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Abstract

We consider the problem of constructing honest confidence intervals (CIs) for a scalar

parameter of interest, such as the regression discontinuity parameter, in nonparametric

regression based on kernel or local polynomial estimators. To ensure that our CIs are

honest, we use critical values that take into account the possible bias of the estimator

upon which the CIs are based. We show that this approach leads to CIs that are more

efficient than conventional CIs that achieve coverage by undersmoothing or subtracting an

estimate of the bias. We give sharp efficiency bounds of using different kernels, and derive

the optimal bandwidth for constructing honest CIs. We show that using the bandwidth

that minimizes the maximum mean-squared error results in CIs that are nearly efficient

and that in this case, the critical value depends only on the rate of convergence. For the

common case in which the rate of convergence is n−2/5, the appropriate critical value for

95% CIs is 2.18, rather than the usual 1.96 critical value. We illustrate our results in a

Monte Carlo analysis and an empirical application.
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1 Introduction

This paper considers the problem of constructing confidence intervals (CIs) for a scalar param-

eter T (f) of a function f , which can be a conditional mean or a density. The scalar parameter

may correspond, for example, to a conditional mean, or its derivatives at a point, the regression

discontinuity or the regression kink parameter, or the value of a density or its derivatives at

a point. A popular approach to estimation of T (f) is to use kernel or local polynomial esti-

mators. These estimators are both simple to implement, and highly efficient in terms of their

mean squared error (MSE) properties (Fan, 1993; Cheng et al., 1997). CIs are typically formed

by undersmoothing (choosing the bandwidth to shrink more quickly than the MSE optimal

bandwidth) or bias-correction (subtracting an estimate of the estimator’s bias).

In this paper, we propose a simple alternative approach to forming CIs based on these

estimators that is more efficient than both undersmoothing and bias-correction in the sense

that it leads to shorter CIs while maintaining coverage over the same parameter space F for f

(which typically places bounds on derivatives of f). In particular, one simply adds and subtracts

the estimator’s standard error times a critical value that is larger than the usual normal quantile

z1−α/2, and takes into account the possible bias of the estimator.1 Asymptotically, these CIs

correspond to fixed-length CIs as defined in Donoho (1994), and so we refer to them as fixed-

length CIs. We show that the critical value depends only on (1) the order of the derivative that

one bounds to define the parameter space F ; and (2) the criterion used to choose the bandwidth.

In particular, if the MSE optimal bandwidth is used with a local linear estimator, computing

our CI at the 95% coverage level amounts to replacing the usual critical value z0.975 = 1.96 with

2.18.

When the criterion for bandwidth choice is the length of the resulting CI, we show that the

resulting bandwidth is in fact larger than the MSE optimal bandwidth. This contrasts with the

work of Hall (1992) and Calonico et al. (2018) on optimality of undersmoothing. Importantly,

these papers restrict attention to CIs that use the usual critical value z1−α/2. It then becomes

necessary to choose a small enough bandwidth so that the bias is asymptotically negligible

relative to the standard error, since this is the only way to achieve correct coverage. Our

results imply that rather than choosing a smaller bandwidth, it is better to use a larger critical

value that takes into account the potential bias; this also ensures correct coverage regardless of

the bandwidth sequence. While the fixed-length CIs shrink at the optimal rate, undersmoothed

CIs shrink more slowly. We also show that under smoothness assumptions needed to implement

bias-correction, our CIs shrink at a faster rate than bias-corrected CIs, once the standard error

is adjusted to take into account the variability of the bias estimate (Calonico et al. (2014) show

1An R package implementing our CIs in regression discontinuity designs is available at https://github.

com/kolesarm/RDHonest.
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that doing so is important for maintaining coverage). The oversmoothing relative to the MSE

optimal bandwidth is relatively modest: under a range of conditions most commonly used in

practice, a fixed-length CI centered at the MSE optimal bandwidth is 99% efficient relative

to using the CI optimal bandwidth. Therefore, a practically attractive implementation of our

CIs is to simply center them around an estimator with MSE optimal bandwidth, rather than

reoptimizing the bandwidth for length and coverage of the CI.

A key requirement that underlies our results is the notion of honesty: as in Li (1989), we

require that the CIs cover the true parameter asymptotically at the nominal level uniformly over

the parameter space F . Furthermore, we allow this parameter space to grow with the sample

size. The notion of honesty is closely related to the use of the minimax criterion used to derive

the MSE efficiency results: in both cases, one requires good performance uniformly over the

parameter space F . The requirement that the CIs be honest is necessary for good finite-sample

performance. In contrast, approaches to inference based on pointwise-in-f asymptotics, such

as using bandwidths that optimize the pointwise-in-f asymptotic MSE can lead to arbitrarily

poor finite-sample behavior, as we discuss further in Section 4.1. To illustrate the practical

importance of this point, we conduct a Monte Carlo study in which we show that commonly

used CIs based on plug-in bandwidths that attempt to estimate this pointwise-in-f optimal

bandwidth exhibit severe undercoverage, even when combined with undersmoothing or bias-

correction.

When the parameter space places a bound M on a derivative of f , our CIs require this

bound to be specified explicitly. While this may appear to be a disadvantage of our particular

approach, due to impossibility results of Low (1997), Cai and Low (2004), and Armstrong and

Kolesár (2018a), this cannot be avoided, regardless of how one forms the CI, without making

further restrictions on the function f . In particular, these papers show that, without additional

assumptions on the parameter space, one cannot use a data-driven method to estimate M and

maintain coverage over the whole parameter space—any other method that appears to avoid

making this choice must do so implicitly. For example, an apparent advantage of undersmooth-

ing is that it leads to correct coverage for any fixed smoothness constant M . However, as we

discuss in detail in Section 4.2, a more accurate description of undersmoothing is that for each

sample size n, it implicitly chooses a constant Mn under which coverage is controlled. Given

a sequence of undersmoothed bandwidths, we show how Mn can be calculated explicitly. One

can then obtain a shorter CI with the same coverage properties by computing a fixed-length CI

for the corresponding Mn. Regardless of how one chooses M , the fixed-length CIs we propose

are more efficient than undersmoothed or bias-corrected CIs that use the same (implicit or

explicit) choice of M . In fact, it follows from the calculations in Donoho (1994) and Armstrong

and Kolesár (2018a) that our CIs, when constructed using a length-optimal or MSE-optimal

bandwidth, are highly efficient among all honest CIs: no other approach to inference can sub-
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stantively improve on their length, while still maintaining coverage.

As an alternative to choosing M a priori, one can place additional conditions on the function

f that allow for an upper bound on M to be estimated. To maintain efficiency of the resulting

CI, however, care must be taken in doing so: if M is a bound on the pth derivative, and one

imposes a bound M̃ on the (p+1)th derivative in order to estimate M , then the optimal CI will

be based on a different estimator and will depend on the new bound M̃ . To avoid such issues,

we propose a regularity class that relates a global polynomial approximation to smoothness of

the function f near the point of interest, and we show formally that, for this class, one can

obtain a valid and highly efficient CI using a global polynomial rule of thumb suggested by Fan

and Gijbels (1996). However, given the additional assumptions required by this (or any) data

driven choice of M , we recommend that this approach be used as a starting point for sensitivity

analysis allowing for other choices of M .

Another approach to data-driven choices of M is to use “self-similarity” conditions, as

suggested by Giné and Nickl (2010), which relate the maximum and minimum bias at different

bandwidths. Bull (2012) and Chernozhukov et al. (2014) have obtained rate optimal confidence

bands under such conditions, which, like the CIs considered here, use a critical value based on

an upper bound on the bias. While these results for confidence bands could be extended to cover

the problem of constructing CIs for a scalar parameter, obtaining sharp critical values appears

to be very difficult. Indeed, the results of Armstrong (2018) show that the sharp form of such

CIs must depend to first order on auxiliary constants used to define self-similarity. Nonetheless,

our approach of bounding local smoothness using a global polynomial approximation is inspired

by the self-similarity approach taken by this literature, and we see it as being in the same spirit.

Schennach (2015) also uses an upper bound on the bias based on an estimated smoothness

constant. While the coverage of the resulting CIs is pointwise-in-f , it is plausible that the CIs

are honest under additional auxiliary conditions, similar in spirit to self-similarity.

In addition to calculating the relative efficiency of CIs constructed using different band-

widths, our results allow us to calculate the relative efficiency of CIs constructed using different

kernels. In particular, we show that the relative efficiency of kernels for the CIs we propose is

the same as the relative efficiency of the estimates in terms of MSE. Thus, relative efficiency cal-

culations for MSE, such as the ones in Fan (1993), Cheng et al. (1997), and Fan et al. (1997) for

estimation of a nonparametric mean at a point (estimation of f(x0) for some x0) that motivate

much of empirical practice in the applied regression discontinuity literature, translate directly

to CI construction. Despite their importance in motivating empirical practice, however, such

results are subject to a technical critique about how the parameter space is specified: rather

than placing a bound on a derivative of f (a Hölder condition), currently available relative

efficiency results place assumptions directly on the error of a Taylor approximation at a partic-
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ular point, so that some “nonsmooth” functions are in fact not ruled out.2 To address this, we

derive the minimax performance of local polynomial estimators under Hölder restrictions on f .

These results confirm that the local polynomial estimators used in empirical practice are also

highly efficient under Hölder restrictions on f . Furthermore, while we focus on asymptotic CIs

and relative efficiency, these results include a derivation of the finite-sample worst-case bias of

local polynomial estimators under Hölder restrictions, which was used by Kolesár and Rothe

(2018) to form finite-sample valid CIs in a fixed-design regression setting. These findings may

be of independent interest.

The requirement of honesty is also important to ensure that our concept of optimality is

well-defined and consistent. As discussed above, it allows us to consider bandwidth or kernel

efficiency for constructing CIs. In addition, it also allows us to formally show that using local

polynomial regression of an order that’s too high given the amount of smoothness imposed is

suboptimal. In contrast, under pointwise-in-f asymptotics, high-order local polynomial esti-

mates are superefficient at every point in the parameter space (see Chapter 1.2.4 in Tsybakov,

2009, and Brown et al., 1997).

To illustrate the implementation of the honest CIs, we reanalyze the data from Ludwig and

Miller (2007), who, using a regression discontinuity design, find a large and significant effect of

receiving technical assistance to apply for Head Start funding on child mortality at a county level.

However, this result is based on CIs that ignore the possible bias of the local linear estimator

around which they are built, and an ad hoc bandwidth choice. We find that, if one bounds

the second derivative globally by a constant M using a Hölder class, the uncertainty associated

with the effect size is much larger than originally reported, unless one is very optimistic about

the constant M , allowing f to only be linear or nearly-linear.

Our results build on the literature on estimation of linear functionals in normal models with

convex parameter spaces, as developed by Donoho (1994), Ibragimov and Khas’minskii (1985)

and many others. As with the results in that literature, our setup gives asymptotic results

for problems that are asymptotically equivalent to the Gaussian white noise model, including

nonparametric regression (Brown and Low, 1996) and density estimation (Nussbaum, 1996).

Our main results build on the “renormalization heuristics” of Donoho and Low (1992), who

show that many nonparametric estimation problems have renormalization properties that allow

easy computation of minimax MSE optimal kernels and rates of convergence. Our results hold

under essentially the same conditions, which apply in many classical nonparametric settings.

The CIs we consider in this paper are applications of the fixed-length CIs proposed in the

context of inference on linear functionals T (f) in Gaussian nonparametric regression by Donoho

(1994), which have also been studied recently in Armstrong and Kolesár (2018a), and in contem-

poraneous and subsequent work by Kolesár and Rothe (2018) and Imbens and Wager (2019).

2See Imbens and Wager (2019), as well as our discussion in Section 3.2.1 for an elaboration of this critique.
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In contrast to the finite-sample approach taken in these papers, we focus on asymptotic results,

and we also allow T (f) to be non-linear. Instead of imposing the nonparametric regression

model, we require a renormalization condition (see Eq. (4) below) that allows us to apply the

“renormalization heuristics” of Donoho and Low (1992); we are thus able to cover settings such

as density estimation or estimation of a bidder valuation in first-price auctions (see Supple-

mental Appendix C). Our asymptotic approach allows for simplifications that deliver our main

relative efficiency results. These efficiency results are different from and complementary to the

asymptotic form of the efficiency bounds given in Donoho (1994) and Armstrong and Kolesár

(2018a): whereas we consider relative efficiency of estimators and fixed-length CIs based on

different kernels and bandwidths, Donoho (1994) and Armstrong and Kolesár (2018a) bound

the scope for efficiency gains from CIs that do not fall into this class. Donoho (1994) and

Armstrong and Kolesár (2018a) find that the scope for further improvement is small, which

motivates our focus on this class of estimators and CIs. See Remark 2.3 for further discussion.

The rest of this paper is organized as follows. Section 2 gives the main results. Section 3

applies our results to inference at a point, sharp and fuzzy RD, and it discusses practical

implementation issues, including a rule of thumb for choosing M . Section 4 gives a theoretical

comparison of our fixed-length CIs to other approaches, and Section 5 compares them in a

Monte Carlo study. Finally, Section 6 presents an empirical application based on Ludwig and

Miller (2007). Appendix A gives proofs of the results in Section 2. Additional results are

collected in Supplemental Appendices.

2 General results

We are interested in a scalar parameter T (f) of a function f , which is typically a conditional

mean or a density. The function f is assumed to lie in a function class F = F(M), which places

“smoothness” conditions on f , where M indexes the level of smoothness. We focus on classical

nonparametric function classes, in which M corresponds to a bound on a derivative of f of a

given order. We allow M = Mn to grow with the sample size n.

We have available a class of estimators T̂ (h; k), indexed by a bandwidth h = hn > 0 and

a kernel k. Let ŝe(h; k) denote the standard error of T̂ (h; k), an estimate of its standard

deviation sdf (T̂ (h; k)). We assume that a central limit theorem applies to T̂ (h; k), so that

in large samples, the t-statistic [T̂ (h; k) − T (f)]/ŝe(h; k) will be approximately normal with

variance 1 and mean given by the ratio of bias to standard deviation, tf = (Ef [T̂ (h; k) −
T (f)])/ sdf (T̂ (h; k)). Since tf depends on the unknown function f , this ratio is unknown. Note,

however, that we can bound |tf | by the worst-case ratio of bias to standard deviation (bias-sd

ratio), tF = supf∈F |Ef [T̂ (h; k) − T (f)]|/ sdf (T̂ (h; k)). Therefore, if this bias-sd ratio can be
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computed up to asymptotically negligible terms, we can construct an honest CI as

T̂ (h; k)± cv1−α(t) · ŝe(h; k), (1)

where the approximate bias-sd ratio t satisfies t = tF(1+o(1)), and cv1−α(t) is the 1−α quantile

of the folded normal distribution |N(t, 1)|, or, equivalently, the square root of the 1−α quantile

of a χ2 distribution with 1 degree of freedom, and non-centrality parameter t2, which is readily

available in statistical software. For easy reference, we list these critical values in Table 1 for

selected values of t. Because the quantiles of a χ2 distribution are increasing in its non-centrality

parameter, replacing tf with an upper bound that is valid for all f ∈ F yields a CI that is

honest over F . The CI in (1) is an approximate version of a fixed-length confidence interval

(FLCI) studied in Donoho (1994), who replaces ŝe(h; k) with sdf (T̂ (h; k)) in the definition of

this CI, and assumes sdf (T̂ (h; k)) is constant over f , in which case its length will be fixed. We

thus refer to CIs of this form as “fixed-length”, even though ŝe(h; k) is random.

To motivate our main regularity condition (4) below that will facilitate studying the perfor-

mance of these FLCIs and allow for an easy computation of the bias-sd ratio t, suppose that

the standard deviation and the worst-case bias of the estimator T̂ (h; k),

bias(T̂ (h; k)) = sup
f∈F
|Ef T̂ (h; k)− T (f)|,

scale as powers of h. In particular, suppose that, for some γb > 0, γs < 0, B(k) > 0 and

S(k) > 0,

bias(T̂ (h; k)) = hγbMB(k)(1 + o(1)), sdf (T̂ (h; k)) = hγsn−1/2S(k)(1 + o(1)), (2)

where the o(1) term in the second equality is uniform over f ∈ F . We show in Supplemental

Appendix B that this condition will hold whenever the renormalization heuristics of Donoho

and Low (1992) can be formalized. This includes most classical nonparametric problems, such

as estimation of a density or a conditional mean, or its derivative, evaluated at a point (which

may be a boundary point). In Section 3.2.1, we show that (2) holds with γb = p, and γs = −1/2

under mild regularity conditions when T̂ (h; k) is a local polynomial estimator of a conditional

mean at a point, and F(M) consists of functions with pth derivative bounded by M .

Remark 2.1. The second condition in (2) implies that the standard deviation does not depend

on the underlying function f asymptotically. In certain settings, such as density estimation

(see Supplemental Appendix C.1), this may require choosing a localized sequence of parameter

spaces Fn, similar to local asymptotic minimax results in parametric settings (e.g., Section 8.7

in van der Vaart, 1998). While we allow for such dependence, we keep any dependence of F on
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n implicit in our notation in the main text. Similarly, the quantities B(k) and S(k) generally

depend on F (which if the parameter space is localized includes the localization point), as

well as on other nuisance parameters, such as the variance of the regression errors. To prevent

notational clutter, we keep this dependence implicit.

Under (2), we can use the ratio t = hγb−γsMB(k)/(n−1/2S(k)) of the leading worst-case bias

and standard deviation terms to compute the critical value cv1−α(t) in (1). Analogously to the

two-sided case, honest one-sided 1− α CIs based on T̂ (h; k) can be constructed by subtracting

the standard error times a 1 − α quantile of the distribution N (t, 1). This is asymptotically

equivalent to the CI

[T̂ (h; k)− hγbMB(k)− z1−αhγsn−1/2S(k) , ∞), (3)

which subtracts the maximum bias, in addition to subtracting z1−α times the standard deviation,

from T̂ (h; k).

Remark 2.2. One could also form honest two-sided CIs by simply adding and subtracting

the worst case bias, in addition to adding and subtracting the standard error times z1−α/2 =

cv1−α(0), the 1− α/2 quantile of a standard normal distribution, forming the CI as T̂ (h; k)±
(hγbMB(k)+z1−α/2 · ŝe(h; k)). However, since the estimator T̂ (h; k) cannot simultaneously have

a large positive and a large negative bias, such CI will be conservative, and longer than the CI

given in Eq. (1).

To discuss the optimal choice of bandwidth h and compare efficiency of different kernels k in

forming one- and two-sided CIs, and compare the results to the bandwidth and kernel efficiency

results for estimation, it will be useful to introduce notation for a generic performance criterion.

Let R(T̂ ) denote the worst-case (over F) performance of T̂ according to a given criterion, and

let R̃(b, s) denote the value of this criterion when T̂ −T (f) ∼ N(b, s2). For FLCIs, we can take

their half-length as the criterion, which leads to

RFLCI,α(T̂ (h; k)) = inf
{
χ : Pf (|T̂ (h; k)− T (f)| ≤ χ) ≥ 1− α for all f ∈ F

}
,

R̃FLCI,α(b, s) = inf
{
χ : PZ∼N(0,1) (|sZ + b| ≤ χ) ≥ 1− α

}
= s · cv1−α(b/s).

To evaluate one-sided CIs, one needs a criterion other than length, which is infinite. A natural

criterion is expected excess length, or quantiles of excess length. We focus here on the quantiles

of excess length. For CI of the form (3), its worst-case β quantile of excess length is given by

ROCI,α,β(T̂ (h; k)) = supf∈F qf,β(T (f)− T̂ (h; k) + hγbMB(k) + z1−αh
γsn−1/2S(k)), where qf,β(Z)

is the β quantile of a random variable Z. The worst-case β quantile of excess length based on

an estimator T̂ when T̂ − T (f) is normal with variance s2 and bias ranging between −b and

8



b is R̃OCI,α,β(b, s) = 2b + (z1−α + zβ)s. Finally, to evaluate T̂ (h; k) as an estimator we use the

maximum root mean squared error (RMSE) under F as the performance criterion:

RRMSE(T̂ ) = sup
f∈F

√
Ef [T̂ − T (f)]2, R̃RMSE(b, s) =

√
b2 + s2.

The key regularity condition that we impose on the class of estimators T̂ (h; k) is that their

performance can be approximated in large samples by the performance of a normally distributed

estimator with bias and standard deviation that scale as powers of h,

R(T̂ (h; k)) = R̃(hγbMB(k), hγsn−1/2S(k))(1 + o(1)). (4)

For the performance criteria above, if the estimator T̂ (h; k) satisfies an appropriate central limit

theorem, and Eq. (2) holds, condition (4) will hold so long as the estimator is centered, so that,

up to asymptotically negligible terms, its maximum and minimum bias over F sum to zero,

supf∈F Ef (T̂ (h; k)−T (f)) = − inff∈F Ef (T̂ (h; k)−T (f))(1 + o(1)).3 Heuristically, this follows

because if (T̂ (h; k)−Ef T̂ (h; k))/ sdf (T̂ ) is asymptotically N(0, 1), then under (2), T̂ (h; k)−T (f)

will be in large samples approximately normal, with standard deviation hγsn−1/2S(k), and

mean bounded above and below by hγbMB(k). In Section 3.2.1, we verify (4) for the problem

of estimation of a conditional mean at a point. For estimation of certain smooth non-linear

functionals of the regression function or non-parametric density, including fuzzy regression

discontinuity discussed in Section 3, and estimating a bidder valuation in first price auctions

discussed in Supplemental Appendix C.2, moments of the estimator may not exist. In these

cases, one can use Theorems B.1 and B.2 in Supplemental Appendix B to verify (4), which

only require a weaker version of (2) stated in terms of convergence in distribution rather than

moments, so long as one truncates unbounded loss functions.4

We also assume that R̃ is homogeneous of degree one,

R̃(tb, ts) = tR̃(b, s) for all t > 0. (5)

3This centering condition holds automatically by a symmetry argument for kernel or local polynomial es-
timators if f is a conditional mean or a density, T (f) is its value or its derivative at a point, or a regression
discontinuity parameter, and F bounds its derivatives. In other cases, Eq. (4) will hold when the estimator is

recentered by subtracting B = (supf∈F Ef (T̂ (h; k) − T (f)) + inff∈F Ef (T̂ (h; k) − T (f)))/2, or an estimate B̂

of B that is consistent in the sense that (B̂ −B)/ŝe(h; k) converges in probability to zero, uniformly over F .
Recentering the estimator in this way improves the estimator’s performance under the criteria that we consider.

4For evaluating estimators in these cases, we focus on minimizing the limit of the scaled truncated RMSE
limc→∞ limn→∞ nr/2Mr−1R`c(T̂ (h; k)), where R`c denotes the worst-case risk under a version of the RMSE that
truncates the squared error loss at c2. This is equivalent to minimizing the (untruncated) asymptotic RMSE
(see Supplemental Appendix B.1 for details). Under this criterion, the RMSE optimal bandwidth defined below
and Theorem 2.2 below are not affected by the truncation.
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This condition holds for all three criteria considered above. This allows us to simplify the right-

hand side of (4). In particular, using the bias-sd ratio t = hγb−γsMB(k)/(n−1/2S(k)), write

the bandwidth as h =
(
tn−1/2S(k)/(MB(k))

)1/(γb−γs). Substituting this expression in (4) and

using (5) gives

R(T̂ (h; k)) = R̃(trn−r/2M1−rS(k)rB(k)1−r, tr−1n−r/2M1−rS(k)rB(k)1−r)(1 + o(1))

= n−r/2M1−rS(k)rB(k)1−rtr−1R̃(t, 1)(1 + o(1)),
(6)

where r = γb/(γb − γs). Since the performance criterion converges at the rate nr/2 when M is

fixed, we refer to r as the rate exponent (this matches the definition in, e.g., Donoho and Low

1992). We denote the bandwidth choice that minimizes the right-hand side of (6) for a given per-

formance criterion R by h∗R = (n−1/2S(k)t∗R/(MB(k)))1/(γb−γs), with t∗R = argmint t
r−1R̃(t, 1),

and assume that t∗R is finite and strictly greater than zero, which is the case for the performance

criteria we consider.

The bandwidth choice h∗R will be asymptotically optimal so long as it is suboptimal to choose

a bandwidth sequence hn such that such that the bias or the variance dominates asymptotically,

which is the case in the settings considered here. For our main results, we assume this directly

by assuming that

M r−1n
r
2R(T̂ (hn; k))→∞ for any hn with hn(nM2)

1
2(γb−γs) →∞ or hn(nM2)

1
2(γb−γs) → 0. (7)

Under this condition, we only need (4) to hold for bandwidth sequences that are of the same

order (nM2)−1/[2(γb−γs)] as the optimal bandwidth h∗R.5 Note that optimal bandwidth is of the

same order regardless of the performance criterion—the performance criterion only determines

the optimal bandwidth constant through t∗R.

The next theorem collects implications of these derivations for the performance of different

kernels. In particular, we consider minimax performance over bandwidth sequences, that is,

bandwidth sequences hn that achieve the asymptotically best possible worst-case performance

in large samples in the sense that M r−1nr/2(R(T̂ (hn; k))− infh>0R(T̂ (h; k))) = o(1).

Theorem 2.1. Let R be a performance criterion with R̃(b, s) > 0 for all (b, s) 6= 0. Suppose

that Eq. (4) holds for any bandwidth sequence hn with lim infn→∞ hn(nM2)1/[2(γb−γs)] > 0 and

lim supn→∞ hn(nM2)1/[2(γb−γs)] <∞, and suppose that Eqs. (5) and (7) hold. Define h∗R and t∗R
as above, and assume that t∗R > 0 is unique and well-defined. Then:

5In typical settings, a necessary condition for Eq. (4) to hold is that the optimal bandwidth h∗R shrinks
at a rate such that (h∗R)−2γsn → ∞ and h∗R → 0. If M is fixed, this simply requires that γb − γs > 1/2,
which basically amounts to a requirement that F(M) imposes enough smoothness so that the problem is not
degenerate in large samples. If M = Mn → ∞, then the condition also requires nr/2Mr−1 → ∞, so that M
does not increase too quickly.
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(i) The asymptotic minimax performance under the kernel k is given by

M r−1nr/2 inf
h>0

R(T̂ (h; k)) = M r−1nr/2R(T̂ (h∗R; k)) + o(1)

= S(k)rB(k)1−r(t∗R)r−1R̃(t∗R, 1) + o(1).

(ii) The asymptotic relative efficiency of two kernels k1 and k2 is given by

lim
n→∞

infh>0R(T̂ (h; k1))

infh>0R(T̂ (h; k2))
=
S(k1)

rB(k1)
1−r

S(k2)rB(k2)1−r
.

It depends on the rate r but not on the performance criterion R.

(iii) If we consider two performance criteria R1 and R2 satisfying the conditions above, then

the limit of the ratio of optimal bandwidths for these criteria is

lim
n→∞

h∗R1

h∗R2

=

(
t∗R1

t∗R2

)1/(γb−γs)

.

It depends only on γb and γs and the performance criteria. If (2) holds, the asymptotically

optimal bias-sd ratio is given by

lim
n→∞

bias(T̂ (h∗R; k))

sdf (T̂ (h∗R; k))
= argmin

t
tr−1R̃(t, 1) = t∗R.

It depends only on the performance criterion R and rate exponent r.

Part (i) gives the optimal bandwidth formula for a given performance criterion. The per-

formance criterion only determines the optimal bandwidth constant (the optimal bias-sd ratio)

t∗R.

Part (ii) shows that relative kernel efficiency results do not depend on the performance

criterion. In particular, known kernel efficiency results under the RMSE criterion such as those

in Fan (1993), Cheng et al. (1997), and Fan et al. (1997) apply unchanged to other performance

criteria such as length of FLCIs, excess length of one-sided CIs, or expected absolute error.

Part (iii) shows that the optimal bias-sd ratio for a given performance criterion depends on

F only through the rate exponent r, and does not depend on the kernel. The optimal bias-sd

ratio for RMSE, FLCI and OCI, respectively, are

t∗RMSE = argmin
t>0

tr−1R̃RMSE(t, 1) = argmin
t>0

tr−1
√
t2 + 1 =

√
1/r − 1,

t∗FLCI = argmin
t>0

tr−1R̃FLCI,α(t, 1) = argmin
t>0

tr−1 cv1−α(t), and

11



t∗OCI = argmin
t>0

tr−1R̃OCI,α,β(t, 1) = argmin
t>0

tr−1[2t+ (z1−α + zβ)] = (1/r − 1)
z1−α + zβ

2
.

Figures 1 and 2 plot these quantities as a function of r. Note that the optimal bias-sd ratio

is larger for FLCIs (at levels α = .05 and α = .01) than for RMSE. Since h is increasing in

t, it follows that, for FLCI, the optimal bandwidth oversmooths relative to the RMSE optimal

bandwidth.

Remark 2.3. Theorem 2.1 does not address whether further efficiency improvements are pos-

sible by using estimators that do not fall into the class T̂ (h; k), or by using variable length

CIs. However, it follows from Donoho (1994) and Armstrong and Kolesár (2018a) that, in

typical settings where our results hold, little further improvement is possible. In particular,

these papers give efficiency bounds that, applied to our setting, yield asymptotic lower bounds

for R(T̂ ∗)/R(T̂ (h∗; k∗)), where T̂ ∗ is the optimal estimator or CI among all procedures (for CIs,

this includes variable length CIs, with performance measured in terms of expected length), and

h∗ and k∗ are the optimal bandwidth and kernel. These asymptotic lower bounds depend only

on the rate exponent r, and so can be used along with the bounds in Theorem 2.1 to obtain

the efficiency of a particular kernel and bandwidth relative to the fully optimal procedure.

One can also form FLCIs centered at the estimator that is optimal for different performance

criterion R as T̂ (h∗R; k)± ŝe(h∗R; k) · cv1−α(t∗R). The critical value cv1−α(t∗R) depends only on the

rate exponent r and the performance criterion R. In particular, the CI centered at the RMSE

optimal estimator takes this form with t∗RMSE =
√

1/r − 1, which yields the CI

T̂ (h∗RMSE; k)± cv1−α(
√

1/r − 1) · ŝe(h∗RMSE; k), (8)

Table 1 reports this critical value cv1−α(
√

1/r − 1) for rate exponents r commonly encoun-

tered in practice. By (6), the resulting CI is wider than the one computed using the FLCI

optimal bandwidth by a factor of

(t∗FLCI)
r−1 · cv1−α(t∗FLCI)

(t∗RMSE)r−1 · cv1−α(t∗RMSE)
. (9)

Figure 3 plots this quantity as a function of r. It can be seen from the figure that if r ≥ 4/5, CIs

constructed around the RMSE optimal bandwidth are highly efficient. For example, if r = 4/5,

to construct an honest 95% FLCI based on an estimator with bandwidth chosen to optimize

RMSE, one simply adds and subtracts the standard error multiplied by 2.18 (rather than the

usual 1.96 critical value), and the corresponding CI is less than 1% longer than the one with

bandwidth chosen to optimize CI length. The next theorem gives a formal statement.
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Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold for RRMSE and for RFLCI,α̃

for all α̃ in a neighborhood of α. Let ŝe(h∗rmse; k) be such that ŝe(h∗rmse; k)/[(h∗rmse)γsn−1/2S(k)]

converges in probability to 1 uniformly over f ∈ F . Then

lim
n→∞

inf
f∈F

Pf

(
T (f) ∈

{
T̂ (h∗rmse; k)± ŝe(h∗rmse; k) · cv1−α(

√
1/r − 1)

})
= 1− α.

The asymptotic efficiency of this CI relative to the one centered at the FLCI optimal bandwidth,

defined as limn→∞
infh>0RFLCI,α(T̂ (h;k))

RFLCI,α(T̂ (h
∗
rmse;k))

, is given by (9). It depends only on r.

3 Applications

In this section, we apply the general results from Section 2 to the problem of inference about

a nonparametric regression function at a point, and to regression discontinuity (RD). Readers

who are interested only in implementing our CIs in these applications can skip Section 3.2.

Supplemental Appendix C discusses two additional applications: estimation of a density at a

point, and estimation of a bidder valuation in first-price auctions.

3.1 Setup and Estimators

Inference at a point We are interested in inference about a nonparametric regression func-

tion f at a point, which we normalize to be zero, so that the parameter of interest is given by

T (f) = f(0). We write the nonparametric regression model as

yi = f(xi) + ui, i = 1, . . . , n, Eui = 0, var(ui) = σ(xi). (10)

where the design points xi are non-random. We allow the point of interest 0 to lie on the

boundary of the support of the design points. We focus on estimating f(0) using a local

polynomial estimator of order q with kernel k(·),

T̂q(h; k) =
n∑
i=1

wnq (xi;h, k)yi,

where the weights wnq (xi;h, k) are given by

wnq (x;h, k) = e′1Q
−1
n mq(x)k(x/h), Qn =

n∑
i=1

k(xi/h)mq(xi)mq(xi)
′. (11)

Here mq(t) = (1, t, . . . , tq)′, e1 is a vector of zeros with 1 in the first position, and h is a

bandwidth. Thus, T̂q(h; k) corresponds to the intercept in a weighted least squares regression
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of yi on (1, xi, . . . , x
q
i ) with weights k(xi/h). Local linear estimators correspond to q = 1, and

Nadaraya-Watson (local constant) estimators to q = 0.

Sharp RD In a sharp RD design, using data from the nonparametric regression model (10),

the goal is to to estimate the jump in the regression function f at a known cutoff, which we

normalize to 0, so that T (f) = limx↓0 f(x) − limx↑0 f(x). The cutoff determines participation

in a binary treatment: units with xi ≥ 0 are treated; units with xi < 0 are controls. If

the regression functions of potential outcomes are continuous at zero, then T (f) measures the

average effect of the treatment for units with xi = 0 (Hahn et al., 2001). For brevity, we focus

on estimating T (f) based only on local linear regressions: the estimator T̂ (h; k) is given by a

difference between estimates from two local linear regressions with bandwidth h and kernel k

at a boundary point, one for units with non-negative values running variable xi, and one for

units with negative values of the running variable. The estimator can be written as

T̂ (h; k) =
n∑
i=1

(wn+(x;h, k)− wn−(x;h, k))yi, (12)

with the weight wn+ given by

wn+(x;h, k) = e′1Q
−1
n,+m1(x)k+(x/h), k+(u) = k(u) I{u ≥ 0},

and Qn,+ =
∑n

i=1 k+(xi/h)m1(xi)m1(xi)
′. The weights wn−, Gram matrix Qn,− and kernel k−

are defined similarly. Let σ2
+(x) = σ2(x) I{x ≥ 0}, and σ2

−(x) = σ2(x) I{x < 0}.

Fuzzy RD In a fuzzy RD design, the treatment di is not entirely determined by whether

the running variable xi exceeds a cutoff. Instead, the cutoff induces a jump in the treatment

probability. This fits into our framework if we let f = (f1, f2) comprise two regression functions,

corresponding to the reduced-form regression of the outcome on the running variable, and the

first-stage regression of the treatment on the running variable:

yi = f1(xi) + ui1,

di = f2(xi) + ui2,
i = 1, . . . , n, Eui = 0, var(ui) = Ω(xi), (13)

with ui = (ui1, ui2)
′. The parameter of interest is given by the ratio T (f) = L1(f)/L2(f) of

sharp RD parameters Lj(f) = limx↓0 fj(x)− limx↑0 fj(x) in the reduced-form (j = 1) and first-

stage regression (j = 2). If the regression functions of the potential outcomes and potential

treatments are continuous at zero, and a monotonicity condition holds, then T (f) measures

the average treatment effect for individuals with xi = 0 who are compliers (see Hahn et al.,
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2001). We consider estimating T (f) by its sample analog, replacing L1 and L2 with sharp RD

local linear estimates, which are for simplicity assumed to be based on the same bandwidth,

T̂ (h; k) = L̂1(h; k)/L̂2(h; k), where

L̂(h; k) =

L̂1(h; k)

L̂1(h; k)

 =
∑
i

(wn+(x;h, k)− wn−(x;h, k))

yi
di

 ,

with the weights wn+ and wn− defined as in (12).

3.2 Theoretical results

We now discuss the conditions under which the key regularity condition (4) holds in each

application. We also discuss kernel efficiency results, and gains from imposing global, rather

than just local, smoothness on f .

3.2.1 Inference at a point

To state the results, it will be convenient to define the equivalent kernel

k∗q(u) = e′1

(∫
X
mq(t)mq(t)

′k(t) dt

)−1
mq(u)k(u), (14)

where the integral is over X = R if 0 is an interior point, and over X = [0,∞) if 0 is a (left)

boundary point.

We assume the following conditions on the design points and regression errors ui:

Assumption 3.1. For some d > 0, the sequence {xi}ni=1 satisfies 1
nhn

∑n
i=1 g(xi/hn) → d ·∫

X g(u) du for any bounded function g with finite support and any sequence hn with 0 <

lim infn hn(nM2)1/(2p+1) < lim supn hn(nM2)1/(2p+1) <∞.

Assumption 3.2. The random variables {ui}ni=1 are independent with Eui = 0, Eu2+ηi ≤ 1/η

for some η > 0, and var(ui) = σ2(xi) for some variance function σ2(x) that is continuous at

x = 0 with σ2(0) > 0.

Assumption 3.1 requires that the empirical distribution of the design points is smooth around

0. When the support points are treated as random, the constant d typically corresponds to

their density at 0.

Because the estimator is linear in yi, its variance doesn’t depend on f ,

sd(T̂q(h; k))2 =
n∑
i=1

wnq (xi)
2σ2(xi) =

S(k)2

nh
(1 + o(1)), S(k) =

√
σ2(0)

∫
X k
∗
q(u)2 du

d
, (15)
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where the second equality holds under Assumptions 3.1 and 3.2, as we show in Supplemental

Appendix B.3. The condition on the standard deviation in Eq. (2) thus holds with γs =

−1/2, and S(k) given in the preceding display. Supplemental Appendix D.3 gives the constant∫
X k
∗
q(u)2 du for selected kernels.

On the other hand, the worst-case bias will be driven primarily by the function class F . We

consider inference under two popular function classes. First, the Taylor class of order p,

FT,p(M) =
{
f :
∣∣∣f(x)−

∑p−1
j=0 f

(j)(0)xj/j!
∣∣∣ ≤M |x|p/p! x ∈ X

}
.

This class consists of all functions for which the approximation error from a (p − 1)-th order

Taylor approximation around 0 can be bounded by 1
p!
M |x|p. It formalizes the idea that the pth

derivative of f at zero should be bounded by some constant M . Using this class of functions to

derive optimal estimators goes back at least to Legostaeva and Shiryaev (1971), and it underlies

much of existing minimax theory concerning local polynomial estimators (see Fan and Gijbels,

1996, Chapter 3.4–3.5).

While analytically convenient, the Taylor class may not be attractive in some empirical

settings because it allows f to be non-smooth and discontinuous away from 0. We therefore

also consider inference under Hölder classes (for simplicity, we focus on Hölder classes of integer

order)

FHöl,p(M) =
{
f : |f (p−1)(x)− f (p−1)(x′)| ≤M |x− x′|, x, x′ ∈ X

}
.

This class is the closure of the family of p times differentiable functions with the pth derivative

bounded by M , uniformly over X , not just at 0. It formalizes the intuitive notion that f should

be p-times differentiable with a bound on the pth derivative. The case p = 1 corresponds to

the Lipschitz class of functions.

Theorem 3.1. Suppose that Assumption 3.1 holds and that k(·) is bounded with bounded

support and q ≥ p − 1. Then, for any bandwidth sequence hn with nhn → ∞ and 0 <

lim infn hn(nM2)1/(2p+1) < lim supn hn(nM2)1/(2p+1) <∞,

biasFT,p(M)(T̂q(hn; k)) =
Mhpn
p!
BT
p,q(k)(1 + o(1)), BT

p,q(k) =

∫
X
|upk∗q(u)| du

and

biasFHöl,p(M)(T̂q(hn; k)) =
Mhpn
p!
BHöl
p,q (k)(1 + o(1)),

BHöl
p,q (k) = p

∫ ∞
t=0

∣∣∣∣∫
u∈X ,|u|≥t

k∗q(u)(|u| − t)p−1 du
∣∣∣∣ dt.

Thus, the first part of Eq. (2) holds with γb = p and B(k) = Bp,q(k)/p!, where Bp,q(k) = BHöl
p,q (k)
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for FHöl,p(M), and Bp,q(k) = BT
p,q(k) for FT,p(M).

If, in addition, Assumption 3.2 holds, then Eq. (4) holds for the RMSE, FLCI and OCI

performance criteria, with γb and B(k) given above and γs and S(k) given in Eq. (15).

The theorem verifies the regularity conditions needed for the results in Section 2, and

implies that r = 2p/(2p + 1) for FT,p(M) and FHöl,p(M). If p = 2, then we obtain r =

4/5. By Theorem 2.1(i), the optimal rate of convergence of a criterion R is R(T̂ (h∗R; k)) =

O((n/M1/p)−p/(2p+1)). As we will see from the relative efficiency calculation below, the optimal

order of the local polynomial regression is q = p − 1 for the kernels considered here. The

theorem allows q ≥ p− 1, so that we can examine the efficiency of local polynomial regressions

that are of order that’s too high relative to the smoothness class. Allowing for q < p− 1 is not

meaningful, as in this case, the maximum bias is infinite.6

Under the Taylor class FT,p(M), the least favorable (bias-maximizing) function is given

by f(x) = M/p! · sign(wnq (x))|x|p. In particular, if the weights are not all positive, it will be

discontinuous away from the boundary. The first part of Theorem 3.1 then follows by taking

the limit of the bias under this function. Assumption 3.1 ensures that this limit is well-defined.

Under the Hölder class FHöl,p(M), the least favorable function takes the form of a pth order

spline. See Supplemental Appendix B.3 for details.

These results imply that given a kernel k and order of a local polynomial q, the RMSE-

optimal bandwidth for FT,p(M) and FHöl,p(M) is given by

h∗rmse =

(
1

2pn

S(k)2

M2B(k)2

) 1
2p+1

=

(
σ2(0)p!2

2pndM2

∫
X k
∗
q(u)2 du

Bp,q(k)2

) 1
2p+1

, (16)

where Bp,q(k) = BHöl
p,q (k) for FHöl,p(M), and Bp,q(k) = BT

p,q(k) for FT,p(M). For kernels given by

polynomial functions over their support, k∗q also has the form of a polynomial, and BT
p,q and BHöl

p,q

can be computed analytically. Supplemental Appendix D.3 gives these constants for selected

kernels.

Kernel efficiency It follows from Theorem 2.1(ii) that the optimal equivalent kernel min-

imizes S(k)rB(k)1−r, independently of the performance criterion. Under the Taylor class

FT,p(M), this is equivalent to minimizing(∫
X
k∗(u)2 du

)p
·
∫
X
|upk∗(u)| du, (17)

6 The smoothness classes FT,p(M) and FHöl,p(M) do not restrict derivatives of order p − 1 and lower, so
that, in order to achieve a finite worst-case bias, the estimator needs to be unbiased for polynomials of order
p− 1, which requires q ≥ p− 1.
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The solution to this problem follows from Sacks and Ylvisaker (1978, Theorem 1) (see also

Cheng et al. (1997)). We give details of the solution in Supplemental Appendix D.2. Table 2

compares the asymptotic relative efficiency of local polynomial estimators based on the uni-

form, triangular, and Epanechnikov kernels to the optimal Sacks-Ylvisaker kernels. Fan et al.

(1997) and Cheng et al. (1997), conjecture that minimizing (17) yields a sharp bound on kernel

efficiency. It follows from Theorem 2.1(ii) that this conjecture is correct, and Table 2 matches

the kernel efficiency bounds in these papers. Table 2 shows that the choice of the kernel doesn’t

matter very much, so long as the local polynomial is of the right order. However, if the order is

too high, q > p− 1, the efficiency can be quite low, even if the bandwidth used was optimal for

the function class or the right order, FT,p(M), especially on the boundary. If the bandwidth

picked is optimal for FT,q−1(M), it will shrink at a lower rate than optimal under FT,p(M), and

the resulting rate of convergence will be lower than r. Consequently, the relative asymptotic

efficiency will be zero. A similar point in the context of pointwise asymptotics was made in

Sun (2005, Remark 5, page 8).

The solution to minimizing S(k)rB(k)1−r under FHöl,p(M) is only known in special cases.

When p = 1, the optimal estimator is a local constant estimator based on the triangular kernel.

When p = 2, the solution is given in Fuller (1961) and Zhao (1997) for the interior point

problem, and in Gao (2018) for the boundary point problem. See Supplemental Appendix D.2

for details. When p ≥ 3, the solution is unknown. Therefore, for p = 3, we compute efficiencies

relative to a local quadratic estimator with a triangular kernel. Table 3 calculates the resulting

efficiencies for local polynomial estimators based on the uniform, triangular, and Epanechnikov

kernels. Relative to the class FT,p(M), the bias constants are smaller: imposing smoothness

away from the point of interest helps to reduce the worst-case bias. Furthermore, the loss of

efficiency from using a local polynomial estimator of order that’s too high is smaller. Finally,

local linear regression with a triangular kernel achieves high asymptotic efficiency under both

FT,2(M) and FHöl,2(M), both at the interior and at a boundary, with efficiency at least 97%,

giving a theoretical justification to this popular choice in empirical work.

Gains from imposing smoothness globally The Taylor class FT,p(M), only restricts the

pth derivative locally to the point of interest, while the Hölder class FHöl,p(M) restricts the pth

derivative globally. How much can one tighten a confidence interval or reduce the RMSE due

to this additional smoothness?

It follows from Theorem 3.1 and from arguments underlying Theorem 2.1 that the perfor-

mance of using a local polynomial estimator of order p−1 with kernel kH and optimal bandwidth

under FHöl,p(M) relative to using a local polynomial estimator of order p − 1 with kernel kT

18



and optimal bandwidth under FT,p(M) is given by

infh>0RFHöl,p(M)(T̂ (h; kH))

infh>0RFT,p(M)(T̂ (h; kT ))
=

(∫
X k
∗
H,p−1(u)2 du∫

X k
∗
T,p−1(u)2 du

) p
2p+1

(
BHöl
p,p−1(kH)

BTp,p−1(kT )

) 1
2p+1

(1 + o(1)), (18)

where RF(T̂ ) denotes the worst-case performance of T̂ over F . If the same kernel is used, the

first term equals 1, and the efficiency ratio is determined by the ratio of the bias constants

Bp,p−1(k). Table 4 computes the resulting efficiency gain for common kernels. In general, the

gains are greater for larger p, and greater at the boundary. For estimation at a boundary point

with p = 2, for example, imposing global smoothness of f reduces CI length by about 13–15%,

depending on the kernel, and about 10% if the optimal kernel is used.

3.2.2 Sharp regression discontinuity

We focus on the most empirically relevant case in which the regression function f is assumed

to lie in the class FHöl,2(M) on either side of the cutoff:

f ∈ FSRD(M) = {f+(x) I{x ≥ 0} − f−(x) I{x < 0} : f+, f− ∈ FHöl,2(M)}.

Inference on T (f) is then equivalent to inference on the difference between two regression

functions evaluated at boundary points, and the results follow by a slight extension of the

results for estimation at a boundary point in Section 3.2.1.

It follows from the results in Section 3.2.1 that if Assumptions 3.1 and 3.2 hold (with the

requirement that σ2(x) is continuous 0 replaced by right- and left-continuity of σ2
+(x) and

σ2
−(x)), then the variance of the estimator doesn’t depend on f and satisfies

sd(T̂ (h; k))2 =
n∑
i=1

w̃n(xi)
2σ2(xi) =

S(k)2

nh
(1 + o(1)), S(k)2 =

∫∞
0
k∗1(u)2 du

(
σ2
+(0) + σ2

−(0)
)

d
,

with d defined in Assumption 3.1, and w̃n(xi) = wn+(xi) +wn−(xi). Theorem 3.1 and arguments

in Supplemental Appendix B.3 imply that the bias of T̂ (h; k) is maximized at f(x) = −Mx2/2 ·
(I{x ≥ 0} − I{x < 0}), so long as the kernel k(·) takes on nonnegative values. The worst-case

bias therefore satisfies

bias(T̂ (h; k)) = −M
2

n∑
i=1

w̃n(xi)x
2
i = Mh2B(k)(1 + o(1)), B(k) = −

∫ ∞
0

u2k∗1(u) du.

It follows that for the RMSE, FLCI, and OCI criteria, Eq. (4) holds with γb = 2, γs = −1/2,

and B(k) and S(k) given in the displays above. Thus, the RMSE-optimal bandwidth is given
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by

h∗rmse =

( ∫∞
0
k∗1(u)2 du

(
∫∞
0
u2k∗1(u) du)2

·
σ2
+(0) + σ2

−(0)

4dnM2

)1/5

. (19)

The kernel efficiency results are analogous to those in Section 3.2.1.

In principle, one could allow the bandwidths on either side of the cutoff to be different.

We show in Supplemental Appendix D.1, however, that the loss in efficiency resulting from

constraining the bandwidths to be the same is quite small unless the ratio of variances on

either side of the cutoff, σ2
+(0)/σ2

−(0), is quite large.

3.2.3 Fuzzy regression discontinuity

We assume that f = (f1, f2) lies in the class FFRD(M1,M2) = FSRD(M1)× FSRD(M2), so that

both the reduced-form and the first-stage regression functions are assumed to have a bounded

second derivative on either side of the cutoff.7

Since the estimator is non-linear, to ensure that (4) holds, it will be necessary to consider a

sequence of parameter spaces FFRD,n(M1,M2) localized around a particular value L∗ of L(f) =

(L1(f), L2(f))′ with a non-zero jump in the first-stage regression L∗2 6= 0. This allows us to

apply a version of the delta method to L̂(h; k). We defer details to Supplemental Appendix B.4,

where we show that under Assumption 3.1 and a version of Assumption 3.2, the distribution of

T̂ (h; k)− T (f) can in large samples be approximated by a normal distribution with variance

avar(T̂ (h; k)) =
S(k)2

nh
=

n∑
i=1

ς2(xi;T (f))

L2(f)2
w̃n(xi;h, k)2(1 + o(1)),

and mean bounded by

abias(T̂ (h; k)) = M1h
2B(k) = −M1 + |T (f)|M2

2|L2(f)|

n∑
i=1

w̃n(xi;h, k)x2i (1 + o(1)),

where w̃n(xi;h, k) = wn+(xi) + wn−(xi), ς
2(xi;T ) = (1,−T )Ω(xi)(1,−T )′,

B(k) = −
∫∞
0
u2k∗1(u) du(1 + |T (f)|M2/M1)

|L2(f)|
, S(k)2 =

∫∞
0
k∗1(u)2 du

d

ς2+(0;T (f)) + ς2−(0;T (f))

L2(f)2
,

ς2+(0;T ) = limx↓0 ς
2(x;T ), and ς2−(0;T ) = limx↑0 ς

2(x;T ).

It then follows that for the FLCI, OCI, and a truncated version of the RMSE criterion,

Eq. (4) holds with M = M1, γb = 2, γs = −1/2, and B(k) and S(k) given in the preceding

7While we allow the bounds M1 and M2 to change with sample size, we assume that their ratio M1/M2 is
fixed for simplicity.
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display. The RMSE-optimal bandwidth is therefore given by

h∗rmse =

( ∫∞
0
k∗1(u)2 du

(
∫∞
0
u2k∗1(u) du)2

· ς2(T (f))

4dn(M1 + |T (f)|M2)

)1/5

. (20)

Since S(k) and B(k) depend on the kernel k through the same quantities as for inference at a

boundary point, the kernel efficiency results are analogous to those in Section 3.2.1.

Because the optimal bandwidth depends on T (f), implementing a feasible version of it

requires replacing it with an initial estimate. An alternative approach to the construction

of two-sided CIs for T (f) that doesn’t require localization or the use of initial estimates is

an Anderson and Rubin (1949) style construction studied by Noack and Rothe (2019). In

particular, Noack and Rothe (2019) propose constructing, for each T0, an auxiliary CI for the

jump in the mean of yi−diT0 at the cutoff, using an approach similar to that we use for inference

in sharp RD. The CI for T (f) is then constructed by collecting all T0’s for which the auxiliary

CI contains zero. This approach also has the additional advantage that it can allow for weak

identification while it yields asymptotically equivalent CIs under strong identification.8 See

Noack and Rothe (2019) for a more detailed discussion.

3.3 Practical implementation

We now discuss some practical issues that arise when implementing our CIs for inference at a

point, and in sharp and fuzzy RD studied in the previous subsections. To focus the discussion,

we consider smoothness classes FHöl,2(M), FSRD(M), and FFRD(M1,M2) that constrain the

second derivative globally, so that, in the discussion below, p = 2. In other words, for inference

at a point, we assume that the conditional mean f Eq. (10) is (almost everywhere) twice

differentiable with the second derivative bounded by M ; for sharp RD, we assume that that f

is twice differentiable on either side of the cutoff, with the second derivative bounded by M ; and

for fuzzy RD, we assume that f1 and f2 in in Eq. (13) are twice differentiable on either side of

the cutoff, with the second derivative bounded by M1 and M2, respectively. These assumptions

imply optimality of the estimators defined in Section 3.1 based on local linear regression (q = 1),

which is the most popular method in practice; they also imply that both the Epanechnikov and

the triangular kernel are nearly optimal.

8Because we require that the sequence of parameter spaces FFRD,n(M1,M2) be localized around a value of
L∗ with L∗2 6= 0, we rule out sequences in which the jump in the first-stage regression is arbitrarily close to
zero (the term “weak identification” refers to such sequences). As a result, the CI we propose, unlike the CI
proposed by Noack and Rothe (2019), is not honest over the original parameter space FFRD(M1,M2).
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3.3.1 Choice of M

Appropriate choice of the smoothness constant is key to implementing our method. Since the

smoothness classes we consider are convex, the results of Low (1997), Cai and Low (2004) and

Armstrong and Kolesár (2018a) imply that, to maintain honesty over the whole function class,

a researcher must choose M a priori, rather than attempting to use a data-driven method.9 We

therefore recommend that, whenever possible, problem-specific knowledge be used to decide

what choice of M is reasonable a priori, and that one consider a range of plausible values by

way of sensitivity analysis.10

If one imposes additional restrictions on f that make the parameter space for f non-convex,

a data-driven method for choosing M may be feasible.11 In Supplemental Appendix E, we

consider a restriction which relates M to a global polynomial approximation to the regression

function. In particular, the restriction formalizes the notion that the second derivative in a

neighborhood of zero is bounded by the maximum second derivative of a p̃th order global

polynomial approximation. Heuristically, such restriction will hold if the local smoothness of f

is no smaller than its smoothness at large scales.

This restriction allows us to calibrate M based on the following rule of thumb. For inference

at a point, let f̆(x) be an estimate of f based on a global polynomial regression of order

p̃, and let [xmin, xmax] denote the support of xi. Put M̂rot = supx∈[xmin,xmax]|f̆ (p)(x)|. This

rule of thumb is similar to the suggestion of Fan and Gijbels (1996, Chapter 4.2), with the

important distinction that their rule of thumb was designed to estimate the pointwise-in-f

optimal bandwidth. We discuss the difference between this bandwidth and h∗rmse in Section 4.

In sharp RD, the rule of thumb is analogous, except we define f̆ (p)(x) to be the global polynomial

estimate of order p̃ in which the intercept and all coefficients are allowed to be different on either

side of the discontinuity (that is, as regressors, we use 1, xi, . . . , x
p̃
i , and their interactions with

the indicator I{xi ≥ 0}). For fuzzy RD, we use an analogous approach to separately calibrate

the reduced-form and first-stage smoothness parameters M1 and M2 based on the reduced-form

and first-stage regressions.

As a default choice, we set p̃ = p + 2 = 4. In Supplemental Appendix E, we give a formal

analysis of this rule, showing that the resulting CIs are honest and nearly optimal (over a

9These negative results contrast with more positive results for estimation. See, for example, Lepski (1990)
who, in the context of estimating the value of the regression function at a point, proposes a data-driven method
that automates the choice of both p and M .

10As is well-known, if the final bandwidth choice is influenced by such sensitivity analysis, the resulting CI
may undercover, even if the estimator is unbiased. In this case, one can combine our method with the bandwidth
snooping adjustment of Armstrong and Kolesár (2018b).

11An alternative to restricting the parameter space is to change the notion of coverage. For example, in the
context of constructing confidence bands for a regression function f(x), Hall and Horowitz (2013) propose bands
that have an average coverage property in that the bands achieve coverage of f(x) for a random subset of values
of x. This subset may vary with the unknown regression function and the realized sample.
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regularity class that imposes the additional restriction f discussed above). In contrast, we

expect that calibrating M based on local smoothness estimates may be difficult to justify, since

estimating a local derivative of f is a harder problem than the initial problem of estimating its

value at a point. We investigate the finite-sample performance of FLCIs based on M̂rot in a

Monte Carlo exercise in Section 5.

3.3.2 Computation of RMSE-optimal bandwidth

Given a choice of M , one can compute a feasible version ĥ∗rmse of the RMSE-optimal bandwidth

by plugging this choice into the expressions (16), (19), and (20), along with consistent estimates

of d, and of the variance at 0 (for fuzzy RD, one also needs a preliminary estimate of T (f)).

In the simulation exercise and empirical application below, we use an alternative approach

based on directly minimizing the finite-sample RMSE over the bandwidth h. To describe it,

let w̃n(xi;h, k) denote the weights wn1 (xi;h, k) given in (11) if the parameter of interest is the

conditional mean at a point, and let w̃n(xi;h, k) = wn+(xi) +wn−(xi) if the parameter of interest

is the sharp or fuzzy RD parameter.

For inference at a point, or for sharp RD, the finite-sample RMSE takes the form

RMSE(h;M)2 =
M2

4

(
n∑
i=1

w̃n(xi;h, k)x2i

)2

+
n∑
i=1

w̃n(xi;h, k)σ2(xi), (21)

Since σ2(xi) is typically unknown, one needs to replace it by an estimate. For inference at a

point, the simplest choice is to use some estimate σ̂2(xi) = σ̂2 that assumes homoskedasticity

of the variance function. For sharp RD, one can use the estimate σ̂2(xi) = σ̂2
+(0) I{x ≥ 0} +

σ̂2
−(0) I{x < 0}, where σ̂2

+(0) and σ̂2
−(0) are some preliminary variance estimates based on

observations above and below the cutoff. We use the bandwidth ĥ∗
rmse,M̃

that minimizes Eq. (21)

for M = M̃ , the chosen smoothness constant. This method was considered previously in

Armstrong and Kolesár (2018a).

Since the estimate in fuzzy RD is non-linear, its moments, and hence the finite-sample

RMSE do not exist. However, one can still employ an analogous approach minimizing the

finite-sample analog of the asymptotic RMSE. As the asymptotic bias and the asymptotic

standard deviation both scale with the jump in the first-stage regression at the cutoff, L2(f),

this scaling doesn’t affect the optimum, we can equivalently minimize the asymptotic RMSE

times L2(f),

ARMSE(h;M1,M2)
2 =

(M1 + |T (f)|M2)
2

4

(
n∑
i=1

w̃n(xi;h, k)x2i

)2

+
n∑
i=1

wnq (xi;h; k)2ς2(xi;T (f)),
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with ς2(x;T ) = (1,−T )Ω(x)(1,−T )′. Since Ω(xi) is unknown, one can again replace it with

Ω̂2(xi) = Ω̂2
+(0) I{x ≥ 0} + Ω̂2

−(0) I{x < 0}, where Ω̂2
+(0) and Ω̂2

−(0) are some preliminary

variance estimates for observations above and below the cutoff. As a preliminary estimate of

T (f), one can take the estimate T̂ (ĥ0; k), where ĥ0 minimizes the above expression at T (f) = 0.

One can also use ĥ0 directly as a simple bandwidth selector, which, while not RMSE optimal,

has the advantage that it doesn’t depend on the choice of M2.

3.3.3 Construction of FLCIs

Given an estimate ĥ∗rmse of h∗rmse, such as the estimate ĥ∗
rmse,M̃

discussed above, an honest

FLCI can be constructed as

T̂ (ĥ∗rmse; k)± cv1−α(t) · ŝe(ĥ∗rmse; k), (22)

where t is an estimate of the bias-sd ratio, and ŝe(ĥ∗rmse; k) is an estimate of the standard

error. For the standard error, many choices are available in the literature. For inference

at a point and sharp RD, the estimator T̂ (ĥ∗rmse; k) is a weighted least squares estimator, and

one can directly estimate its finite-sample conditional variance by the nearest neighbor variance

estimator considered in Abadie and Imbens (2006) and Abadie et al. (2014). Given a bandwidth

h, the estimator takes the form

ŝe(h, k)2 =
n∑
i=1

w̃n(xi;h, k)2σ̂2(xi), σ̂2(xi) =
J

J + 1

(
yi −

1

J

J∑
j=1

yj(i)

)2

, (23)

for some fixed (small) J ≥ 1, where j(i) denotes the jth closest observation to i (for sharp RD

j(i) is only taken among units with the same sign of the running variable.). In contrast, the

usual Eicker-Huber-White estimator sets σ̂2(xi) = û2i , where ûi is the regression residual, and

it can be shown that this estimator will generally overestimate the conditional variance. For

t, one can either use the asymptotic bias-sd ratio t = 1/2, or else an estimate of the finite-

sample bias-sd ratio t = −M
∑n

i=1 w̃
n(xi; ĥ

∗
rmse, k)x2i /2ŝe(ĥ∗rmse, k). We use the latter approach

in the Monte Carlo and empirical application below. While both approaches are asymptotically

equivalent when xi is continuous, the latter approach has the advantage that it remains valid

even when the covariates are discrete.12

For fuzzy RD, one can use an analogous approach to estimate the standard error as

ŝe(h, k)2 =
1

L̂2(h; k)2

n∑
i=1

w̃n(xi;h, k)2ς̂2(xi, T̂ (h; k)),

12See Armstrong and Kolesár (2018a), Kolesár and Rothe (2018) and Imbens and Wager (2019) for a more
thorough discussion of the case with discrete covariates.
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where ς̂2(xi;T ) = J
J+1

(1,−T )(zi − 1
J

∑J
j=1 zj(i))(zi −

1
J

∑J
j=1 zj(i))

′(1,−T )′, zi = (yi, di)
′, and

j(i) denotes that jth closest observation with the same sign of the running variable. For

t, one can use t = 1/2, or else the finite-sample analog of the asymptotic bias-sd ratio,13

t = −(M̃1 + |T̂ |M̃2) ·
∑n

i=1 w̃
n(xi; ĥ

∗
rmse, k)x2i /2

√∑n
i=1 ς̂

2(xi; T̂ )w̃n(xi; ĥ∗rmse, k)2.

4 Comparison with other approaches

In this section, we compare our approach to inference about the parameter T (f) to three

other approaches to inference. To make the comparison concrete, we make the comparison

in the context of inference about a nonparametric regression function at a point, discussed in

Section 3. The first approach, which we term “conventional,” ignores the potential bias of

the estimator and constructs the CI as T̂q(h, k)± z1−α/2ŝe(h; k). The bandwidth h is typically

chosen to minimize the asymptotic mean squared error (MSE) of T̂q(h; k) under pointwise-in-f

(or “pointwise”, for short) asymptotics. We refer to this bandwidth as h∗pt. We discuss the

distinction between h∗pt and the bandwidth h∗rmse in Section 4.1. Under the second approach,

undersmoothing, one chooses a sequence of smaller bandwidths, so that in large samples, the

bias of the estimator is dominated by its standard error. Finally, in bias correction, one re-

centers the conventional CI by subtracting an estimate of the leading bias term from T̂q(h; k).

In Section 4.2, we compare the coverage and length properties of these CIs to the fixed-length

CI (FLCI) based on T̂q(h
∗
rmse; k).

Implementing any of these CIs in practice requires feasible bandwidth and tuning parameter

choices. This may require auxiliary assumptions (such as assumptions relating local and global

smoothness of f if one picks M using the rule of thumb discussed in Section 3.3.1), which may

differ across the methods. For clarity of comparison, we keep implementation issues separate,

and focus in this section on a theoretical comparison, assuming any tuning parameters (includ-

ing the smoothness parameter M) are known. The Monte Carlo exercise in Section 5 below

considers their finite-sample performance when the tuning parameters need to be chosen.

4.1 RMSE and pointwise optimal bandwidth

The RMSE optimal bandwidth given in Eq. (16) seeks to minimize the asymptotic approxi-

mation to the maximum RMSE (or, equivalently, MSE) over f ∈ FT,p(M) or f ∈ FHöl,p(M).

In contrast, the bandwidth h∗pt is intended to optimize the MSE at the function f itself. In

particular, it minimizes the sum of the leading squared bias and variance terms under pointwise

asymptotics for the case q = p − 1. It is given by (see, for example, Fan and Gijbels, 1996,

13For inference based on T̂ (ĥ0; k), it is necessary to use the finite-sample analog of the bias-sd ratio, since the

bandwidth ĥ0 is not RMSE optimal.
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Eq. (3.20))

h∗pt =

(
σ2(0)p!2

2pndf (p)(0)2

∫
X k
∗
q(u)2 du

(
∫
X t

pk∗q(t) dt)2

) 1
2p+1

. (24)

Comparing this expression with that for h∗rmse in Eq. (16), we see that the pointwise optimal

bandwidth replaces M with the pth derivative at zero, f (p)(0), and it replaces Bp,q(k) with∫
X t

pk∗q(t) dt. Note that Bp,q(k) ≥ |
∫
X t

pk∗q(t) dt| (this can be seen by noting that the right-

hand side corresponds to the bias at the function f(x) = ±xp/p!, while the left-hand side is

the supremum of the bias over functions with pth derivative bounded by 1). Thus, assuming

that f (p)(0) ≤ M (this holds by definition for any f ∈ F when F = FHöl,p(M)), we will have

h∗pt/h
∗
rmse ≥

(
M/|f (p)(0)|

) 2
2p+1 ≥ 1.

Even though the bandwidth h∗pt is intended to optimize the RMSE at the function f itself,

its performance may be arbitrarily bad relative to h∗rmse at functions for which f (p)(0) is close

to zero. For example, consider the function f(x) = xp+1 if p is odd, or f(x) = xp+2 if p is

even. This is a smooth function with all derivatives bounded on the support of xi. Since

f (p)(0) = 0, h∗pt is infinite, and the resulting estimator is a global pth order polynomial least

squares estimator. Its RMSE will be poor, since the estimator is not even consistent.14

To address this problem, plug-in bandwidths that estimate h∗pt include tuning parameters

to prevent them from approaching infinity. The RMSE of the resulting estimator at such

functions is then determined almost entirely by these tuning parameters. Furthermore, if one

uses such a bandwidth as an input to an undersmoothed or bias-corrected CI, the coverage will

be determined by these tuning parameters, and can be arbitrarily bad if the tuning parameters

allow the bandwidth to be large. Indeed, we find in our Monte Carlo analysis in Section 5 that

plug-in estimates of h∗pt used in practice can lead to very poor coverage even when used as a

starting point for a bias-corrected or undersmoothed estimator.

4.2 Efficiency and coverage comparison

Let us now consider the efficiency and coverage properties of conventional, undersmoothed,

and bias-corrected CIs relative to the FLCI based on T̂p−1(h
∗
rmse, k). To keep the comparison

meaningful, and avoid the issues discussed in the previous subsection, we assume these CIs are

also based on h∗rmse, rather than h∗pt (in case of undersmoothing, we assume that the bandwidth

is undersmoothed relative to h∗rmse). Suppose that the smoothness class is either FT,p(M) or

FHöl,p(M) and denote it by Fp(M). For concreteness, let p = 2, and q = 1.

Consider first conventional CIs, given by T̂1(h; k)±z1−α/2ŝe(h; k). If the bandwidth h equals

h∗rmse, then these CIs are shorter than the 95% FLCIs by a factor of z0.975/ cv0.95(1/2) = 0.90.

14To ensure consistency and finiteness of h∗pt, it is standard to assume that f (p) 6= 0. However, the RMSE
can still be arbitrarily poor whenever the pth derivative is locally small, but non-zero, and large globally, such
as when f(x) = xp+1 + ηxp for p odd and f(x) = xp+2 + ηxp if p is even, provided η is sufficiently small.
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Consequently, their coverage is 92.1% rather than the nominal 95% coverage. At the RMSE-

optimal bandwidth, the bias-sd ratio equals 1/2, so disregarding the bias doesn’t result in severe

undercoverage. If one uses a larger bandwidth, however, the bias-sd ratio will be larger, and the

undercoverage problem more severe: for example, if the bandwidth is 50% larger than h∗rmse,

so that the bias-sd ratio equals 1/2 · (1.5)(5/2), the coverage is only 71.9%.

Second, consider undersmoothing. This amounts to choosing a bandwidth sequence hn such

that hn/h
∗
rmse → 0, so that for any fixed M , the bias-sd ratio tn = hγb−γsn MB(k)/(n−1/2S(k))

approaches zero, and the CI T̂ (hn; k)± cv1−α(0)ŝe(hn; k) = T̂ (hn; k)± z1−α/2ŝe(hn; k) will con-

sequently have proper coverage in large samples. However, the CIs shrink at a slower rate than

nr/2 = n4/5, and thus the asymptotic efficiency of the undersmoothed CI relative to the optimal

FLCI is zero.

On the other hand, an apparent advantage of the undersmoothed CI is that it appears

to avoid specifying the smoothness constant M . However, a more accurate description of

undersmoothing is that the bandwidth sequence hn implicitly chooses a sequence of smoothness

constants Mn → ∞ such that coverage is controlled under the sequence of parameter spaces

Fp(Mn). We can improve on the coverage and length of the resulting CI by making this sequence

explicit and computing an optimal (or near-optimal) FLCI for Fp(Mn).

To this end, given a sequence hn, a better approximation to the finite-sample coverage of

the CI T̂ (hn; k) ± z1−α/2ŝe(hn; k) over the parameter space Fp(M) is PZ∼N(0,1)(|Z + tn(M)| ≥
z1−α/2) where tn(M) = hγb−γsn MB(k)/(n−1/2S(k)) is the bias-sd ratio for the given choice of M .

This approximation is exact in idealized settings, such as the white noise model discussed in

Supplemental Appendix B. For a given level of undercoverage η = ηn, one can then compute

Mn as the greatest value of M such that this approximation to the coverage is at least 1−α−η.

In order to trust the undersmoothed CI, one must be convinced of the plausibility of the

assumption f ∈ Fp(Mn): otherwise the coverage will be worse than 1 − α − η. This suggests

that, in the interest of transparency, one should make this smoothness constant explicit by

reporting Mn along with the undersmoothed CI. However, once the sequence Mn is made

explicit, a more efficient approach is to simply report an optimal or near-optimal CI for this

sequence, either at the coverage level 1−α−η (in which case the CI will be strictly smaller than

the undersmoothed CI while maintaining the same coverage) or at level 1 − α (in which case

the CI will have better finite-sample coverage and may also be shorter than the undersmoothed

CI).

Finally, let us consider bias correction. It is known that re-centering conventional CIs by

an estimate of the leading bias term often leads to poor coverage (Hall, 1992). In an important

paper, Calonico et al. (2014, CCT hereafter) show that the coverage properties of this bias-

corrected CI are much better if one adjusts the standard error estimate to account for the

variability of the bias estimate, which they call robust bias correction (RBC). For simplicity,
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consider the case in which the main bandwidth and the pilot bandwidth (used to estimate the

bias) are the same, and that the main bandwidth is chosen optimally in that it equals h∗rmse.

In this case, the bias-corrected local linear estimator coincides with a local quadratic estimator.

As a result, the RBC procedure in this case amounts to using a local quadratic estimator, but

with a bandwidth h∗rmse, optimal for a local linear estimator. The resulting CI obtains by

adding and subtracting z1−α/2 times the standard deviation of the estimator.

To ensure that the bias is estimable, the theory of bias correction requires that the con-

ditional mean function is sufficiently smooth, which requires q < p − 1 (thus, assuming that

f is sufficiently smooth to ensure that the bias of T̂1(h; k) can be estimated implies that the

polynomial order q = 1 of the original estimator is not optimal). Suppose, therefore, that the

smoothness class is given by F3(M) (with q = 1, and h = h∗rmse still chosen to be MSE opti-

mal for F2(M)). In this case the RBC interval can be considered an undersmoothed CI based

on a second order local polynomial estimator. Following the discussion of undersmoothed CIs

above, the limiting coverage is 1−α when M is fixed (this matches the pointwise-in-f coverage

statements in CCT, which assume the existence of a continuous third derivative in the present

context). Due to this undersmoothing, however, the RBC CI shrinks at a slower rate than the

optimal CI.

It is also interesting to consider the case when the order q = 1 of the local polynomial of

the estimator T̂1(h
∗
rmse; k) is optimal under the maintained smoothness assumption, so that

the smoothness class is given by F2(M). In this case, the smoothness of the conditional mean

function is too low for the bias to be estimable: the bias of the bias-corrected estimator will

be of the same order as the bias of the original estimator. Consequently, the estimator will

remain asymptotically biased, even after the bias correction. In particular, bias-sd ratio of the

estimator is given by

tRBC = (h∗rmse)5/2
MB2,2(k)/2

σ(0)(
∫
k∗2(u)2 du/dn)1/2

=
1

2

B2,2(k)

B2,1(k)

(∫
X k
∗
1(u)2 du∫

X k
∗
2(u)2 du

)1/2

. (25)

The resulting coverage is given by Φ(tRBC+z1−α/2)−Φ(tRBC−z1−α/2). The RBC interval length

relative to the 1 − α FLCI around a local linear estimator with the same kernel and minimax

MSE bandwidth is the same under both FT,p(M), and FHöl,p(M), and given by

z1−α/2
(∫
X k
∗
2(u)2 du

)1/2
cv1−α(1/2)

(∫
X k
∗
1(u)2 du

)1/2 (1 + o(1)). (26)

The resulting coverage and relative length is given in Table 5. One can see that although

the undercoverage is very mild, (since tRBC is quite low in all cases), the intervals are about

30% longer than the FLCIs around the RMSE bandwidth.
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Under the class FHöl,2(M), the RBC intervals are also reasonably robust to using a larger

bandwidth: if the bandwidth used is 50% larger than h∗rmse, so that the bias-sd ratio in Eq. (25)

is larger by a factor of (1.5)5/2, the resulting coverage is still at least 93.0% for the kernels

considered in Table 5. Under FT,2(M), using a bandwidth 50% larger than h∗rmse yields coverage

of about 80% on the boundary and 87% in the interior. Thus, depending on the smoothness

class, the 95% RBC CI has close to 95% coverage and efficiency loss of about 30%, or exactly

95% coverage at the cost of shrinking at a slower than optimal rate.

Our asymptotic efficiency comparisons focus on minimizing length among CIs with coverage

at least 1−α for all f ∈ F , which follows the usual definition of coverage. One may also consider

a criterion that also penalizes CIs that cover “too much,” by placing an upper bound 1 − α
on coverage. For the CIs considered in this paper, the maximum coverage occurs when the

bias is zero, and is given by PZ∼N(0,1)(|Z| ≤ cv1−α(t)) = 1 − 2Φ(− cv1−α(t)) where t is the

asymptotic bias-sd ratio. In particular, when F = FT,2(M) or F = FHöl,2(M) and the RMSE

optimal bandwidth is used, the maximum coverage of a FLCI with 95% (minimum) coverage is

1−2Φ(−2.18) = .971. If one wants the maximum coverage to be smaller, then undersmoothing

(or subtracting an estimate of the bias) will be necessary, and Edgeworth expansions may be

needed to deal with higher order approximation terms if one wants α− α→ 0 quickly enough

with the sample size (see Calonico et al., 2019). Because, as we discuss above, undersmoothing

or bias correction yields longer CIs than the ones we propose, the resulting CIs will be longer

than the CIs we propose, which do not penalize “overcoverage.”

5 Monte Carlo

To study the finite-sample performance of the FLCI that we propose, and compare its perfor-

mance to other approaches, this section conducts a Monte Carlo analysis of the conditional

mean estimation problem considered in Section 3.

We consider Monte Carlo designs with conditional mean functions

f1(x) =
M

2
(x2 − 2s(|x| − 0.25)),

f2(x) =
M

2
(x2 − 2s(|x| − 0.2)2 + 2s(|x| − 0.5)− 2s(|x| − 0.65)),

f3(x) =
M

2
((x+ 1)2 − 2s(x+ 0.2) + 2s(x− 0.2)− 2s(x− 0.4) + 2s(x− 0.7)− 0.92),

where s(x) = (x)2+ = max{x, 0}2 is the square of the plus function, and M ∈ {2, 6}, giving a

total of 6 designs. In all cases, xi is drawn from a uniform distribution with support [−1, 1] (so

that the design is random), ui ∼ N(0, 1/4), and the sample size is n = 500. Figure 4 plots these

designs. The regression function for each design lies in FHöl,2(M) for the corresponding M . To

29



ensure that our results, discussed below, are not sensitive to the choice of the error distribution

or the distribution for the running variable, in Supplemental Appendix F, we also consider

designs with xi drawn from a beta distribution, designs with log-normal and heteroskedastic

errors, and designs with different error variance. Finally, we also show in the appendix that the

results remain effectively the same when the function s(·) is replaced by a smooth approximating

function.15

For each design, we implement the optimal FLCI centered at a local linear estimate with

a triangular kernel and MSE optimal bandwidth, as described in Section 3.3, for each choice

of M ∈ {2, 6}, and with M calibrated using the rule-of-thumb (ROT) described in Section 3.3.

The implementations with M ∈ {2, 6} allow us to gauge the effect of using an appropriately

calibrated M , compared to a choice of M that is either too conservative or too liberal by a

factor of 3. The ROT calibration chooses M automatically, but requires additional conditions

in order to have correct coverage (see Section 3.3).

In addition to these FLCIs, we consider seven other CIs (Supplemental Appendix F considers

one more method). The first five are different implementations of the robust bias-corrected

(RBC) CIs proposed by CCT (discussed in Section 4). Implementing these CIs requires two

bandwidth choices: a bandwidth for the local linear estimator, and a pilot bandwidth that is

used to construct an estimate of its bias. The first two CIs use bandwidth choices justified

by pointwise-in-f asymptotics. The first CI uses a plug-in estimate of h∗pt defined in (24), as

implemented by Calonico et al. (2018), and an analogous estimate for the pilot bandwidth.

The second CI, also implemented by Calonico et al. (2018), uses bandwidth estimates for both

bandwidths that optimize the pointwise asymptotic coverage error (CE) among CIs that use

usual z1−α/2 critical value. This CI can be considered a particular form of undersmoothing.

The third CI sets both the pilot bandwidth and the main bandwidth to the plug-in estimate of

h∗pt. For the next three CIs, we consider bandwidths justified by uniform-in-f asymptotics. For

the fourth and fifth CIs, we set both the main and the pilot bandwidth to h∗rmse with M = 2,

and M = 6, respectively. For the sixth CI, we set both bandwidths to ĥ∗
rmse,M̂rot

. Finally, we

consider a conventional CI centered at a plug-in bandwidth estimate of h∗pt, using the rule-of-

thumb estimator of Fan and Gijbels (1996, Chapter 4.2). All CIs are computed at the nominal

95% coverage level.

Table 6 reports the results. The FLCIs perform well when the correct M is used. As

expected, they suffer from undercoverage if M is chosen too small, or suboptimal length when

M is chosen too large. The ROT choice of M appears to do a reasonable job of having

15The RBC method considered below assumes that the conditional mean function be at least three times
continuously differentiable in the neighborhood of 0. Since the functions f1, f2 and f3 are not globally three
times continuously differentiable, depending on the neighborhood definition, this assumption is arguably violated.
The results in the appendix are nearly identical to those reported here, implying that the performance of the
RBC method is not driven by this lack of smoothness.
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good coverage and length in these designs without requiring knowledge of the true smoothness

constant. However, as discussed in Section 3.3, this ROT choice imposes additional restrictions

on the parameter space, so one must take care in extrapolating these results to other designs.

As predicted by the theory in Section 4, the RBC CIs also have good coverage when im-

plemented using the h∗rmse bandwidth, and they are less sensitive to the choice of M than the

corresponding FLCIs, at the expense of being on average about 25% longer. RBC CIs with

bandwidth given by ĥ∗
rmse,M̂rot

also achieve good coverage, but they are again about 25% longer

than the corresponding FLCIs.

The CIs based on bandwidths justified by pointwise-in-f asymptotics (rows 1, 2, 3, and 7

for each design in the table) all have very poor coverage for at least one of the designs. Our

analysis in Section 4 suggests that this is due to the tuning parameter choices required by these

bandwidths. Indeed, looking at the average of the bandwidth over the Monte Carlo draws (also

reported in Table 6), it can be seen that the bandwidths tend to be much larger than those

that estimate h∗rmse. This is even the case for the CE bandwidth, which is intended to minimize

coverage errors.

Overall, the Monte Carlo analysis suggests that default approaches to nonparametric CI

construction (bias-correction or undersmoothing relative to plug-in bandwidths) can lead to

severe undercoverage when implemented using bandwidths justified by pointwise-in-f asymp-

totics. Bias-corrected CIs such as the one proposed by CCT can have good coverage if one

starts from the minimax RMSE bandwidth, although they will be wider than FLCIs proposed

in this paper.

6 Empirical illustration

To illustrate the implementation of feasible versions of the CIs (22), we use a subset of the

dataset from Ludwig and Miller (2007).

In 1965, when the Head Start federal program launched, the Office of Economic Opportunity

provided technical assistance to the 300 poorest counties in the United States to develop Head

Start funding proposals. Ludwig and Miller (2007) use this cutoff in technical assistance to

look at intent-to-treat effects of the Head Start program on a variety of outcomes using as a

running variable the county’s poverty rate relative to the poverty rate of the 300th poorest

county (which had poverty rate equal to approximately 59.2%). We focus here on their main

finding, the effect on child mortality due to causes addressed as part of Head Start’s health

services. See Ludwig and Miller (2007) for a detailed description of this variable. Relative to

the dataset used in Ludwig and Miller (2007), we remove one duplicate entry and one outlier,

which after discarding counties with partially missing data leaves us with 3,103 observations,

with 294 of them above the poverty cutoff.
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Figure 5 plots the data (to reduce the noise in the outcome variable, we plot bin averages

of size 25). To estimate the discontinuity in mortality rates, Ludwig and Miller (2007) use a

uniform kernel16 and consider bandwidths equal to 9, 18, and 36. This yields point estimates

equal to −1.90, −1.20 and −1.11 respectively, which are large effects given that the average

mortality rate for counties not receiving technical assistance was 2.15 per 100,000. The p-values

reported in the paper, based on bootstrapping the t-statistic (which ignores any potential bias

in the estimates), are 0.036, 0.081, and 0.027. The standard errors for these estimates, obtained

using the nearest neighbor method (with J = 3) are 1.04, 0.70, and 0.52.

These bandwidth choices are optimal in the sense that they minimize the RMSE expres-

sion (21) if M = 0.040, 0.0074, and 0.0014, respectively. Thus, for these bandwidths to be opti-

mal, one has to be very optimistic about the smoothness of the regression function. In compar-

ison, the rule of thumb method for estimating M discussed in Section 3.3 yields M̂rot = 0.299,

implying h∗rmse estimate 4.0, and the point estimate −3.17. For these smoothness parameters,

the critical values based on the finite-sample bias-sd ratio are given by 2.165, 2.187, 2.107 and

2.202 respectively, which is very close to the asymptotic value cv.95(1/2) = 2.181. The resulting

95% confidence intervals are given by

(−4.143, 0.353), (−2.720, 0.323), (−2.215,−0.013), and (−6.352, 0.010),

respectively. The p-values based on these estimates are given by 0.100, 0.125, 0.047, and 0.051.

These p-values are larger than those reported in the paper, as they take into account the

potential bias of the estimates.

Using a triangular kernel helps to tighten the confidence intervals by a few percentage points

in length, as predicted by the relative asymptotic efficiency results from Table 3, yielding

(−4.138, 0.187), (−2.927, 0.052), (−2.268,−0.095), and (−5.980,−0.322)

The underlying optimal bandwidths are given by 11.6, 23.1, 45.8, and 4.9 respectively. The p-

values associated with these estimates are 0.074, 0.059, 0.033, and 0.028, tightening the p-values

based on the uniform kernel.

These results indicate that unless one is very optimistic about the smoothness of the re-

gression function, the uncertainty associated with the magnitude of the effect of Head Start

assistance on child mortality is much higher than originally reported. This is due mainly to

the relatively large bandwidths used by Ludwig and Miller (2007), which imply an optimistic

bound on the smoothness of the regression function if we assume that such bandwidths are

close to optimal for MSE. Interestingly, while the more conservative smoothness bound in our

16Ludwig and Miller (2007) state that the estimates were obtained using a triangular kernel. However, due
to a bug in the code, the results reported in the paper were actually obtained using a uniform kernel.
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benchmark specification leads to much wider CIs, the point estimate is larger in magnitude, so

that one still finds a statistically significant effect at a 5 or 10% level, depending on the kernel.
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Appendix A Proofs of theorems in Section 2

A.1 Proof of Theorem 2.1

Parts (ii) and (iii) follow from part (i) and simple calculations. To prove part (i), note that, if

it did not hold, there would be a bandwidth sequence hn such that

lim inf
n→∞

M r−1nr/2R(T̂ (hn; k)) < S(k)rB(k)1−r inf
t
tr−1R̃(t, 1).

By Eq. (7), the bandwidth sequence hn must satisfy lim infn→∞ hn(nM2)1/[2(γb−γs)] > 0 and

lim supn→∞ hn(nM2)1/[2(γb−γs)] <∞. Thus, by Eq. (6),

M r−1nr/2R(T̂ (hn; k)) = S(k)rB(k)1−rtr−1n R̃(tn, 1) + o(1),

where tn = hγb−γsn B(k)/(n−1/2S(k)). This contradicts the display above.

A.2 Proof of Theorem 2.2

The second statement (relative efficiency) is immediate from (6). For the first statement (cov-

erage), fix ε > 0 and let sdn = n−1/2(h∗rmse)γsS(k) so that sdn /ŝe(h∗rmse; k)
p→ 1 uniformly over

f ∈ F . Note that, by Theorem 2.1 and the fact that t∗RMSE =
√

1/r − 1,

R̃FLCI,α+ε(T̂ (h∗rmse; k)) = sdn · cv1−α−ε(
√

1/r − 1)(1 + o(1)),

and similarly for R̃FLCI,α−ε(T̂ (h∗rmse; k)). Since cv1−α(
√

1/r − 1) is strictly decreasing in α, it

follows that there exists η > 0 such that, with probability approaching 1 uniformly over f ∈ F ,

RFLCI,α+ε(T̂ (h∗rmse; k)) < ŝe(T̂ (h∗rmse; k)) · cv1−α(
√

1/r − 1)

< (1− η)RFLCI,α−ε(T̂ (h∗rmse; k)).

Thus,

lim inf
n

inf
f∈F

P
(
T (f) ∈

{
T̂ (h∗rmse; k)± ŝe(T̂ (h∗rmse; k)) · cv1−α(

√
1/r − 1)

})
≥ lim inf

n
inf
f∈F

P
(
T (f) ∈

{
T̂ (h∗rmse; k)±RFLCI,α+ε(T̂ (h∗rmse; k))

})
≥ 1− α− ε,
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and

lim sup
n

inf
f∈F

P
(
T (f) ∈

{
T̂ (h∗rmse; k)± ŝe(T̂ (h∗rmse; k)) · cv1−α(

√
1/r − 1)

})
≤ lim sup

n
inf
f∈F

P
(
T (f) ∈

{
T̂ (h∗rmse; k)±RFLCI,α−ε(T̂ (h∗rmse; k))(1− η)

})
≤ 1− α + ε,

where the last inequality follows by definition of RFLCI,α−ε(T̂ (h∗rmse; k)). Taking ε → 0 gives

the result.
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Table 1: Critical values cv1−α(·)
α

r t 0.01 0.05 0.1

0.0 2.576 1.960 1.645

6/7 0.408 2.764 2.113 1.777

4/5 0.5 2.842 2.181 1.839

2/3 0.707 3.037 2.362 2.008

1/2 1.0 3.327 2.646 2.284

1.5 3.826 3.145 2.782

2.0 4.326 3.645 3.282

Notes: Critical values cv1−α(t) and cv1−α(
√

1/r − 1), for the FLCIs in (1) and (8), corre-
sponding to the 1 − α quantiles of the |N(t, 1)| and |N(

√
1/r − 1, 1)| distributions, where

t is the bias-sd ratio, and r is the rate exponent. For t ≥ 2, cv1−α(t) ≈ t + z1−α/2 up to 3
decimal places for these values of α.

Table 2: Relative efficiency of local polynomial estimators for the function class
FT,p(M).

Boundary Point Interior point

Kernel Order p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

I{|u| ≤ 1}

0 0.9615 0.9615

1 0.5724 0.9163 0.9615 0.9712

2 0.4121 0.6387 0.8671 0.7400 0.7277 0.9267

Triangular

(1− |u|)+

0 1 1

1 0.6274 0.9728 1 0.9943

2 0.4652 0.6981 0.9254 0.8126 0.7814 0.9741

Epanechnikov
3
4
(1− u2)+

0 0.9959 0.9959

1 0.6087 0.9593 0.9959 1

2 0.4467 0.6813 0.9124 0.7902 0.7686 0.9672

Notes: Efficiency is relative to the optimal equivalent kernel k∗SY . The functional T (f)
corresponds to the value of f at a point.
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Table 3: Relative efficiency of local polynomial estimators for the function class
FHöl,p(M).

Boundary Point Interior point

Kernel Order p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

I{|u| ≤ 1}

0 0.9615 0.9615

1 0.7211 0.9711 0.9615 0.9662

2 0.5944 0.8372 0.9775 0.8800 0.9162 0.9790

Triangular

(1− |u|)+

0 1 1

1 0.7600 0.9999 1 0.9892

2 0.6336 0.8691 1 0.9263 0.9487 1

Epanechnikov
3
4
(1− u2)+

0 0.9959 0.9959

1 0.7471 0.9966 0.9959 0.9949

2 0.6186 0.8602 0.9974 0.9116 0.9425 1

Notes: For p = 1, 2, efficiency is relative to the optimal kernel, for p = 3, efficiency is relative
to the local quadratic estimator with triangular kernel. The functional T (f) corresponds to
the value of f at a point.

Table 4: Gains from imposing global smoothness

Boundary Point Interior point

Kernel p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform 1 0.855 0.764 1 1 0.848

Triangular 1 0.882 0.797 1 1 0.873

Epanechnikov 1 0.872 0.788 1 1 0.866

Optimal 1 0.906 1 0.995

Notes: The table gives the relative asymptotic risk of local polynomial estimators of order
p− 1 and a given kernel under the class FHöl,p(M) relative to the risk under FT,p(M) given
in Eq. (18). “Optimal” refers to using the optimal kernel under a given smoothness class.
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Table 5: Performance of RBC CIs based on h∗rmse bandwidth for local linear regression
under FT,2 and FHöl,2.

FT,2 FHöl,2

Kernel Length Coverage tRBC Length Coverage tRBC

Boundary

Uniform 1.35 0.931 0.400 1.35 0.948 0.138

Triangular 1.32 0.932 0.391 1.32 0.947 0.150

Epanechnikov 1.33 0.932 0.393 1.33 0.947 0.148

Interior

Uniform 1.35 0.941 0.279 1.35 0.949 0.086

Triangular 1.27 0.940 0.297 1.27 0.949 0.110

Epanechnikov 1.30 0.940 0.298 1.30 0.949 0.105

Legend: Length—CI length relative to 95% FLCI based on a local linear estimator and the
same kernel and bandwidth h∗rmse; tRBC—ratio of the worst-case bias to standard deviation;
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Table 6: Monte Carlo simulation: Inference at a point.

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 1

RBC h = ĥ∗pt, b = b̂∗pt 0.063 0.035 0.75 55.6 0.73 0.157 0.036 0.62 0.1 0.61

RBC h = ĥce, b = b̂ce 0.030 0.041 0.45 85.8 0.85 0.059 0.045 0.34 72.4 0.76

RBC h = b = ĥ∗pt 0.025 0.042 0.75 93.1 0.88 0.042 0.047 0.62 89.1 0.78

RBC h = b = ĥ∗rmse,2 0.001 0.061 0.36 94.5 1.27 0.002 0.061 0.36 94.5 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.26

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.078 0.22 93.9 1.64 0.000 0.097 0.14 93.4 1.63

Conventional ĥ∗pt,rot 0.032 0.036 0.56 76.6 0.76 0.049 0.046 0.31 77.4 0.77

FLCI, M = 2 ĥ∗rmse,2 0.021 0.043 0.36 94.9 1.00 0.065 0.043 0.36 75.2 0.80

FLCI, M = 6 ĥ∗rmse,6 0.009 0.054 0.23 96.6 1.25 0.028 0.053 0.23 94.7 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.008 0.056 0.22 95.6 1.29 0.010 0.069 0.14 96.3 1.30

Design 2

RBC h = ĥ∗pt, b = b̂∗pt 0.043 0.035 0.77 75.9 0.72 0.129 0.035 0.77 4.6 0.58

RBC h = ĥce, b = b̂ce 0.028 0.040 0.49 87.4 0.83 0.074 0.041 0.44 54.1 0.69

RBC h = b = ĥ∗pt 0.026 0.041 0.77 90.9 0.87 0.077 0.042 0.77 53.0 0.70

RBC h = b = ĥ∗rmse,2 0.002 0.061 0.36 94.5 1.27 0.006 0.061 0.36 94.4 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.26

RBC h = b = ĥ∗
rmse,M̂rot

0.001 0.068 0.30 94.0 1.43 0.000 0.083 0.20 93.8 1.38

Conventional ĥ∗pt,rot 0.032 0.032 0.78 74.4 0.67 0.073 0.040 0.44 53.0 0.66

FLCI, M = 2 ĥ∗rmse,2 0.020 0.043 0.36 95.1 1.00 0.061 0.043 0.36 78.1 0.80

FLCI, M = 6 ĥ∗rmse,6 0.009 0.054 0.23 96.6 1.25 0.028 0.053 0.23 94.7 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.013 0.048 0.30 94.3 1.13 0.020 0.059 0.20 94.3 1.10

Design 3

RBC h = ĥ∗pt, b = b̂∗pt -0.043 0.035 0.77 75.7 0.72 -0.123 0.035 0.74 9.9 0.59

RBC h = ĥce, b = b̂ce -0.026 0.040 0.49 88.1 0.83 -0.063 0.043 0.43 64.2 0.71
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Monte Carlo simulation: baseline DGP (continued)

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

RBC h = b = ĥ∗pt -0.024 0.042 0.77 90.8 0.87 -0.066 0.043 0.74 60.3 0.71

RBC h = b = ĥ∗rmse,2 -0.002 0.061 0.36 94.5 1.27 -0.007 0.061 0.36 94.4 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.26

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.074 0.25 94.2 1.54 0.000 0.092 0.16 93.6 1.54

Conventional ĥ∗pt,rot -0.032 0.033 0.72 74.7 0.69 -0.065 0.042 0.39 62.0 0.70

FLCI, M = 2 ĥ∗rmse,2 -0.020 0.043 0.36 95.0 1.00 -0.060 0.043 0.36 78.1 0.80

FLCI, M = 6 ĥ∗rmse,6 -0.009 0.054 0.23 96.5 1.25 -0.027 0.053 0.23 94.7 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

-0.010 0.052 0.25 95.6 1.22 -0.013 0.065 0.16 96.1 1.22

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of CIs

(in %); RL—relative (to optimal FLCI) length.

Bandwidth descriptions: ĥ∗pt—plugin estimate of pointwise MSE optimal bandwidth (bw); b̂∗pt—analog for esti-

mate of the bias; ĥce—plugin estimate of coverage error optimal bw; b̂ce—analog for estimate of the bias; The

implementation of Calonico et al. (2018) is used for all four bws. ĥ∗rmse,2, ĥ
∗
rmse,6—RMSE optimal bw, assuming

M = 2, and M = 6, respectively. ĥ∗pt,rot—Fan and Gijbels (1996) rule of thumb; ĥ∗
rmse,M̂rot

—RMSE optimal

bw, using rule-of-thumb for M . 50,000 Monte Carlo draws.

43



MSE

FLCI, α = 0.1

FLCI, α = 0.05

FLCI, α = 0.01

0.0

0.5

1.0

1.5

2.0

0.5 0.6 0.7 0.8 0.9 1
r

Figure 1: Optimal ratio of the worst-case bias to standard deviation for fixed length CIs (FLCI),
and maximum MSE (MSE) performance criteria.
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Figure 2: Optimal ratio of the worst-case bias to standard deviation for one-sided CIs (OCI),
and maximum MSE (MSE) performance criteria.
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Figure 3: Efficiency of fixed-length CIs based on minimax MSE bandwidth relative to fixed-
length CIs based on optimal bandwidth.
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Figure 4: Monte Carlo simulation designs 1–3, and M = 2.
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Figure 5: Average county mortality rate per 100,000 for children aged 5–9 over 1973–83 due
to causes addressed as part of Head Start’s health services (labeled “Mortality rate”) plotted
against poverty rate in 1960 relative to the 300th poorest county. Each point corresponds to
an average for 25 counties. Data are from Ludwig and Miller (2007).
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