generally improves the finite-
sample coverage of all different inference procedures. Consequently, in Appendix F.3, we present
estimates of β in eq. (F.1) that use information on a restricted set of countries when building the
shift-share IV in eq. (F.2). For the sake of comparison, in Appendix F.4, we present estimates that use
information on all countries for which information on immigration flows into the US is available for
the relevant sample period.
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In Appendices F.3 and F.4, we present estimates of specifications that follow either the spatial
approach or the mixed approach. In all specifications, information on all variables entering eqs. (F.1)
and (F.2) comes from the Census Integrated Public Use Micro Samples for 1980–2000 and the Amer-
ican Community Survey for 2008–2012. In all regressions, the vector of controls Zit includes period
dummies and, when implementing the mixed approach, we also add occupation- or education-group-
specific dummies to the vector Zi. All tables referenced in this section are included at the end.

F.1 Sample periods and list of countries of origin of immigrants

The results we present use one of two time frames. The first one uses information on immigrant
shares (i.e. the variable ImmShareigt0 in eq. (F.2)) measured in 1980, and information on the out-
come variables, endogenous treatment, and shifters of interest (i.e. the variables Yit, ∆ImmShareit and
∆Immgt in eqs. (F.1) and (F.2)) for the periods 1980–1990, 1990–2000, and 2000–2010. Table F.1 lists all
countries or areas of origin that we consider for which information on the number of immigrants in
the U.S. is available for all periods in this time frame (i.e. 1980, 1990, 2000, and 2010).

The second time frames uses information on immigrant shares measured in 1960, and information
on the outcome variables, endogenous treatment, and shifters of interest for the period 1970–1980.
Table F.2 lists all countries or areas of origin that we consider for which information on the number
of immigrants in the U.S. is available for all periods in this time frame (i.e. 1960, 1970 and 1980).

In both Tables F.1 and F.2, we have marked in italics those countries or areas of origin that ac-
count for a relatively large share (larger than 3%) of the overall immigrant U.S. population in the
corresponding base year (this base year is 1980 for Table F.1 and 1960 for Table F.2).

F.2 Placebo simulations

In Tables F.3 and F.4, we present the results of placebo exercises that illustrate the properties of
different inference procedures for the parameter on the shift-share covariate in eq. (F.2) in regressions
of labor market outcomes for native workers on this shift-share covariate. The only difference between
the analysis in Table F.3 and the analysis in Table F.4 is in the set of areas of origin of immigrants used
to construct the shift-share covariate in eq. (F.2). While the former uses information only on those
countries of origin whose total share of immigrants in the corresponding baseline year t0 (either 1960
or 1980, depending on the specification) is below 3% (i.e. it uses information only on those countries
of origin g that satisfy ∑N

i=1 ImmShareigt0 / ∑N
i=1 ∑G

g′=1 ImmShareig′t0 ≤ 0.03), the latter uses information
on all areas of origin of immigrants listed in the tables described in Appendix F.1.

We present results for four outcome variables: the change in employment (∆ log Ei) and average
wages (∆ log wi) across all native workers, and the change in average wages for high-skill and low-
skill workers. For each of the four outcome variables, we consider several regressions in which we
vary both the definition of a cell or unit of observation, and the sample period. The first four rows of
each panel in Tables F.3 and F.4 implement a purely spatial approach, defining each unit of observation
as a commuting zone (CZ) or as a metropolitan statistical area (MSA). The last four rows follow a
mixed approach, defining each unit as the intersection of a CZ and either one of the fifty occupations
defined in Burstein et al. (2018) (CZ-50 Occ.), one of seven aggregate occupations defined similarly to
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Card (2001) (CZ-7 Occ.), or one of two education groups (CZ-Educ.). In terms of sample periods, we
explore two alternatives. We either define the weights in 1980 and measure the outcome variable as
the 1980–1990, 1990–2000, and 2000–2010 changes in log employment or log wages or, alternatively,
we measure the weights in 1960 and measure the outcome variable as the 1970–1980 change in the
variable of interest.

Tables F.3 and F.4 yield three key takeaways. First, robust standard errors are generally biased
downward, leading frequently to an overrejection problem.

Second, when we construct the shift-share covariate in eq. (F.2) relying only on countries of origin
with relatively small shares of U.S. immigrant population in the baseline year, state-clustered standard
errors yield adequate rejection rates when the unit of observation is defined as the intersection of a CZ
and fifty detailed occupation groups, shares are measured in 1980, and the outcome is defined as the
subsequent three decadal changes. In all other cases, inference procedures based on state-clustered
standard errors tend to overreject.

Third, the AKM and AKM0 inference procedures perform much better when the shift-share co-
variate in eq. (F.2) is constructed using only countries of origin with relatively small shares of U.S.
immigrant population in the baseline year, so that Assumptions 2(ii) and 2(iii) more plausibly hold.
Furthermore, these inference procedures also tend to perform better in specifications that apply a
mixed approach than in those that apply a purely spatial approach. One possible explanation for this
pattern is that our asymptotics require that the number of observations N → ∞; thus, the behavior
of the AKM and AKM0 inference procedures is generally better in samples with a larger number of
observations, and the mixed approach, which intersects each region with several occupations or edu-
cation groups, yields larger sample sizes. Importantly, while the AKM inference procedure may still
lead to confidence intervals that are too short in several specifications, the AKM0 inference procedure
generally yields accurate rejection rates. However, confidence intervals based on the AKM0 inference
procedure may be very conservative for certain specifications.

F.3 Results with a restricted set of origin countries

All results presented in this section exploit information only on those countries of origin whose
total share of immigrants in the corresponding baseline year t0 (either 1960 or 1980, depending
on the specification) is below 3%. More precisely, these results presented here are computed us-
ing an IV such as that in eq. (F.2) constructed excluding those countries of origin g for which

∑N
i=1 ImmShareigt0 / ∑N

i=1 ∑G
g′=1 ImmShareig′t0 > 0.03. We exclude large origin countries so that As-

sumptions 2(ii) and 2(iii) more plausibly hold. The simulations in Appendix F.2 also suggest that
excluding large origin countries should lead to better finite-sample performance of the inference
procedures that we propose.6

Table F.5 presents results for three different implementations of the mixed approach. In all three
cases, the data comes from a three-period panel with t = {1990, 2000, 2010} and t0 = 1980. The
implementations differ in the definition of a cell. In columns (1) to (4) of Table F.5, a cell corresponds

6Our theory currently does not provide guidance on the particular threshold that one should choose. While we find that
the 3% threshold works well in the placebo exercises in this particular application, we leave the question of what threshold
one should in general pick to ensure that Assumptions 2(ii) and 2(iii) plausibly hold to future research.
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to the intersection of a CZ and one of the 50 occupations defined in Appendix F of Burstein et al.
(2018). In columns (5) and (6), we define a cell as the intersection of a CZ and one of two education
groups: high school-equivalent or college-equivalent educated workers (see Card, 2009). In columns
(7) to (10), a cell corresponds to the intersection of a CZ and one of seven aggregate occupations (see
Card, 2001).7

Although Table F.5 adopts occupational definitions that build on those in Burstein et al. (2018) and
Card (2001), our specifications do not exactly match their definition of shares and shifters. Thus, our
estimates should not be viewed as a test of the robustness of the results presented in these studies.
Furthermore, no matter which definition of cell we use, when interpreting our estimates, one should
bear in mind that, as discussed in Jaeger, Ruist and Stuhler (2018a), these may conflate the short- and
the long-run responses to immigration shocks.

The magnitude and statistical significance of the estimates of β in eq. (F.1) is generally consistent
across the specifications studied in Table F.5. In terms of the impact of immigration on native employ-
ment, we find that a one percentage point increase in the share of immigrants in total employment
reduces the number of native workers employed by 1.19–1.49%, with all estimates of β being statisti-
cally different from zero at the 5% level for all four inference procedures that we consider. In terms
of the impact of immigration on natives’ average weekly wages, we find that the estimated impact of
an increase in the immigrant share is not statistically different from zero at the 5% significance level
according to the AKM and AKM0 CIs; this is true for all three cell definitions and no matter whether
we compute average wages for all workers, only for high-skill workers or only for low-skill workers.
Robust and Cluster CIs also indicate that the effect of immigration on natives’ average weekly wages
is not statistically different from zero at the 5% significance level when each cell corresponds to the
intersection of a CZ and an education group, but these standard inference procedures sometimes
predict that immigration has a positive effect on the wages of high-skill workers when occupations
are used to define the unit of analysis (see columns (3) and (9) in Table F.5).

While all inference procedures broadly agree in the statistical significance (at the 5% significance
level) of the impact of immigration on natives’ labor market outcomes, there is considerable hetero-
geneity across specifications in the length of the AKM and AKM0 confidence intervals relative to those
based on Robust and Cluster standard errors. In columns (1) to (4), which use detailed occupations
to define cells, AKM and AKM0 CIs tend to be very similar (in some cases, even slightly smaller) to
those based on state-clustered standard errors, although they are generally much larger than those
based on robust standard errors. In contrast, for the other two cell definitions, the IV AKM and
AKM0 CIs are on average, 200% and 356% wider than those based on state-clustered standard errors,
and the reduced-form AKM and AKM0 CIs are on average 228% and 358% wider than those based
on state-clustered standard errors. Similarly, the CIs for the first-stage coefficient, reported in Panel
C, AKM and AKM0 CIs are more than twice as wide as Robust and Cluster CIs.8

7We group the 50 disaggregated occupations used in Burstein et al. (2018) into seven aggregate occupations: laborers,
farm workers and low-skilled service workers; operatives and craft workers; clerical workers; sales workers; managers;
professional and technical workers; and others.

8The results in Table F.5 are consistent with the placebo simulation results in Table F.3, which show that state-clustered
standard errors lead to rejection rates that are very close to the nominal level when a cell is defined as the intersection of
CZs and 50 occupations, but lead to overrejection for the other two cell definitions.
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To understand why standard inference procedures may lead to overrejection of the null hypothesis
of no effect in certain cases, recall from the discussion in Section 4.1 that robust and state-clustered
standard errors may be biased downward even if there is no shock in the structural residual that
varies exactly at the same level as the shifters of interest; a downward bias will arise so long as there
is a shift-share component in the residual with shares that have a correlation structure similar to that
of the shares used to construct the shift-share instrument. We present simulations that illustrate this
point in Appendix D.6.

Tables F.6 and F.7 present results for different versions of the spatial approach, using CZs and MSAs
as unit of observation, respectively. We present both estimates that measure the immigrant shares
ImmShareigt0 in 1980 and use data on shifters and outcomes for the periods 1980–1990, 1990–2000,
and 2000–2010, and estimates that measure the immigrant shares in 1960 and use data on outcomes
only for the period 1970–1980. While the first sample definition mimics that in Table F.5, the second
one is suggested in Jaeger, Ruist and Stuhler (2018b) as being more robust to potential bias in the
estimates of β that arise from the combination of serial correlation in the shifters ∆Immgt and the
potentially slow adjustment of labor market outcomes to these immigration shocks.

The placebo simulation results for the different specifications considered in Tables F.6 and F.7 (see
Table F.3) reveal that, due to the relatively small number of observations (i.e. small number of MSAs
and CZs; small value of N) and, in the case of the specification that relies on immigrants shares
measured in 1960, the relatively small number of countries of origin of immigrants (i.e. small value of
G), only the AKM0 inference procedure consistently yields rejection rates that are close to the nominal
level of 5%. However, the AKM0 procedure yields CIs with an implied median effective standard error
that is much larger than the true standard deviation of the estimator. It is thus conservative. Thus,
the placebo results suggest that, for most of the specifications considered in Tables F.6 and F.7, the
AKM0 CIs may be conservative and the Robust, Cluster and AKM CIs may be too small. It is thus
not surprising that, for the different specifications considered in Tables F.6 and F.7, the AKM0 CIs are
much larger than than those implied by the other three inference procedures.9

Finally, Tables F.8 to F.10 report p-values for the null hypothesis of no effect for all specifications
considered in Tables F.5 to F.7, respectively.

F.4 Results with all origin countries

Tables F.11 to F.16 present results analogous to those in Tables F.5 to F.10, respectively. While the
latter set of tables, as described in Appendix F.3, use a shift-share instrument that excludes countries
of origin that account for more than 3% of the overall immigrant population in the baseline year, the
former uses all areas of origin of immigrants listed in Tables F.1 and F.2.

As the results of placebo simulations presented in Table F.4 show, using all countries of origin
to construct the shift-share instrumental variable of interest results in the Robust, Cluster and AKM
standard errors underestimating the sampling variability of the estimator of interest. Table F.4 also
shows that not excluding any country of origin from the construction of the instrument in eq. (F.2)

9This is particularly noticeable for the IV results in Panel A; however, to interpret these CIs, one should bear in mind
that, as the first-stage results in Panel C show, the shift-share IV is weak in these specifications. In the presence of weak
IVs, only the AKM0 confidence interval remains valid in general (see discussion in Section 4.3).

81



Table F.1: Origin countries (1980 weights)

Afghanistan France Liechtenstein and Lux. Scandinavia
Africa Greece Malaysia Scotland
Albania Gulf States Maldives Singapore
Andorra and Gibraltar India Malta South America
Austria Indonesia Mexico Spain
Belgium Iran Nepal Switzerland
Brunei Iraq Netherlands Syria
Cambodia Ireland Oceania Thailand
Canada Israel/Palestine Other Turkey
Central America Italy Other Europe Vietnam
China Japan Other USSR and Russia Wales
Cuba and West Indies Jordan Philippines Yemen
Cyprus Korea Portugal
Eastern Europe Laos Rest of Asia
England Lebanon Saudi Arabia
Notes: In italics, countries that are dropped from the sample when considering only countries whose share is below 3%;
i.e. those countries in italics are countries of origin g such that (∑N

i=1 ImmShareig,1980/ ∑N
i=1 ∑G

g′=1 ImmShareig′ ,1980) >

0.03.

Table F.2: Origin countries (1960 weights)

France Liechtenstein and Lux. Scandinavia
Africa Greece Scotland
Albania

India South America
Austria Mexico Spain
Belgium Switzerland

Netherlands Syria
Ireland Oceania

Canada Israel/Palestine Other Turkey
Central America Italy Other Europe
China Japan Other USSR and Russia Wales
Cuba and West Indies Philippines

Korea Portugal
Eastern Europe Rest of Asia
England Lebanon
Notes: In italics, countries that are dropped from the sample when considering only countries whose share is below 3%;
i.e. those countries in italics are countries of origin g such that (∑N

i=1 ImmShareig1960/ ∑N
i=1 ∑G

g′=1 ImmShareig′1960) >

0.03.

results in the AKM0 inference procedure being too conservative: the 95% confidence interval often
has an infinite length and the rejection rates are generally much smaller than the 5% nominal rate.

Given the relatively poor performance of all inference procedures in the placebo simulations, one
should use caution when extracting conclusions from the estimates presented in Tables F.11 to F.16.
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Table F.3: Reduced-form placebo with origin countries below 3% of total immigrant share

Median eff. s.e. Rejection rate for H0 : β = 0 at 5%

∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

All All High-Skill Low-Skill All All High-Skill Low-Skill
Unit obs. Weights (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Standard deviation of placebo estimate
CZ 1980 1.14 0.46 0.30 1.04
CZ 1960 0.96 0.81 0.80 1.51
MSA 1980 1.94 0.49 0.74 0.83
MSA 1960 1.99 0.25 0.33 0.71
CZ-50 Occ. 1980 0.17 0.06 0.07 0.06
CZ-7 Occ. 1980 1.59 0.40 0.47 0.42
CZ-Educ. 1980 2.88 0.54 — —
Panel B: Robust standard error
CZ 1980 0.49 0.21 0.20 0.25 37.82% 43.17% 12.45% 73.21%
CZ 1960 0.77 0.31 0.32 0.39 9.24% 47.70% 37.09% 68.84%
MSA 1980 1.82 0.33 0.35 0.37 8.12% 20.42% 43.80% 42.74%
MSA 1960 1.47 0.24 0.27 0.30 20.12% 2.73% 3.62% 48.74%
CZ-50 Occ. 1980 0.11 0.05 0.06 0.06 20.22% 12.46% 8.57% 4.51%
CZ-7 Occ. 1980 0.47 0.16 0.19 0.18 63.04% 44.33% 41.78% 45.89%
CZ-Educ. 1980 0.65 0.15 — — 67.22% 66.12% — —
Panel C: State-clustered standard error
CZ 1980 0.70 0.26 0.27 0.34 23.76% 30.73% 5.44% 62.41%
CZ 1960 1.03 0.46 0.48 0.60 2.01% 26.87% 12.68% 51.41%
MSA 1980 2.11 0.29 0.32 0.43 3.42% 24.52% 49.14% 36.30%
MSA 1960 1.62 0.20 0.23 0.35 17.72% 7.59% 12.52% 41.45%
CZ-50 Occ. 1980 0.14 0.07 0.06 0.06 9.21% 5.24% 5.01% 1.64%
CZ-7 Occ. 1980 0.64 0.23 0.26 0.25 49.70% 27.94% 27.90% 29.90%
CZ-Educ. 1980 0.98 0.23 — — 50.31% 50.35% — —
Panel D: AKM standard error
CZ 1980 0.91 0.40 0.24 0.95 12.01% 23.27% 5.40% 30.31%
CZ 1960 0.73 0.67 0.62 1.37 11.27% 15.35% 9.30% 20.06%
MSA 1980 1.60 0.39 0.62 0.73 25.50% 15.31% 22.26% 17.92%
MSA 1960 1.39 0.20 0.26 0.55 22.88% 11.71% 7.66% 23.57%
CZ-50 Occ. 1980 0.15 0.06 0.06 0.05 11.63% 10.77% 8.16% 10.02%
CZ-7 Occ. 1980 1.49 0.35 0.40 0.37 19.94% 14.79% 12.98% 20.63%
CZ-Educ. 1980 2.40 0.49 — — 17.46% 25.09% — —
Panel E: AKM0 standard error
CZ 1980 ∞ ∞ ∞ ∞ 2.74% 1.63% 3.07% 1.00%
CZ 1960 3.04 3.13 2.67 6.31 3.10% 3.16% 5.04% 2.26%
MSA 1980 30.16 7.92 17.82 12.70 1.93% 1.25% 0.80% 1.41%
MSA 1960 ∞ ∞ ∞ ∞ 2.85% 2.84% 2.30% 0.52%
CZ-50 Occ. 1980 0.25 0.09 0.10 0.08 4.43% 4.13% 3.63% 4.35%
CZ-7 Occ. 1980 2.89 0.66 0.76 0.72 4.67% 3.72% 4.08% 4.08%
CZ-Educ. 1980 8.10 1.75 — — 4.65% 3.17% — —

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of native workers.
Whenever we use 1980 weights, we use observations for the time periods 1980–1990, 1990–2000, 2000–2010. Whenever we use
1960 weights, we use observations for the time period 1970–1980. We use information on 722 CZs when combined with both 1960
and 1980 weights, on 257 MSAs when combined with 1980 weights, and 217 MSAs when combined with 1960 weights. Models
are weighted by the start-of-period share of national population. Robust is the Eicker-Huber-White standard error; Cluster is
the standard error that clusters of CZs in the same state; AKM is the standard error in Remark 5; and AKM0 is the confidence
interval in Remark 6. The median effective standard error is equal to the median length of the corresponding 95% confidence
interval divided by 2× 1.96. Results are based on 30,000 placebo samples.
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Table F.4: Reduced-form placebo with all origin countries

Median eff. s.e. Rejection rate for H0 : β = 0 at 5%

∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

All All High-Skill Low-Skill All All High-Skill Low-Skill
Unit obs. Weights (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Standard deviation of placebo estimate
CZ 1980 0.21 0.18 0.15 0.25
CZ 1960 0.27 0.20 0.18 0.32
MSA 1980 0.40 0.06 0.06 0.13
MSA 1960 0.51 0.12 0.10 0.26
CZ-50 Occ. 1980 0.11 0.04 0.02 0.04
CZ-7 Occ. 1980 0.51 0.15 0.2 0.22
CZ-Educ. 1980 0.60 0.15 — —
Panel B: Robust standard error
CZ 1980 0.12 0.05 0.04 0.06 3.57% 73.01% 81.63% 38.91%
CZ 1960 0.13 0.05 0.05 0.06 15.86% 55.42% 57.59% 60.02%
MSA 1980 0.20 0.03 0.03 0.04 25.90% 18.07% 9.97% 53.39%
MSA 1960 0.34 0.08 0.08 0.09 9.21% 9.52% 2.18% 41.43%
CZ-50 Occ. 1980 0.04 0.02 0.02 0.02 62.52% 48.73% 9.07% 38.04%
CZ-7 Occ. 1980 0.15 0.05 0.04 0.07 75.86% 75.24% 86.16% 80.99%
CZ-Educ. 1980 0.13 0.04 — — 82.08% 49.75% — —
Panel C: State-clustered standard error
CZ 1980 0.09 0.07 0.05 0.10 3.46% 46.56% 68.91% 13.85%
CZ 1960 0.16 0.09 0.07 0.12 8.50% 20.66% 43.84% 29.18%
MSA 1980 0.28 0.04 0.03 0.07 10.98% 5.77% 7.30% 21.38%
MSA 1960 0.39 0.09 0.09 0.13 2.80% 7.02% 1.29% 33.24%
CZ-50 Occ. 1980 0.06 0.02 0.02 0.02 48.40% 34.88% 5.15% 30.04%
CZ-7 Occ. 1980 0.22 0.06 0.06 0.06 30.90% 60.28% 74.47% 75.69%
CZ-Educ. 1980 0.18 0.08 — — 73.77% 9.82% — —
Panel D: AKM standard error
CZ 1980 0.09 0.06 0.04 0.12 4.44% 56.32% 66.26% 10.19%
CZ 1960 0.14 0.11 0.08 0.19 17.27% 21.85% 37.77% 13.12%
MSA 1980 0.20 0.03 0.04 0.07 40.31% 30.36% 3.86% 31.97%
MSA 1960 0.33 0.08 0.07 0.20 23.68% 11.11% 1.43% 13.19%
CZ-50 Occ. 1980 0.07 0.03 0.02 0.03 32.38% 32.88% 25.60% 28.50%
CZ-7 Occ. 1980 0.21 0.06 0.07 0.08 54.43% 59.39% 61.74% 62.08%
CZ-Educ. 1980 0.23 0.07 — — 53.00% 39.53% — —
Panel E: AKM0 standard error
CZ 1980 ∞ ∞ ∞ ∞ 2.52% 0.27% 0.33% 0.44%
CZ 1960 ∞ ∞ ∞ ∞ 2.52% 0.32% 2.03% 0.30%
MSA 1980 ∞ ∞ ∞ ∞ 0.54% 0.97% 2.47% 0.08%
MSA 1960 ∞ ∞ ∞ ∞ 1.06% 0.12% 1.58% 0.06%
CZ-50 Occ. 1980 0.42 0.15 0.1 0.14 1.73% 2.49% 3.17% 2.72%
CZ-7 Occ. 1980 ∞ ∞ ∞ ∞ 1.33% 0.73% 0.83% 0.56%
CZ-Educ. 1980 ∞ ∞ — — 1.16% 1.20% — —

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of native workers.
Whenever we use 1980 weights, we use observations for the time periods 1980–1990, 1990–2000, 2000–2010. Whenever we use
1960 weights, we use observations for the time period 1970–1980. We use information on 722 CZs when combined with both 1960
and 1980 weights, on 257 MSAs when combined with 1980 weights, and 217 MSAs when combined with 1960 weights. Models
are weighted by the start-of-period share of national population. Robust is the Eicker-Huber-White standard error; Cluster is
the standard error that clusters of CZs in the same state; AKM is the standard error in Remark 5; and AKM0 is the confidence
interval in Remark 6. The median effective standard error is equal to the median length of the corresponding 95% confidence
interval divided by 2× 1.96. Results are based on 30,000 placebo samples.
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Table F.5: Effect of immigration: analysis by CZ-Occupations and CZ-Education groups (excluding large origin countries)

Outcome: ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

Workers: All All High-Skill Low-Skill All All All All High-Skill Low-Skill

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

CZ-50 Occ. (1980 weights) CZ-Educ. (1980 weights) CZ-7 Occ. (1980 weights)

Panel A: 2SLS
β̂ −1.19 0.05 0.26 −0.14 −1.49 0.18 −1.39 0.08 0.24 −0.14
Robust [−1.55,−0.83] [−0.09, 0.20] [0.11, 0.41] [−0.32, 0.03] [−2.09,−0.90] [−0.20, 0.56] [−1.89,−0.90] [−0.17, 0.33] [0.00, 0.47] [−0.43, 0.15]
Cluster [−1.89,−0.49] [−0.35, 0.46] [−0.14, 0.67] [−0.69, 0.40] [−2.14,−0.85] [−0.04, 0.39] [−1.87,−0.92] [−0.11, 0.27] [0.10, 0.38] [−0.27,−0.01]
AKM [−1.55,−0.83] [−0.36, 0.47] [−0.17, 0.69] [−0.64, 0.35] [−2.31,−0.68] [−0.53, 0.88] [−2.02,−0.76] [−0.51, 0.67] [−0.31, 0.79] [−0.81, 0.53]
AKM0 [−1.66,−0.72] [−0.53, 0.54] [−0.32, 0.81] [−0.92, 0.39] [−3.00,−0.14] [−0.90, 1.60] [−2.35,−0.54] [−0.75, 0.94] [−0.51, 1.07] [−1.12, 0.80]

Panel B: Reduced-Form
β̂ −0.89 0.04 0.2 −0.11 −1.29 0.15 −1.05 0.06 0.18 −0.11
Robust [−1.17,−0.61] [−0.07, 0.15] [0.06, 0.33] [−0.23, 0.02] [−1.86,−0.73] [−0.19, 0.50] [−1.38,−0.73] [−0.13, 0.25] [−0.01, 0.37] [−0.32, 0.11]
Cluster [−1.37,−0.41] [−0.27, 0.35] [−0.16, 0.55] [−0.47, 0.25] [−1.69,−0.90] [−0.02, 0.33] [−1.29,−0.82] [−0.08, 0.21] [0.07, 0.29] [−0.20,−0.01]
AKM [−1.35,−0.43] [−0.28, 0.36] [−0.18, 0.57] [−0.44, 0.23] [−1.99,−0.60] [−0.48, 0.79] [−1.54,−0.57] [−0.39, 0.52] [−0.26, 0.62] [−0.59, 0.38]
AKM0 [−1.55,−0.39] [−0.27, 0.55] [−0.16, 0.79] [−0.44, 0.42] [−2.25,−0.11] [−0.53, 1.56] [−1.62,−0.36] [−0.42, 0.78] [−0.29, 0.86] [−0.62, 0.67]

Panel C: First-Stage
β̂ 0.75 0.87 0.76
Robust [0.56, 0.93] [0.55, 1.18] [0.56, 0.95]
Cluster [0.62, 0.88] [0.66, 1.08] [0.60, 0.91]
AKM [0.36, 1.13] [0.44, 1.30] [0.42, 1.09]
AKM0 [0.38, 1.37] [0.34, 1.70] [0.38, 1.24]

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of native workers. The specifications CZ-50 Occupations, CZ-2 Education
Groups, and CZ-7 Occupations differ in the definition of the unit of observation. In all three specifications, we use 1980 weights and three time periods, 1980–1990, 1990–2000, and 2000–2010.
Thus, N = 108, 300 (722 CZs × 50 occupations × 3 time periods) for the CZ-50 Occupations specification; N = 4, 332 (722 CZs × 2 education groups × 3 time periods) for the CZ-2 Education
Groups specification; and N = 15, 162 (722 CZs × 7 occupations × 3 time periods) for the CZ-7 Occupations specification. Models are weighted by start-of-period occupation-region (or
education group-region) share of national population. All regressions include occupation (or education group) and period dummies. 95% confidence intervals in square brackets. Robust
is the Eicker-Huber-White standard error; Cluster is the standard error that clusters of CZs in the same state; AKM is the standard error in Remark 5; and AKM0 is the confidence interval
in Remark 6. We exclude from the analysis those countries of origin whose immigrant share in 1980 is larger than 3%; i.e. ∑i ImmShareigt0 / ∑i ∑g′ ImmShareig′ t0

> 0.03. See Table F.1 for a
list of the origin countries included in the analysis.
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Table F.6: Effect of immigration: analysis by CZ (excluding large origin countries)

Outcome: ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

Workers: All All High-Skill Low-Skill All All High-Skill Low-Skill

(1) (2) (3) (4) (5) (6) (7) (8)

Commuting Zone (1980 weights) Commuting Zone (1960 weights)

Panel A: 2SLS Regression
β̂ −0.89 0.42 0.56 −0.10 −1.29 −0.71 −0.34 −1.14
Robust [−1.48,−0.30] [−0.06, 0.90] [0.16, 0.95] [−0.68, 0.47] [−3.69, 1.10] [−1.10,−0.33] [−1.01, 0.33] [−1.66,−0.61]
Cluster [−1.33,−0.45] [0.15, 0.69] [0.39, 0.72] [−0.31, 0.11] [−3.96, 1.37] [−1.17,−0.26] [−1.12, 0.44] [−1.71,−0.56]
AKM [−1.85, 0.08] [−0.44, 1.28] [−0.12, 1.24] [−1.17, 0.97] [−3.83, 1.24] [−1.31,−0.12] [−1.16, 0.48] [−1.89,−0.38]

AKM0 [−∞,−285.90] [−∞,−230.52] [−∞,−226.52] [−∞,−158.12]
[−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞]∪ [−4.12, ∞] ∪ [−2.73, ∞] ∪ [−1.46, ∞] ∪ [−7.24, ∞]

Panel B: Reduced-Form Regression
β̂ −0.75 0.35 0.47 −0.08 −1.31 −0.72 −0.34 −1.15
Robust [−1.16,−0.33] [−0.10, 0.81] [0.07, 0.86] [−0.55, 0.38] [−3.39, 0.78] [−1.06,−0.38] [−0.94, 0.25] [−1.61,−0.68]
Cluster [−1.02,−0.47] [0.12, 0.59] [0.31, 0.62] [−0.26, 0.09] [−3.57, 0.96] [−1.10,−0.35] [−1.02, 0.33] [−1.56,−0.73]
AKM [−1.47,−0.02] [−0.44, 1.15] [−0.21, 1.14] [−0.96, 0.79] [−3.55, 0.94] [−1.21,−0.23] [−1.09, 0.40] [−1.73,−0.57]
AKM0 [−1.71, 6.41] [−0.73, 8.03] [−0.44, 6.99] [−1.29, 8.26] [−∞, ∞] [−3.23,−1.51] [−3.37,−1.87] [−4.01,−2.12]

Panel C: 2SLS First-Stage
β̂ 0.84 1.01
Robust [0.51, 1.18] [0.46, 1.56]
Cluster [0.66, 1.03] [0.65, 1.37]
AKM [0.37, 1.31] [0.70, 1.32]
AKM0 [0.00, 4.32] [−∞, ∞]

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of native workers. In the specification CZ (1980 weights), we
use information on 722 CZs, 1980 weights and three time periods, 1980–1990, 1990–2000, 2000–2010; thus, N = 2, 166 (722 CZs × 3 time periods). In the specification CZ (1960
weights), we use information on 722 CZs, 1960 weights and one time period, 1970–1980; thus, N = 722 (722 CZs × 1 time period). Models are weighted by start-of-period CZ
share of national population. All regressions include period dummies. 95% confidence intervals in square brackets. Robust is the Eicker-Huber-White standard error; Cluster
is the standard error that clusters of CZs in the same state; AKM is the standard error in Remark 5; and AKM0 is the confidence interval in Remark 6. We exclude from the
analysis those countries of origin whose immigrant share in year t0 is larger than 3%; i.e. ∑N

i=1 ImmShareigt0 / ∑N
i=1 ∑G

g′=1 ImmShareig′ t0
> 0.03. See Tables F.1 and F.2 for a list

of the origin countries included in the analysis.
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Table F.7: Effect of immigration: analysis by MSA (excluding large origin countries)

Outcome: ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

Workers: All All High-Skill Low-Skill All All High-Skill Low-Skill

(1) (2) (3) (4) (5) (6) (7) (8)

MSA (1980 weights) MSA (1960 weights)

Panel A: 2SLS Regression
β̂ −1.87 0.50 0.63 −0.10 −1.55 −0.32 −0.17 −0.57
Robust [−3.17,−0.58] [−0.06, 1.06] [0.17, 1.09] [−0.93, 0.73] [−3.68, 0.57] [−0.72, 0.08] [−0.83, 0.49] [−1.08,−0.06]
Cluster [−2.97,−0.78] [0.23, 0.77] [0.48, 0.77] [−0.47, 0.27] [−3.94, 0.84] [−0.74, 0.09] [−0.88, 0.53] [−1.06,−0.08]
AKM [−3.77, 0.03] [−0.44, 1.44] [−0.15, 1.40] [−1.49, 1.29] [−5.61, 2.51] [−0.90, 0.25] [−1.07, 0.73] [−1.26, 0.12]
AKM0 [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞]

Panel B: Reduced-Form Regression
β̂ −1.47 0.39 0.49 −0.08 −1.48 −0.31 −0.16 −0.54
Robust [−2.06,−0.87] [−0.17, 0.95] [0.00, 0.98] [−0.70, 0.54] [−3.29, 0.34] [−0.61,−0.01] [−0.75, 0.42] [−0.90,−0.19]
Cluster [−1.94,−0.99] [0.09, 0.69] [0.27, 0.71] [−0.35, 0.19] [−3.45, 0.49] [−0.63, 0.01] [−0.79, 0.46] [−0.86,−0.22]
AKM [−2.43,−0.50] [−0.50, 1.28] [−0.28, 1.26] [−1.13, 0.98] [−4.79, 1.83] [−0.73, 0.11] [−0.96, 0.63] [−0.98,−0.11]
AKM0 [−2.70, 8.87] [−0.79, 9.41] [−0.53, 8.41] [−1.51, 10.46] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞]

Panel C: 2SLS First-Stage
β̂ 0.78 0.95
Robust [0.29, 1.28] [0.46, 1.45]
Cluster [0.51, 1.05] [0.64, 1.27]
AKM [0.10, 1.47] [0.49, 1.42]
AKM0 [−0.61, 5.35] [−∞, ∞]

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of native workers. In the specification
MSA (1980 weights), we use information on 257 MSAs, 1980 weights and three time periods, 1980–1990, 1990–2000, 2000–2010; thus, N = 651 (257 MSAs
× 3 time periods). In the specification MSA (1960 weights), we use information on 217 MSAs, 1960 weights and one time period, 1970–1980; thus, N = 217
(217 CZs × 1 time period). Models are weighted by start-of-period MSA share of national population. All regressions include period dummies. 95%
confidence intervals in square brackets. Robust is the Eicker-Huber-White standard error; Cluster is the standard error that clusters of CZs in the same
state; AKM is the standard error in Remark 5; and AKM0 is the confidence interval in Remark 6. We exclude from the analysis those countries of origin
whose immigrant share in year t0 is larger than 3%; i.e. ∑N

i=1 ImmShareigt0 / ∑N
i=1 ∑G

g′=1 ImmShareig′ t0
> 0.03. See Tables F.1 and F.2 for a list of the origin

countries included in the analysis.
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Table F.8: Immigration: p-values by CZ-Occ. and CZ-Educ. (excluding large origin countries)

∆ log Ei ∆ log wi ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

All All High-Skill Low-Skill All All All All High-Skill Low-Skill

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

CZ-50 Occupations CZ- Educ. CZ-7 Occupations

Panel A: 2SLS Regression
Robust 0.000 0.459 0.001 0.116 0.000 0.357 0.000 0.519 0.046 0.348
Cluster 0.001 0.790 0.205 0.611 0.000 0.102 0.000 0.412 0.001 0.042
AKM 0.000 0.793 0.235 0.576 0.000 0.620 0.000 0.788 0.395 0.684
AKM0 0.006 0.796 0.273 0.566 0.043 0.621 0.018 0.788 0.410 0.687

Panel B: Reduced-Form Regression
Robust 0.000 0.473 0.004 0.091 0.000 0.379 0.000 0.528 0.057 0.330
Cluster 0.000 0.795 0.275 0.565 0.000 0.089 0.000 0.409 0.001 0.036
AKM 0.000 0.801 0.304 0.538 0.000 0.635 0.000 0.792 0.422 0.674
AKM0 0.006 0.796 0.273 0.566 0.043 0.621 0.018 0.788 0.410 0.687

Panel C: First-Stage
Robust 0.000 0.000 0.000
Cluster 0.000 0.000 0.000
AKM 0.000 0.000 0.000
AKM0 0.002 0.017 0.006

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of native workers.
The specifications CZ-50 Occupations, CZ-Educ., and CZ-7 Occupations differ in the definition of the unit of observation. In all three
specifications, we use 1980 weights and three time periods, 1980–1990, 1990–2000, 2000–2010. Thus, N = 108, 300 (722 CZs ×
50 occupations × 3 time periods) for the CZ-50 Occupations specification; N = 4, 332 (722 CZs × 2 education groups × 3 time
periods) for the CZ-Educ. specification; and N = 15, 162 (722 CZs × 7 occupations × 3 time periods) for the CZ-7 Occupations
specification. Models are weighted by start-of-period occupation-region (or education group-region) share of national population.
All regressions include occupation (or education group) and period dummies. 95% confidence intervals in square brackets. Robust
is the Eicker-Huber-White standard error; Cluster is the standard error that clusters of CZs in the same state; AKM is the standard
error in Remark 5; and AKM0 is the confidence interval in Remark 6. We exclude from the analysis those countries of origin whose
immigrant share in year 1980 is larger than 3%; i.e. ∑N

i=1 ImmShareigt0 / ∑N
i=1 ∑G

g′=1 ImmShareig′ t0
> 0.03. See Table F.1 for a list of the

origin countries included in the analysis.

88



Table F.9: Effect of immigration: p-values by CZ (excluding large origin countries)

Outcome: ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

Workers: All All High-Skill Low-Skill All All High-Skill Low-Skill

(1) (2) (3) (4) (5) (6) (7) (8)

Commuting Zone (1980 weights) Commuting Zone (1960 weights)

Panel A: 2SLS Regression
Robust 0.003 0.083 0.005 0.731 0.291 0.000 0.317 0.000
Cluster 0.000 0.002 0.000 0.338 0.342 0.002 0.390 0.000
AKM 0.071 0.335 0.109 0.853 0.318 0.018 0.416 0.003
AKM0 0.216 0.360 0.174 0.855 0.393 0.179 0.472 0.142

Panel B: Reduced-Form Regression
Robust 0.000 0.129 0.020 0.722 0.220 0.000 0.254 0.000
Cluster 0.000 0.003 0.000 0.330 0.258 0.000 0.316 0.000
AKM 0.044 0.384 0.174 0.850 0.254 0.004 0.366 0.000
AKM0 0.216 0.360 0.174 0.855 0.393 0.179 0.472 0.142

Panel C: First-Stage
Robust 0.000 0.000
Cluster 0.000 0.000
AKM 0.001 0.000
AKM0 0.050 0.062

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of
native workers. In the specification CZ (1980 weights), we use information on 722 CZs, 1980 weights and three time
periods, 1980–1990, 1990–2000, 2000–2010; thus, N = 2, 166 (722 CZs × 3 time periods). In the specification CZ (1960
weights), we use information on 722 CZs, 1960 weights and one time period, 1970–1980; thus, N = 722 (722 CZs × 1
time period). Models are weighted by start-of-period CZ share of national population. All regressions include period
dummies. 95% confidence intervals in square brackets. Robust is the Eicker-Huber-White standard error; Cluster is
the standard error that clusters of CZs in the same state; AKM is the standard error in Remark 5; and AKM0 is the
confidence interval in Remark 6. We exclude from the analysis those countries of origin whose immigrant share in
year t0 is larger than 3%; i.e. ∑N

i=1 ImmShareigt0 / ∑N
i=1 ∑G

g′=1 ImmShareig′ t0
> 0.03. See Tables F.1 and F.2 for a list of

the origin countries included in the analysis.
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Table F.10: Effect of immigration: p-values by MSA (excluding large origin countries)

Outcome: ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

Workers: All All High-Skill Low-Skill All All High-Skill Low-Skill

(1) (2) (3) (4) (5) (6) (7) (8)

MSA (1980 weights) MSA (1960 weights)

Panel A: 2SLS Regression
Robust 0.005 0.080 0.008 0.812 0.152 0.115 0.610 0.028
Cluster 0.001 0.000 0.000 0.594 0.203 0.128 0.631 0.022
AKM 0.053 0.300 0.112 0.887 0.453 0.272 0.708 0.106
AKM0 0.146 0.361 0.203 0.887 0.532 0.376 0.732 0.284

Panel B: Reduced-Form Regression
Robust 0.000 0.173 0.048 0.803 0.110 0.043 0.585 0.003
Cluster 0.000 0.012 0.000 0.564 0.141 0.059 0.607 0.001
AKM 0.003 0.388 0.213 0.884 0.381 0.150 0.687 0.015
AKM0 0.146 0.361 0.203 0.887 0.532 0.376 0.732 0.284

Panel C: First-Stage
Robust 0.002 0.000
Cluster 0.000 0.000
AKM 0.025 0.000
AKM0 0.096 0.126

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages
of native workers. In the specification MSA (1980 weights), we use information on 257 MSAs, 1980 weights
and three time periods, 1980–1990, 1990–2000, 2000–2010; thus, N = 651 (257 MSAs × 3 time periods). In
the specification MSA (1960 weights), we use information on 217 MSAs, 1960 weights and one time period,
1970–1980; thus, N = 217 (217 CZs × 1 time period). Models are weighted by start-of-period MSA share
of national population. All regressions include period dummies. 95% confidence intervals in square brack-
ets. Robust is the Eicker-Huber-White standard error; Cluster is the standard error that clusters of CZs in the
same state; AKM is the standard error in Remark 5; and AKM0 is the confidence interval in Remark 6. We
exclude from the analysis those countries of origin whose immigrant share in year t0 is larger than 3%; i.e.
∑N

i=1 ImmShareigt0 / ∑N
i=1 ∑G

g′=1 ImmShareig′ t0
> 0.03. See Tables F.1 and F.2 for a list of the origin countries

included in the analysis.
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Table F.11: Effect of immigration: analysis by CZ-Occupations and CZ-Education groups (including all origin countries)

Outcome: ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

Workers: All All High-Skill Low-Skill All All All All High-Skill Low-Skill

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

CZ-50 Occupations CZ- 2 Education Groups CZ-7 Occupations

Panel A: 2SLS Regression
β̂ −0.73 −0.07 0.15 −0.24 −0.53 −0.01 −0.79 −0.08 0.08 −0.27
Robust [−1.04,−0.42] [−0.22, 0.09] [0.01, 0.29] [−0.42,−0.06] [−1.03,−0.02] [−0.45, 0.44] [−1.25,−0.33] [−0.39, 0.22] [−0.17, 0.33] [−0.64, 0.09]
Cluster [−1.15,−0.31] [−0.49, 0.36] [−0.23, 0.52] [−0.80, 0.32] [−1.03,−0.02] [−0.24, 0.23] [−1.34,−0.25] [−0.33, 0.16] [−0.09, 0.25] [−0.47,−0.08]
AKM [−1.22,−0.24] [−0.42, 0.29] [−0.18, 0.47] [−0.66, 0.18] [−1.85, 0.79] [−0.81, 0.80] [−1.67, 0.09] [−0.74, 0.57] [−0.52, 0.67] [−0.99, 0.44]
AKM0 [−1.61, 0.24] [−0.52, 0.94] [−0.24, 1.11] [−0.97, 0.68] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞]

Panel B: Reduced-Form Regression
β̂ −0.19 −0.02 0.04 −0.06 −0.19 0.00 −0.25 −0.03 0.02 −0.09
Robust [−0.27,−0.11] [−0.05, 0.02] [0.00, 0.08] [−0.10,−0.02] [−0.41, 0.04] [−0.16, 0.15] [−0.41,−0.10] [−0.12, 0.06] [−0.06, 0.11] [−0.18, 0.01]
Cluster [−0.32,−0.06] [−0.12, 0.09] [−0.08, 0.15] [−0.17, 0.05] [−0.38, 0.01] [−0.08, 0.08] [−0.42,−0.09] [−0.10, 0.04] [−0.04, 0.09] [−0.13,−0.05]
AKM [−0.38, 0.01] [−0.10, 0.07] [−0.06, 0.13] [−0.15, 0.02] [−0.74, 0.37] [−0.29, 0.28] [−0.62, 0.11] [−0.23, 0.17] [−0.17, 0.22] [−0.29, 0.11]
AKM0 [−1.01, 0.03] [−0.08, 0.51] [−0.04, 0.60] [−0.14, 0.42] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−1.28,−0.26] [−1.18,−0.20] [−1.13,−0.37]

Panel C: First-Stage
β̂ 0.26 0.35 0.32
Robust [0.19, 0.32] [0.17, 0.53] [0.20, 0.44]
Cluster [0.17, 0.35] [0.24, 0.46] [0.21, 0.43]
AKM [0.12, 0.39] [0.10, 0.60] [0.12, 0.52]
AKM0 [0.11, 0.84] [−∞, ∞] [−∞, ∞]

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of native workers. The specifications CZ-50 Occupations, CZ-2 Education
Groups, and CZ-7 Occupations differ in the definition of the unit of observation. In all three specifications, we use 1980 weights and three time periods, 1980–1990, 1990–2000, 2000–2010.
Thus, N = 108, 300 (722 CZs × 50 occupations × 3 time periods) for the CZ-50 Occupations specification; N = 4, 332 (722 CZs × 2 education groups × 3 time periods) for the CZ-2 Education
Groups specification; and N = 15, 162 (722 CZs × 7 occupations × 3 time periods) for the CZ-7 Occupations specification. Models are weighted by start-of-period occupation-region (or
education group-region) share of national population. All regressions include occupation (or education group) and period dummies. 95% confidence intervals in square brackets. Robust
is the Eicker-Huber-White standard error; Cluster is the standard error that clusters of CZs in the same state; AKM is the standard error in Remark 5; and AKM0 is the confidence interval
in Remark 6. We include all countries of origin in the analysis. See Table F.1 for a list of the origin countries included in the analysis.
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Table F.12: Effect of immigration: analysis by CZ (including all origin countries)

Outcome: ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

Workers: All All High-Skill Low-Skill All All High-Skill Low-Skill

(1) (2) (3) (4) (5) (6) (7) (8)

Commuting Zone (1980 weights) Commuting Zone (1960 weights)

Panel A: 2SLS Regression
β̂ −0.49 0.13 0.27 −0.2 0.05 −0.25 0.09 −0.52
Robust [−1.12, 0.14] [−0.37, 0.63] [−0.09, 0.64] [−0.85, 0.44] [−0.96, 1.07] [−0.52, 0.02] [−0.16, 0.35] [−0.86,−0.18]
Cluster [−0.98, 0.01] [−0.15, 0.41] [0.08, 0.47] [−0.49, 0.08] [−0.93, 1.03] [−0.59, 0.09] [−0.16, 0.34] [−0.92,−0.11]
AKM [−1.74, 0.77] [−0.88, 1.14] [−0.53, 1.08] [−1.42, 1.01] [−2.39, 2.50] [−1.14, 0.64] [−0.76, 0.95] [−1.64, 0.61]
AKM0 [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞]

Panel B: Reduced-Form Regression
β̂ −0.19 0.05 0.11 −0.08 0.04 −0.17 0.06 −0.36
Robust [−0.39, 0.02] [−0.16, 0.26] [−0.07, 0.28] [−0.30, 0.14] [−0.66, 0.73] [−0.40, 0.05] [−0.12, 0.24] [−0.67,−0.04]
Cluster [−0.37, 0.00] [−0.07, 0.17] [0.01, 0.20] [−0.17, 0.01] [−0.63, 0.71] [−0.48, 0.14] [−0.11, 0.24] [−0.79, 0.08]
AKM [−0.71, 0.33] [−0.36, 0.46] [−0.24, 0.45] [−0.52, 0.37] [−1.64, 1.72] [−0.82, 0.47] [−0.51, 0.64] [−1.20, 0.49]
AKM0 [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞]

Panel C: 2SLS First-Stage
β̂ 0.38 0.69
Robust [0.20, 0.57] [0.41, 0.97]
Cluster [0.27, 0.49] [0.35, 1.03]
AKM [0.10, 0.67] [0.53, 0.85]
AKM0 [−∞, ∞] [−∞, ∞]

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of native workers. In the specification CZ (1980 weights), we
use information on 722 CZs, 1980 weights and three time periods, 1980–1990, 1990–2000, 2000–2010; thus, N = 2, 166 (722 CZs × 3 time periods). In the specification CZ (1960
weights), we use information on 722 CZs, 1960 weights and one time period, 1970–1980; thus, N = 722 (722 CZs × 1 time period). Models are weighted by start-of-period
CZ share of national population. All regressions include period dummies. 95% confidence intervals in square brackets. Robust is the Eicker-Huber-White standard error;
Cluster is the standard error that clusters of CZs in the same state; AKM is the standard error in Remark 5; and AKM0 is the confidence interval in Remark 6. We include all
countries of origin in the analysis. See Tables F.1 and F.2 for a list of the origin countries included in the analysis.
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Table F.13: Effect of immigration: analysis by MSA (including all origin countries)

Outcome: ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

Workers: All All High-Skill Low-Skill All All High-Skill Low-Skill

(1) (2) (3) (4) (5) (6) (7) (8)

MSA (1980 weights) MSA (1960 weights)

Panel A: 2SLS Regression
β̂ −1.41 0.16 0.28 −0.21 −0.18 −0.14 0.18 −0.35
Robust [−2.62,−0.21] [−0.38, 0.71] [−0.11, 0.68] [−1.06, 0.63] [−1.11, 0.75] [−0.30, 0.02] [−0.05, 0.42] [−0.56,−0.14]
Cluster [−2.55,−0.28] [−0.14, 0.46] [0.06, 0.51] [−0.62, 0.20] [−1.21, 0.86] [−0.31, 0.04] [−0.08, 0.44] [−0.52,−0.17]
AKM [−3.24, 0.41] [−0.91, 1.23] [−0.61, 1.18] [−1.64, 1.21] [−5.04, 4.69] [−0.92, 0.64] [−0.90, 1.26] [−1.26, 0.56]
AKM0 [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞]

Panel B: Reduced-Form Regression
β̂ −0.41 0.05 0.08 −0.06 −0.12 −0.10 0.13 −0.24
Robust [−0.61,−0.20] [−0.13, 0.23] [−0.07, 0.24] [−0.27, 0.15] [−0.78, 0.54] [−0.22, 0.03] [−0.05, 0.31] [−0.43,−0.05]
Cluster [−0.62,−0.19] [−0.06, 0.15] [0.00, 0.17] [−0.16, 0.03] [−0.83, 0.59] [−0.23, 0.04] [−0.08, 0.33] [−0.42,−0.06]
AKM [−0.91, 0.10] [−0.28, 0.37] [−0.21, 0.37] [−0.45, 0.33] [−3.47, 3.23] [−0.64, 0.45] [−0.60, 0.85] [−0.89, 0.41]
AKM0 [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞] [−∞, ∞]

Panel C: First-Stage
β̂ 0.29 0.69
Robust [0.10, 0.48] [0.35, 1.02]
Cluster [0.16, 0.41] [0.34, 1.03]
AKM [0.03, 0.54] [0.44, 0.93]
AKM0 [−∞, ∞] [−∞, ∞]

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of native workers. In the specification MSA (1980 weights),
we use information on 257 MSAs, 1980 weights and three time periods, 1980–1990, 1990–2000, 2000–2010; thus, N = 651 (257 MSAs × 3 time periods). In the specification
MSA (1960 weights), we use information on 217 MSAs, 1960 weights and one time period, 1970–1980; thus, N = 217 (217 CZs × 1 time period). Models are weighted by
start-of-period MSA share of national population. All regressions include period dummies. 95% confidence intervals in square brackets. Robust is the Eicker-Huber-White
standard error; Cluster is the standard error that clusters of CZs in the same state; AKM is the standard error in Remark 5; and AKM0 is the confidence interval in Remark 6.
We include all countries of origin in the analysis. See Tables F.1 and F.2 for a list of the origin countries included in the analysis.
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Table F.14: Immigration: p-values by CZ-Occ. and CZ-Educ. (including all origin countries)

∆ log Ei ∆ log wi ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

All All High-Skill Low-Skill All All All All High-Skill Low-Skill

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

CZ-50 Occupations CZ- Educ. CZ-7 Occupations

Panel A: 2SLS Regression
Robust 0.000 0.402 0.042 0.011 0.040 0.978 0.001 0.586 0.543 0.139
Cluster 0.001 0.764 0.445 0.403 0.040 0.958 0.004 0.496 0.363 0.005
AKM 0.004 0.721 0.380 0.267 0.434 0.988 0.077 0.801 0.798 0.454
AKM0 0.074 0.734 0.359 0.330 0.532 0.988 0.274 0.808 0.793 0.504

Panel B: Reduced-Form Regression
Robust 0.000 0.372 0.072 0.002 0.106 0.978 0.001 0.560 0.567 0.074
Cluster 0.005 0.752 0.515 0.282 0.068 0.957 0.002 0.447 0.422 0.000
AKM 0.059 0.704 0.442 0.161 0.513 0.988 0.170 0.793 0.805 0.395
AKM0 0.074 0.734 0.359 0.330 0.532 0.988 0.274 0.808 0.793 0.504

Panel C: First-Stage
Robust 0.000 0.000 0.000
Cluster 0.000 0.000 0.000
AKM 0.000 0.005 0.001
AKM0 0.021 0.134 0.067

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of native workers.
The specifications CZ-50 Occupations, CZ-Educ., and CZ-7 Occupations differ in the definition of the unit of observation. In all three
specifications, we use 1980 weights and three time periods, 1980–1990, 1990–2000, 2000–2010. Thus, N = 108, 300 (722 CZs × 50
occupations × 3 time periods) for the CZ-50 Occupations specification; N = 4, 332 (722 CZs × 2 education groups × 3 time periods)
for the CZ-Educ. specification; and N = 15, 162 (722 CZs × 7 occupations × 3 time periods) for the CZ-7 Occupations specification.
Models are weighted by start-of-period occupation-region (or education group-region) share of national population. All regressions
include occupation (or education group) and period dummies. 95% confidence intervals in square brackets. Robust is the Eicker-
Huber-White standard error; Cluster is the standard error that clusters of CZs in the same state; AKM is the standard error in
Remark 5; and AKM0 is the confidence interval in Remark 6. We all origin countries in the analysis. See Table F.1 for a list of the
origin countries included in the analysis.
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Table F.15: Effect of immigration: p-values by CZ (including all origin countries)

Outcome: ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

Workers: All All High-Skill Low-Skill All All High-Skill Low-Skill

(1) (2) (3) (4) (5) (6) (7) (8)

Commuting Zone (1980 weights) Commuting Zone (1960 weights)

Panel A: 2SLS Regression
Robust 0.130 0.607 0.142 0.536 0.917 0.072 0.478 0.003
Cluster 0.055 0.353 0.005 0.154 0.914 0.152 0.464 0.013
AKM 0.449 0.799 0.504 0.741 0.965 0.581 0.830 0.367
AKM0 0.578 0.797 0.522 0.759 0.965 0.619 0.830 0.463

Panel B: Reduced-Form Regression
Robust 0.075 0.640 0.252 0.485 0.916 0.136 0.483 0.025
Cluster 0.047 0.404 0.032 0.091 0.913 0.274 0.473 0.108
AKM 0.481 0.808 0.553 0.730 0.965 0.600 0.827 0.408
AKM0 0.578 0.797 0.522 0.759 0.965 0.619 0.830 0.463

Panel C: 2SLS First-Stage
Robust 0.000 0.000
Cluster 0.000 0.000
AKM 0.008 0.000
AKM0 0.179 0.156

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of
native workers. In the specification CZ (1980 weights), we use information on 722 CZs, 1980 weights and three time
periods, 1980–1990, 1990–2000, 2000–2010; thus, N = 2, 166 (722 CZs × 3 time periods). In the specification CZ (1960
weights), we use information on 722 CZs, 1960 weights and one time period, 1970–1980; thus, N = 722 (722 CZs × 1
time period). Models are weighted by start-of-period CZ share of national population. All regressions include period
dummies. 95% confidence intervals in square brackets. Robust is the Eicker-Huber-White standard error; Cluster is
the standard error that clusters of CZs in the same state; AKM is the standard error in Remark 5; and AKM0 is the
confidence interval in Remark 6. We include all origin countries in the analysis. See Tables F.1 and F.2 for a list of the
origin countries included in the analysis.
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Table F.16: Effect of immigration: p-values by MSA (including all origin countries)

Outcome: ∆ log Ei ∆ log wi ∆ log Ei ∆ log wi

Workers: All All High-Skill Low-Skill All All High-Skill Low-Skill

(1) (2) (3) (4) (5) (6) (7) (8)

Commuting Zone (1980 weights) Commuting Zone (1960 weights)

Panel A: 2SLS Regression
Robust 0.021 0.562 0.159 0.621 0.709 0.096 0.131 0.001
Cluster 0.015 0.294 0.014 0.306 0.737 0.118 0.168 0.000
AKM 0.130 0.768 0.534 0.769 0.943 0.727 0.739 0.450
AKM0 0.343 0.771 0.554 0.778 0.944 0.753 0.730 0.562

Panel B: Reduced-Form Regression
Robust 0.000 0.616 0.302 0.571 0.717 0.127 0.172 0.012
Cluster 0.000 0.375 0.061 0.203 0.737 0.168 0.237 0.010
AKM 0.115 0.782 0.584 0.757 0.943 0.731 0.735 0.467
AKM0 0.343 0.771 0.554 0.778 0.944 0.753 0.730 0.562

Panel C: First-Stage
Robust 0.003 0.000
Cluster 0.000 0.000
AKM 0.029 0.000
AKM0 0.165 0.200

Notes: ∆ log Ei denotes log change in native employment; ∆ log wi denotes log change in average weekly wages of
native workers. In the specification CZ (1980 weights), we use information on 722 CZs, 1980 weights and three time
periods, 1980–1990, 1990–2000, 2000–2010; thus, N = 2, 166 (722 CZs × 3 time periods). In the specification CZ (1960
weights), we use information on 722 CZs, 1960 weights and one time period, 1970–1980; thus, N = 722 (722 CZs × 1
time period). Models are weighted by start-of-period CZ share of national population. All regressions include period
dummies. 95% confidence intervals in square brackets. Robust is the Eicker-Huber-White standard error; Cluster is
the standard error that clusters of CZs in the same state; AKM is the standard error in Remark 5; and AKM0 is the
confidence interval in Remark 6. We include all origin countries in the analysis. See Tables F.1 and F.2 for a list of the
origin countries included in the analysis.
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