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These supplemental materials contain further appendices and additional tables and figures.
Appendix B verifies our regularity conditions for some examples, and includes proofs of the
results in Section 3.2. Appendix C discusses two additional applications: estimation of density
at a point, and estimating a bidder valuation in first price auctions. Appendix D contains
additional details for the applications in Section 3. Appendix E presents a formal analysis of
the rule-of-thumb choice of M proposed in Section 3.3. Finally, Appendix F contains additional

Monte Carlo results.

Appendix B Verification of regularity conditions

We verify the main condition (4) in some applications. Appendix B.1 gives sufficient conditions
for (4) which do not require convergence of moments. Appendix B.2 shows that (4) holds
in the Gaussian white noise model under a mild extension of conditions in Donoho and Low
(1992). Thus, the results apply to estimating, among other things, a function or one of its
derivatives evaluated at a given point, when the function is observed in the white noise model.
By equivalence results in Brown and Low (1996) and Nussbaum (1996), our results also apply
when the function of interest is a density or conditional mean. Appendix B.3 verifies (4) directly
for local polynomial estimators in the nonparametric regression setting, and Appendix B.4

verifies it for in the fuzzy RD application.
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B.1 Sufficient conditions for main regularity condition

This appendix gives sufficient conditions for the main condition (4). In particular, we show
that a version of (2) stated in terms of convergence in distribution, rather than convergence
of moments, suffices for (4) for the FLCI and OCI criteria, and for a truncated version of the
RMSE criterion. Such conditions are appropriate for functionals that involve smooth nonlinear
transformations, which preserve convergence in distribution but may not preserve convergence
of moments: we show in Appendix B.1.1 that a version of the delta method can be used to
verify our conditions in such cases.

As in the main text, we consider a general setup where, for each n (which typically denotes
sample size), data are drawn from some distribution Py, which also implicitly depends on n,
for some f. Let F, C F be a sequence of function classes, and let T : F — R. Let T = T(h; k)
be a sequence of estimators indexed implicitly by n, and by a kernel k£ and bandwidth h = h,,,
which also depends on n. The function class F,, is indexed by a sequence of constants M,,.

To make concise statements about uniform-in-f convergence, we introduce some additional
notation. For a random variable W, ; indexed by the sample size n and the distribution f, we
use W, ¢, fin L to denote that the distribution of W), s, converges in distribution to £ under
the sequence f,,. When this holds for all sequences f,, € F, for some sequence of sets F,,

we write W, ; % L, and we say that W, ; converges in distribution to £ uniformly over F,.
When the limiting law £ is a point mass at some constant a, we write W), , f£> a and when

the convergence holds for all f, € F,, we write W,, s ;i) a and say that W, ; converges in
probability to a uniformly over F,.

We make the following assumption on the estimators T (h; k). This assumption is similar to
the condition (2) in the main text, but uses convergence in distribution rather than convergence

of moments.

Assumption B.1. For some sequences of random variables Z, j, s and by r, we have
T(hik) = T(f) + h"* Mubup g + B0 Zy oy

where, for some sequence of constants by, ;, » and some S(k) and B(k), [bnny — b ¢ f£> 0 and

lim sup 0, = B(k), lim inf 05, = —B(k), Zuny f& N(0,5(k)?).

n—o0 fe . n—oo feFy

We verify our main condition (4) for a class of performance criteria constructed as follows.

Given a loss function ¢: R — R*, let 74(by,s) = Ezn(01)l(bo + sZ) denote the risk of an



estimator that’s normally distributed with standard deviation s and bias by. Let

pe(b,s) = sup 7y(by,s), and Ryq(b,s) = inf {x: pe(bx",sx7") < a}
bo€[—b,b]
denote its worst-case risk over the all biases bounded by b in absolute value, and the smallest
scaling of the worst-case bias and the standard deviation such that its worst-case risk is bounded

by . Similarly, for an estimator 7' of T'(f), let

P (T;]—"n> = fsu}r) E¢l (X_l <T — T(f))) , and RZ7Q(T; Fn) = inf {X D Do (T, .Fn) < a} :
€Fn

Note that if we set lppcr(z) = I{|z| > 1}, then Ry, .0 and Ry, oo vield the performance

criteria Rprora and Rprcrq as defined in the main text. Similarly, Reqyep1 and Ry ep.1, Where

lrvse(T) = 22, give the performance criteria Rrysg and RRMSE given in the main text.

To cover performance criteria such as OCI which are constructed from requirements on
multiple loss functions, we use the following construction. Let ¢4, ..., ¢, be loss functions and
let ay,...,an, be given. Let A: (0,00)™ — (0,00) be continuous and homogeneous of degree
one (i.e. it satisfies A(ax) = aA(x) for any a > 0). If m = 1, one can take A to be the identity

function. Let

~ ~

(Rfl,al (T(h7 k))a s ’Rfm,oém (T(hv k)))v
).

Note that since Ry, o, (th,ts) = tinf{t 1x: pg, (tby L, tsx 1) < a;} = tRy, o, (b, 5), R satisfies (5).
To show how this generalization covers the OCI criterion Rocr 5 defined in the main text, define
(i (z) = x> 1} and £_(z) = I{z < —1}. Then Ry, (T;F,) is the smallest value of y such
that [T'— x4, 00) is a one-sided CI with coverage 1—a, since Doy xs (T; F,) = SUD fe 7, Pr(x:1(T—
T(f)) > 1) =supsezx, Pr(T—xy+ > T(f)) gives the probability of not covering T'(f). The worst-
case 5 quantile of excess length of this CI is the smallest value of x_ such that inf re 7, Pr(T(f)—
T+ Xy < x-) = B8, or equivalently, pr_y (T3 F,) = supsez, PH(T(f) =T > x- = x4) =
sup ez, Pr(T(f) =T + x4 > x-) <1 — 3. Thus, the worst case -quantile of excess length of
a one-sided CI based on T is given by Ry, o(T;F,) + Re_1-s(T; Fr) = Rocrap(T). Similarly,
Ry, o(b,s) + Ry (b, s) gives the criterion Rocra,s(b,s) as defined in the main text.

We make the following assumption on each of the loss functions /.

Assumption B.2. (i) { : R — [0,00) is bounded, weakly decreasing on (—o0,0) and weakly
increasing on (0,00), and continuous almost everywhere, and there does not exist a constant

function that is almost everywhere equal to €. (ii) b 7”‘[(5, s) is quasiconver.

For symmetric loss functions, part (ii) follows from part (i) by Anderson’s lemma.
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It is immediate that the loss functions ¢, ¢_, and fpcr satisfy this assumption. The loss
(rMsE, on the other hand, does not satisfy this assumption because it is unbounded. However,
note that, for any ¢ > 0, Assumption B.2 holds for the loss function £.(x) = min{z?, ¢*}. Since
lim,_, o Rgc71(T, Fn) = RKRMSEJ(T, Fn), and lim,_, }N%gul(b, s) = RERMSEJ(ba s), we may interpret

this criterion as a truncated version of RMSE.

Theorem B.1. Let h,, be a sequence with

0 < lim inf A, (nM?)VBOe=3)) < Nim sup h,, (nM?)V/BOs=7)] < o0, (S1)

n

Suppose that T(h; k) satisfies Assumption B.1 for the sequence h = h,. Let R(T(h; k)) and
R(b, s) be given above, where (1, ... Ly, are loss functions satisfying Assumption B.2, and sup-
pose that Ii’gj,aj(b,s) >0 forallb>0 and s >0 for j =1,...,m. Then (4) holds for R and
R. Furthermore, if bopy = b po EtZnpy =0 and E;Z2, ; — S(k)? uniformly over f € F,,
then sup ey Ey(T(hs k) — T(f)) = — infper Ep(T(hs k) — T(F))(1 + o(1) = K BE)(1 + o(1)),
and sd; (T (h; k)) = hn=2S(k)(1 + o(1)) uniformly over f € F,, and (4) holds with R and R

given by Rryse and RRMSE.

The theorem implies that if Assumption B.1 holds for bandwidth sequences h,, satisfy-
ing Eq. (S1), minimizing the criterion limg_,s lim, o n"/2M"™ 'R, (T'(h; k)) discussed in foot-
note 4 in the main text, where /. is the truncated squared error loss defined above, is equivalent

to minimizing the asymptotic RMSE:

lim lim n"/2M" 'R, (T(h;k)) = S(k)"B(k)'™" lim "' Ry_(t,1)

Cc—00 N— 00 c— 00

= S(k)rB(k)lirtriléfRMSE,l <t7 1)'

*
RMSE*

Thus, under this criterion, the optimal bandwidth is given by h

To prove Theorem B.1, we first note some properties of loss and risk functions in our
setup. Note that, under Assumption B.2, E¢(W,,) — EW for any sequence of random variables
W, 4 W such that W is continuously distributed (this follows from the continuous mapping
theorem and the fact that ¢ is bounded). This also implies that 7(b,s) is continuous in b
and s (since s,Z + by b sZ 4+ b for Z ~ N(0,1) and b, — b, s, — s). Also, by part
(i), pe(x 71, x " 1s) = maxXje 1 Ezono)l (X' (Zs + b)), which is continuous in (b, s, x), and
is strictly decreasing in y (since £(x~'t) is weakly decreasing in y for each ¢, and, for any
0 < x < X, there is a positive measure set of values of ¢ such that £(x~'t) > ¢(x~'t) for ¢t on
this set). This implies that Ry (b,s), taken as a function of a, is the inverse of the strictly

1

increasing function x — pg(bx ™', sx!). Since convergence of a sequence of strictly increasing

functions to a continuous, strictly increasing function implies convergence of their inverse, this
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implies that Ry (b, s) is continuous in (b, s).

We will use the following lemma.

Lemma B.1. Let b, s be given. Suppose that { satisfies Assumption B.2. Suppose that, for any
sequence f,, there exists b € [—b,b] and a subsequence along which a,(T — T(f,)) fi> N(b,s?).

Furthermore, suppose that there exists a sequence f, such that an(T —T(f,)) fi> N(b,s%), and a
sequence f, such that a,(T—T(f,)) fi> N(=b,s%). Then lim, .o pry/a, (T: Fn) = pe(x b, x's)
and lim,,_, anRg,a(T; Fn) = Rg,a(b, s).

Proof. To show limsup,, ps,y/a, (T, Fo) < pe(x7'0,x7's) it suffices to show that, for every
sequence f,, there is a subsequence along which Ey ¢ <@nX71 (T —T( fn)>> converges to a
constant that is no greater than gy(x 'b, x 's). By assumption, there exists a b € [—b,b]
and a subsequence along which a,(T — T(f,)) f% N (b, s%), which, under the assumptions on

the loss function, implies Fy, (anx_l (T - T(fn))) — Fo(x b, x ') < pe(x b, x's) along
this subsequence. To show that this limsup is a limit and the inequality is an equality, note
that, letting f, be a sequence such that a,(T — T(f,)) fi N (b, s?), we have Pé,x/an(T§ Fn) >

E; 0 (X_l <T — T(fn)>> — To(x7'b,x's). Similarly, taking a sequence for which the limiting
distribution is N(—b, s?), we have lim inf,, pm/an(f; Fn) > 7o(—x 10, x"'s). Noting that, under
Assumption B.2, py(x~'b, x's) is equal to either 7(x b, x's) or 7¢(—bx b, x's) (or both),
it now follows that liminf, py,/q, (T : F) > pe(x b, x's). Thus, lim, Pex/an (T : F,) =
Pe(X b, X 's).

To derive the limit of nga(T ; Fn), first note that pgyx(’f ; Fn) is weakly decreasing in y for any
X > 0 for each n, since £(x~'t) is weakly decreasing in x for all ¢ under Assumption B.2. Also,
pe(x~'b, x " 1s) is strictly decreasing in x. Thus, for x > Ryq(b, s), we have j¢(x'b, x's) < a0
that, for large enough n, we have py /4, (T, Fn) < a for all x > x, which implies R&OC(T; Fn) <
X/ . Similarly, for x < Ryo(b, s), we have py(x~'b,x's) > a so that, for large enough n, we
have pgy/a,, (T; F,) > o for all ¥ < x, which implies Ry (T F,) > x/a,. Thus, for any 1 > 0,
we have, for large enough n, Rgva(b, s)—n < anR&a(T;]:n) < }N%g,a(b,s) + n. It follows that
anReo(T; Fp) = Ryo(b,s). O

We are now ready to prove Theorem B.1.

Proof of Theorem B.1. The last statement (regarding convergence of standard deviation and
worst-case bias and RMSE) follows immediately from the assumptions. To show (4) for R and
R constructed from loss functions ¢y, ..., ¢, satisfying Assumption B.2, it suffices to show

~

that, for every subsequence, there exists a further subsequence along which R(T'(h;k)) =



R(R™MB(k), h**n~"2S(k))(140(1)). By the conditions on h,,, we can choose this subsequence
so that h,, (nM2)V/2v=7)l 5 h_ for some ho, > 0.

Along this subsequence, we have
hv M, = h2s (nM2) /B0 (1 4 0(1)) = W2 ME"n~"2(1 + o(1))
and
R Y2 = pYs (nM2) ™7/ BOv=3n=12(1 4 0(1)) = hln™"2M (1 + o(1)).
Thus, on this subsequence, the conditions of Lemma B.1 hold with a,, = M?"'n™/? b= h2 B(k)
and s = h2:S(k), so that, for each j =1,...,m,
MI7'0 PRy, o (T (has k) Fu) = Re, o, (R B(K), h2S(k)).

Also, on this subsequence, using homogeneity and continuity of R&a,

M2 Ry, o (B2 M, B(k), Bln 2S5 (k)
= Ry, o, (ML 70" 200 M, B(k), M~ ' 2 1)en ™25 (k) — Ry, o, (R B(k), hS(k)).

n

Combining this with the previous display and using homogeneity of the function A, it follows

that (4) holds along this subsequence, which gives the result. O

B.1.1 Delta method

Let F, C F be a sequence of function classes, and let L: F — R™. We are interested in a
parameter T'(f) = ¢(L(f)), where ¢: R™ — R. To cover cases where ¢ may be nonlinear, we

assume that F,, is localized around a particular value L* in the range of L:
L(f,) — L* for all sequences f, € F,.

This localization of the parameter space plays a similar role to local asymptotic efficiency results
in parametric and regular semiparametric settings (see, for example, Theorem 8.11 in van der
Vaart, 1998).

We now show that, if ﬁ(h; k) satisfies a multivariate version of Assumption B.1 and ¢ is
smooth, then Assumption B.1 holds for T'(h; k) = ¢(L(h; k)), with B(k) and S(k) defined below.

This is essentially a version of the delta method applied to our setup.

Assumption B.3. The function ¢ is continuously differentiable at L*, with Jacobian matrix



'(L) and, for some sequences of random vectors Z, . ¢+ and b, ¢, we have
¢ 7 q 9 7f El 7f’
L(h;k) = L(f) + R Mybyg s+ W0 27, 0 ¢,

where, for a uniformly bounded sequence of constant vectors by, , € R™ and some Y(k) and
B(k), by = byp gl 2 0 and

. 10T %\ Lk o . . 1T %\ Lk _ d
Jim. f£¢ (L)oo = B(k), N inf §(LO)b, = —B(k),  Znny 2> N0, 2(k)).
Theorem B.2. Suppose that Assumption B.3 holds, and put S(k)* = ¢'(L*)2(k)¢'(L*)'. Then,
if KM, — 0 and h**n~Y2 — 0, Assumption B.1 holds for T(h; k) = ¢(L(h; k)).

Proof. First, note that the conditions on the bandwidth imply L ]% L*. Then, by a Taylor

expansion, for some L = L(L, L(f)) on the line segment between L and L(f), we have

O(L) — o(L(f)) = ¢/ (L)[L — L(f)]
= ¢ (L)W Mypby g + W02 2,5 5] = W Myuby g + W02 2, 4,

where Znpy = &' (L) Znps 70_[> N(0,S(k)?) by the continuous mapping theorem and b, ;s =
gb’([i)bn’h’f satisfies |l~)n’h7f - B;‘%h’f| = |¢>’(I~/)bn7h’f - ¢'(L*)b;}h7f| ]% 0 where B:‘L’hj = gb’(L*)b;’h,f.

Thus, Assumption B.1 holds with Bn,;% s playing the role of b, ¢, and B;h s Playing the role of
b:7h,f‘ D

If the function class F,, places separate restrictions on each mapping = — f;(z) for j =
1,...,m, then the set of limits of the biases b7, ; will take the form [—By(k), By (k)] x - -- x
[—B,.(k), Bu(K)]. In this case, the limiting worst-case bias takes the form

m

B(k) =Y _|¢j(L")B;(k)!. (52)

J=1

Note that, while Theorem B.2 shows that Assumption B.1 is preserved under smooth nonlinear
transformations, such a statement does not hold for a version of this assumption stated in terms
of moments, rather than weak convergence. For such a result, one needs to either use truncation
or place stronger conditions on the class of estimators. This is analogous to parametric and
regular semiparametric settings such as instrumental variables, in which the asymptotic variance

may only be finite if defined in terms of convergence in distribution.



B.2 Gaussian white noise model

The approximation (4) holds as an exact equality (i.e. with the o(1) term equal to zero) for
the RMSE, OCI, and FLCI criteria in the Gaussian white noise model whenever the problem
renormalizes in the sense of Donoho and Low (1992). We show this below, using notation taken

mostly from that paper. Consider a Gaussian white noise model
Y (dt) = (Kf)(t)dt + (o//n)W(dt), teR%

We are interested in estimating the linear functional T'(f) where f is known to be in the class
F ={f: Ja(f) < C} where Jo(f) : F — R and C € R are given. Let U, denote the renormal-
ization operator U, f(t) = af(bt). Suppose that T, Jo, and the inner product are homogeneous:
TUapf) = ab™®T(f), Jo(Uapf) = ab®2Jo(f) and (KU, pf, KUay p9) = a1a2b** (K f, Kg). These
are the same conditions as in Donoho and Low (1992) except for the last one, which is slightly
stronger since it must hold for the inner product rather than just the norm.

Consider the class of linear estimators based on a given kernel k:

T(h k) = b / (KK(-/R) (1) dY (1) = b / Kty 1 K](2) dY (2)
for some exponent s, to be determined below. The worst-case bias of this estimator is

bias(T(h; k) = o T(f) = b (Kk(-/h), Kf)|.

Note that Jo(f) < C iff. f = Upss 1 f for some f with Jo(f) = Jo(Up-s2 . f) = Jo(f) < C. This

gives

bias(T'(h; k) = sup |TUpnss 1 f) — W (Kk(-/h), KUpss 1 f)]

Jo(f)<C
= sup |PRTOT(f) — R UKE(), K f)]
J2(f)<C
If we set s;, = —sg + 251 so that sy — sg = s5, + s9 — 251, the problem will renormalize, giving

bias(T'(h; k)) = h*2~* bias(T(1; k).
The variance does not depend on f and is given by

varj(T(h; k) = W20 (0% Jn) (KUy porky KUy i k) = h20=251(62 n) (K, K k)
= W20 (02 ) (K k, KK).



Thus, Eq. (2) holds with v, = s9 — s¢, 75 = S1 — S0,

B(k) = bias(T(1;k)) = sup [T(f) = (Kk, Kf)]
Ja(f)<C
and S(k) = o||Kk| and with both o(1) terms equal to zero. This implies that (4) holds with

the o(1) term equal to zero, since the estimator is normally distributed.

B.3 Local polynomial estimators in fixed design regression

This appendix proves Theorem 3.1 and Eq. (15) in Section 3.2.1.

We begin by deriving the worst-case bias of a general linear estimator

n

T = Z w(x;)y;
i=1

under Hélder and Taylor classes. For both Fr,(M) and Fuep(M ) the worst-case bias is infinite
unless Y 0 w(z;) = 1and Y ¢ w(z;)a? =0for j =1,...,p— 1, so let us assume that w(-)
satisfies these conditions. For f € Fr,(M), we can write f(z) = Zp_o 27 £9(0) /4! + r(x)
with |r(z)| < M|z|P/p!. As noted by Sacks and Ylvisaker (1978), this gives the bias under f
as i, w(z;)r(z;), which is maximized at r(z) = M sign(w(z))|z[?/p!, giving biasz, (T) =
MY ol p

For f € Fusp(M), the (p — 1)th derivative is Lipschitz and hence absolutely continuous.
Furthermore, since >  w(z;) = 1 and >  w(z;)a? = 0, the bias at f is the same as the
bias at x — f(z) — Z?;é 27 fU)(0) /5!, so we can assume without loss of generality that f(0) =
f1(0) = --- = f®P=1(0). This allows us to apply the following lemma.

Lemma B.2. Let v be a finite measure on R (with the Lebesgque o-algebra) with finite support
and let w: R — R be a bounded measurable function with finite support. Let f be p — 1 times
differentiable with bounded pth derivative on a set of Lebesque measure 1 and with f(0) =

F10) = f"(0)=--- = f(P—l)(O) =0. Then

/Ooow(x)f(x) dv(z) = /:O ww(s)f(p)(S) ds

=0

and 0 o
| w@r@ae) = [ w0657 ds
where
oo w(z)(x—s)P™ 1
Wy (s) = JZ P dv(x) s20
by o S w(z)(s—z)P~1
N (@)( (p)l) V% du(z) s < 0.
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Proof. By the Fundamental Theorem of Calculus and the fact that the first p — 1 derivatives

at 0 are 0, we have

x t1 tp—1 _ —1
= / / .. / f(P)(tp o dtydt, = / f flf 5) ds.
t1=0 Jt2=0 tp=0

Thus, by Fubini’s Theorem,

/:Ow(x)f(x) dv(z) = / / 1 x_s) 1dsdu(x)

/ £ (s / w(x();x__li) " dv(e)ds

which gives the first display in the lemma. The second display in the lemma follows from
applying the first display with f(—x), w(—=z) and v(—=z) playing the roles of f(x), w(z) and
v(x). O

Applying Lemma B.2 with v given by the counting measure that places mass 1 on each of
the z;’s ( ( ) = #{i: x; € A}), it follows that the bias under f is given by [w(z)f(z)dv =
[, (s)f®(s)ds. This is maximized over f € Fyg,(M) by taking f®)(s) = M sign(w,,(s)),
which gives biasz,, () (T)=M [y ()| ds.

We collect these results in the following theorem.
Theorem B.3. For a linear estimator T = Y. w(x)y: such that Y7 w(z;) = 1 and
S w(z)a? =0 forj=1,...,p—1,
biasz, (1) = M Z!w i)r|’/p! and  biasg,, () (T)=M /|u7p,,,(s)| ds
where Wy, (s) is as defined in Lemma B.2 with v given by the counting measure that places mass
1 on each of the x;’s

Note that, for ¢ > 0 and any g,

/S W (s ds—/s t/:C s x;x——ls ldy(x)dszfzi Sxtw(l’géfc_—l;)q_l dsdv(z)
:/x:tw(x) [Mr dy(x):/jwdy(@:wﬁw(t)_ (s3)

q' s=t

Let us define wy , () = w(zx), so that this holds for ¢ = 0 as well.
For the boundary case with p = 2, the bias is given by (using the fact that the support of

10



v is contained in [0, 00))

o0

/oow(x)f(x) dv(z) = /OO Wy, () f P (x)dr  where by, (s) = / w(z)(x — s)dv(z).

0 0 w=s

For a local linear estimator based on a kernel with nonnegative weights and support [—A, A],
the equivalent kernel w(z) is positive at * = 0 and negative at © = A and changes signs
once. From (S3), it follows that, for some 0 < b < A, w;,(x) is negative for z > b and
nonnegative for # < b. Applying (S3) again, this also holds for wsy, (). Thus, if ws,(5) were
strictly positive for any § > 0, we would have to have ws, (s) nonnegative for s € [0, §]. Since

Wy, (0) = Z;lzl w(z;)z; = 0, we have

0 < 12, (0) — B (5) = — / Sow(a:)(:z: — 5)dv(a)

which implies that szs w(z)dv(z) <0 for some 0 < s <3 < 5. Since w(x) is positive for small
enough x and changesﬁ signs only once, this means that, for some s* < 3, we have w(z) > 0
for 0 < z < s* and f;;o w(x)dv(z) > 0. But this is a contradiction, since it means that
Wa,(s*) = —fos* w(x)(zr — s*)dv(z) < 0. Thus, ws,(s) is weakly negative for all s, which
implies that the bias is maximized at f(z) = —(M/2)x?.

We now provide a proof for Theorem 3.1 by proving the result for a more general sequence

of estimators of the form

. 1 <. -
T=— kn zh 9
— ?:1 (zi/h)y

where k, satisfies =3 ky(z;/h) = 1 and L3 k(2 /M)l = 0for j=1,...,p—1. We

further assume

Assumption B.4. The support and magnitude of k, are bounded uniformly over n, and, for

some k, SUp,eg |kn(u) — k(u)| = 0.

Theorem B.4. Suppose Assumption 3.1 and Assumption B.j hold. Then for any bandwidth
sequence hy, such that nh, — oo, liminf, h,(nM?)"/@+1) > 0, and limsup,, hy, (nM?)Y/ @) <

oo,

— ~ MR? . - P -
biasz, an (1) = TanT(k)(l +o0(1)), B (k) = d/ |uPk(u)| du
- X
and
_ R VT ——
blas]:Hal,p(M)(T) = TBII; l(k)(l + 0(1))7

B(k) = dp /t

=0

/ k(uw)(Ju] — )P~  dul dt.
uEX,|u|>t
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If Assumption 3.2 holds as well, then
sd(T) = b, S (k)(1+ o(1)),

where S(k) = d?c(0)y/ [, k(w)2 du, and (4) holds for the RMSE, FLCI and OCI performance
criteria with v, = p and vs = —1/2.

Proof. Let K, denote the bound on the support of k., and K,, denote the bound on the
magnitude of k.

The first result for Taylor classes follows immediately since

— ~ M M T
biasz, o (T) = _hpnh Z ke (2:/1) |23 /AP = (thd/x ()| |ul? du) (14 0(1)),

where the first equality follows from Theorem B.3 and the second equality follows from the fact

that for any function g(u) that is bounded over w in compact sets,

— Zk g(x;/h) — /Xk(u)g(u) du

n

1 -
+%Z k,

(wi/h)g(xi/h) — k(xi/h)g(xi/h)

< E;%m/h)gm/m—d | Hg(u) du

1 & - -
<o)+ — > Hlo/hl < K} sup g(w)- sup  [k(u) = k(u)| = o(1), (S4)
nh i1 u€[— K, K] u€[— K, K]
where the second line follows by triangle inequality, the third line by Assumption 3.1 applied
to the first summand (with « — k(z)g(z) playing the role of g(-) in Assumption 3.1), and the

last equality follows by Assumption 3.1 applied to the first term, and Assumption B.4 applied
to the last term.

For Holder classes,

bias 00 (T ) = M [ 1,005 ds

by Theorem B.3 where w,, is as defined in that theorem with w(z) = #fcn(x /h). We have, for
s >0,

12



Thus, by Eq. (S4), for t > 0, h~=®= V@, ,(t - h) — d - w,(t), where

] ) — 1!
w( = [ T

(i.e. @,(t) denotes w,,(t) when w = k and v is the Lebesgue measure). Furthermore,

i (th|<[nh21{o<x/h<§)}<xz/h> ]-I{ths}SKl-I{tSKs},

where the last inequality holds for some K3 by Assumption 3.1. Thus,
M/ 13,(5)| ds = hpM/ St B[ dt = M {d/ 15, (2)| dt} (14 0(1)
t>0

by the Dominated Convergence Theorem. Combining this with a symmetric argument for ¢ < 0
gives the result.

For the second part of the theorem, the variance of 7' doesn’t depend on f, and equals

X . ~ 1 -
var(T) = — > kn(wi/h) o (x;) = —hsg, where 52 = — > kn(wi/h)*o* (x;).
=1 =1

By the triangle inequality,

52 — do®(0) / k(u)? du

n

bl /0% (@) = Fa/BYo(O)] - S /bl < K.

) n—lfLZl;;(xi/h)Q—d/Xl%(u)Qdu

where the equality follows by Assumption 3.1 applied to the second summand and the second

< sup
|z|<hKs

= o(1),

term of the first summand, and Assumption 3.2 and Assumption B.4 applied to the first term
of the first summand. This gives the second display in the theorem.

To show the last statement (verification of Eq. (4)), we note that the above arguments
show that Assumption B.1 holds with b, s = b}, ; equal to the bias of the estimator and
E¢Z}%, ; — S(k) uniformly over F, so long as we can verify the uniform central limit theorem for
Zony = (nh)Y2T — E;T) = (nh)"Y2 32", kn(2;/h)u;. By the conditions on the errors u;, this
follows from the Lindeberg central limit theorem so long as max;[(nh) 2k, (z;/u)]?/(nh)~! =

max; nhky,(x;/u)/(nh) — 0. By uniform boundedness of the kernel k,, this holds so long as

13



nh — oo. O

The local polynomial estimator takes the form given above with

kin(u) = €) (n—lh Z /f(xi/h)mq(wi/h)mq(wi/h)’> m(u)k(w).

If k£ is bounded with bounded support, then, under Assumption 3.1 this sequence satisfies

Assumption B.4 with

b =<t (4 /. k<u>mq<u>mq<u>'du)lmq<u>k<u> — 4k ),

where k7 is the equivalent kernel defined in Eq. (14). Theorem 3.1 and Eq. (15) then follow
immediately by applying Theorem B.4 with this choice of k, and k.

B.4 Fuzzy RD

We consider the sequence of parameter spaces F,, C F (M, My), such that L(f,) — L* for all
sequences f, € F,. Here L* € R? is a fixed vector such that Lj # 0. Let M = M, and suppose
Assumption 3.1 holds (since the ratio M;/Ms, is fixed, it suffices to verify the assumption
for M = Mj). Assume also that the random variables {u;}? ; are independent with Eu; = 0,
var(u;) = Q(x;) and E(u?,4+u3,)*™ < 1/n for some 1 > 0, and that the covariance function (z)
is left- and right- continuous at z = 0 with 4 (0) = lim, o Q(z) > 0 and Q_(0) = lim,4o Q(z) >
0. It then follows by adapting arguments in the proof of Theorem 3.1 that for any bandwidth
sequence h,, with nh,, — oo and 0 < liminf, h,, (nM?)Y+D < limsup,, h,(nM?)V/ 2P+ < oo,

M, b}, 1
7h7f71 +

L(h;k) = L(f) + I? s,
MZbZ,h,f,Q nh

where Z, ¢ converges in distribution to N (0, X(k)) uniformly over F,, with

S(k) = / " k() du - (924(0) + Q. (0))/d,

and b}, ¢ = > (wi (i) +w_(x3)) fi(2;)/M; for j = 1,2, and the limits of these biases lie
in the set [B(k), —B(k)]?, where B(k) = [;° u®k}(u)du. From (S2), we obtain that Assump-
tion B.3 holds with v, = 2, 7, = —1/2, and

e 1+ Ms/My|Ly /LS| [
BR) = =0 (L) + Mo/ ML) [ (o du = 2R [P g au
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Thus, by Theorem B.2, condition (4) holds for FLCI, OCI, and truncated RMSE with

S(k)? =

Jo ki (u)? duc?(0; Ly /L3) + <2(0; L/ L3)
d (L3)? ’

where ¢?(2;T) = (1, =T)Q(z) (1, =T), 1(0; T) = lim, 0 *(z; T), and ¢2(0; T') = limyqo s*(; T).

The expressions for avar(T'(k; k)) and abias(T(h; k)) in the main text then follow by observ-
ing that i, @" (x; h, k)*¢'(L(f))Qx:)¢'(L(f))" = S(k)/nh(1 + o(1)), and (|¢}(L(f))|[M:1 +
|05 (L)) Ma) 325y @™ (s by k) /2 = Mih?B(k)(1 + o(1)).

Appendix C Additional applications

This appendix considers additional applications not considered in the main text, using the
sufficient conditions from Appendix B.1. Appendix C.1 verifies our conditions in the density

setting, and Appendix C.2 applies these results to a problem in the auctions literature.

C.1 Density estimation

Consider estimating a density at a point, which we normalize to 0. We observe {X;}? , iid
with density f on the intersection of X and some neighborhood of 0, where either X = R or
X = [0,00). We are interested in T(f) = f(0). Let T = T'(h; k) = LS k(Xi/h) be a kernel
estimate where k is a kernel with [, k(u)du = 1 and finite support. Let F = F(M) denote
the Holder class Fys,(M) or Taylor class Fr,(M) of order p, as defined in the paper. Assume
that the kernel k satisfies fx whk(u)du=0for j=1,...,p—1. Let f* > 0 be given, and let a,
be a sequence converging to zero more slowly than any polynomial. Let F(M,[—a,a]) denote
the class for which the Holder or Taylor condition is imposed only for z € [—a,a] N X, and let
Fo=F(My; [—an, an)0{f : | f(x) = f*] < apallz € [—ay,a,)NX, f(z) >0all z, [ f(z)de =
1}.

We show that (4) holds for the performance criteria considered in the main text by verifying
Assumption B.1. This gives a generalization of the results in Sacks and Ylvisaker (1981), who
consider RMSE optimal kernels in Taylor classes, to performance criteria other than RMSE,
and to cover Holder classes in addition to Taylor classes. Note that F,, localizes the parameter
space around a density with T'(f) = f*, similar to Appendix B.1.1. This differs slightly from
Sacks and Ylvisaker (1981), who consider a fixed parameter space F which only places an upper
bound f* on f(0). However, the result given below is essentially the same, since the worst-case
risk over this class is taken in a shrinking neighborhood of f* (i.e. the worst-case risk is the
same as in our setup). Also, note that we only impose the Hélder or Taylor condition in the set

[—ay, a,], although we would obtain the same result if we did not impose this condition so long
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as M, increases slowly enough so that the function can be extended to satisfy the smoothness

condition outside of [—ay, a,].

Theorem C.1. For any bandwidth sequence with h, — 0, h2 M,, — 0, nh,, — oo and

0 < liminf by, (nM?)Y@=D < lim sup h,, (nM?)V/ 2D < oo,

n

the kernel density estimator satisfies Assumption B.1 with S(k) = \/ f* [, k(u)? du, B(k) given
in Theorem 3.1 and with vy, = p and vs = —1/2. In particular, (4) holds for the FLCI and

OCT criteria. Furthermore, we can take by py = by, ¢ to be nonrandom, and E¢Zy, p 5 = 0 and
EiZ%,  — S(k) uniformly over F,, so that (4) holds for the RMSE criterion.

Proof. We have
T(h; k) = T(f) + h*Mbyp s + (nh)?Z,, 14 (S5)

where
—pas—1 . pag—1l
by = WM B R) = () = M, [ ka/h)[fa) = £0)) do

is nonrandom and can be taken to be equal to by, , ;, and

Zuns =z SOICE/R) = (X))

Once h,, is small enough relative to a, and f*, the set of possible biases for the class F,, will
be the same as for the Taylor or Hélder class F (M), without the additional local restriction of
f(z) for x near zero, or the restriction that f be a density (note, in particular, that, letting C'
be a bound on the support of the kernel k, the bias depends only on f(x) for  in [—-Ch,,, Ch,],
and that the first p — 1 derivatives of f at zero can be taken to be equal to zero without loss of
generality, so that, for any function f satisfying the Holder or Taylor condition, f(z) is bounded
from below by f* —a, — C’Mnhﬁ on this set for some constant C; this function can then be
extrapolated so that it is positive on [—a,,, a,] while maintaining the Holder or Taylor condition,

and then defined outside of [—a,, a,] so that it integrates to one), so that

sy s £ € 73 = {2ty [ kamlr) - g0 de s e 70D}
x
By the renormalization property of F (f € F(1) iff.  — hPM f(z/h) is in F(M)), the set in

the above display remains the same if h and M are each replaced by 1. Thus, the expressions for

asymptotic bias derived in Theorem 3.1 holds exactly with «, = p and B(k) given in Theorem 3.1
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(with k playing the role of the equivalent kernel, k7). For the variance, we have

vty (Zung) = [ bR o= ¢ | [ ka/mi d]

The second term converges to 0 uniformly over F,,, and the first term converges to f* [, k ¥ )2 du
uniformly over F,. To verify the Lindeberg condition for asymptotic normality, note that
L3 EfK(Xi/h)*I{K(X;/h)? > enh} — 0 uniformly over f € F, since nh — oo. O

C.2 First price auctions

Our results for density estimation and nonparametric regression can be combined with the
delta method (Theorem B.2) to verify our conditions for nonlinear functions of densities and
nonparametric regression functions evaluated at finitely many points. To illustrate, we consider
a setting from the auctions literature involving a nonlinear function of a density.

Guerre et al. (2000) consider the problem of recovering valuations from bids in a first price
auction setting. Here, we consider a simple version of their setting with no covariates, and the
same number of bidders in each auction. We observe n total bids from symmetric independent
private value sealed bid auctions with I > 1 bidders each, with independent valuations. The
bids {X;}", are then iid and, letting f denote their density, the valuation for a bidder with

bid X; = z is given by

i d
E(x; f. 1) = +Ii1fojc{:;) t

(Equation (3) in Guerre et al., 2000). Consider the problem of estimating T'(f) = &(xo; f, 1)

at a particular point zy. Let Fgpy,, be defined in the same way as the class F, defined

in Appendix C.1 with X = R, but with an additional local restriction on the cumulative
distribution function (CDF) [*_ f(¢)dt: Fapve = Fa N {f | [° f(t)dt — F*| < a,} where
F* €(0,1) is given.

Let L(h;k) = (Li(h; k), Lao(h, k) = (30 H{X; < mo}, 2 320 k((Xi — 20)/h)), where k
is a kernel satisfying the conditions in Appendix C.1 and h satisfies the conditions of The-
orem C.1 for some p. Let ¢(L) = zog + Illfl
by T(h:k) = ¢(L(h;k)). To verify (4), we verify Assumption B.3. First, note that, by a
slight generalization of Theorem C.1, Ly(h; k) satisfies (S5), where by ; is nonrandom and,
for large enough n, ranges over the set [—Ba(k), Bo(k)], with Bs(k) given by B(k) in Theo-

rem 3.1, and with Zn n.f converging to a N(0, S2(k)) distribution uniformly over F¢py,,, where

Then a plug-in estimator of T'(f) is given

So(k) =/ f* [ K(u (This follows from the arguments in Theorem C.1 along with the obser-
vation that the local restriction on f_oo f(t) dt does not restrict the set of possible biases by, s
for large enough n.) Also, Ly (h; k) satisfies L1 (h; k) = Li(f) + R Myby g1 + W27, 5 ¢4
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with v, = —1/2, where b, 1 = 0 and Z, 5 ;1 = nt/?h % (f)l(h; k) — Ly(h; k)) converges in
probability to zero uniformly over Fgpy,,. Thus, Assumption B.3 holds with b, 5 ; ranging over
the set {0} x [=Ba(k), Ba(k)] and with X(k) = (§ s,k ) and ¢'(L*) = f5[5=, =] It follows

=il
that (4) holds for the FLCI and OCI criteria, with 7, = —1/2 and ~, = p, B(k) = BQ(k:)ﬁ,
and S(k) = Sy(k)—L—2—. Note, however, that, since a density estimator appears in the de-

T-1277%
nominator of the estimator of 7'(f), the RMSE may not even be finite, and so truncation will

be needed to apply our results to the RMSE criterion.

We note that the class F¢py,, places assumptions conditions directly on the bid distribution,
and does not incorporate additional restrictions that may arise from the assumption that f
arises from an equilibrium in a first price auction model. We leave for future research whether
such restrictions place sharper bounds on the bias, as well as the question of deriving primitive
conditions on the value distribution for our smoothness assumptions on the bid distribution.
Such questions are addressed by Guerre et al. (2000), although they focus on a slightly different
setting, since they consider rate optimality in the supremum norm for estimation of the value
distribution (rather than asymptotic constants for estimation of the function &(z; f,I) at a

given point o).

Appendix D Additional details for applications

This appendix gives additional details for applications in Section 3. Appendix D.1 calculates
the efficiency gain from using different bandwidths on either side of the cutoff in sharp RD. Ap-
pendix D.2 gives details of optimal kernel calculations discussed in Section 3.2.1. Appendix D.3

gives the kernels constants [, k%(u)* du, and B, (k) for selected kernels.

D.1 Regression discontinuity with different bandwidths on either
side of the cutoff

We consider a slightly more general setup than that considered in Section 3.2.2. Consider
estimating a parameter T'(f), f € F, using a class of estimators T'(h., h_; k) indexed by two
bandwidths h_ and hy. Suppose that the worst-case (over F) performance of T(h+,h_;k)

according to a given criterion satisfies
R(T(hy, ho k) = ROMB(k)(R2 + W), n 2 (Sy (k)RT" + S_(k)*h2) ) (1 + o(1)),  (S6)

where R(b,s) denotes the value of the criterion when T'(hy,h_:k) — T(f) ~ N(b,s?), and
S(k) > 0 and B(k) > 0. Assume that R satisfies (5).
In the RD application in Section 3.2.2, if Assumptions 3.1 and 3.2 hold (with the re-
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quirement that o?(z) is continuous 0 replaced by right- and left- Continuity of ai(x) and
02 (x)), then Condition (S6) holds with v, = —1/2, 7 = 2, Sy (k) = 03(0) [; ki (u)? du/d,
S_(k) =02(0) f,;° ki(u)? du/d, and B(k) = — [~ u?k}(u)du/2.

Let p = hy/h_ denote the ratio of the bandwidths, and let ¢ denote the ratio of the leading

worst-case bias and standard deviation terms,

MB(k)(R2 + 1) e MBR)(1+p7)
n—1/2(5+(k)2hi% + S,(k)2h2_75)1/2 o n=12(S, (k)2p>s + S_(k)2)1/2°

Substituting b, = ph_ and h_ = (tn=Y2(S, (k)2p?" +S_(E))YV2M 1 B(k) = (14 pe) 1)/ (o=)
into (S6) and using linearity of R gives

R(T(hy, h_;k)) = RIMB(k)h™ (1 4 p™), h2>n~Y2(S (k)2 p*" + S_(k)*)Y?)(1 + 0(1))
= M7 P4 (k)27 )2 (14 ™) T S (k) B(k) T R(t, 1)(1 4+ o(1)),

where r = 7, /(7 —7s) is the rate exponent, and ¢(k) = S, (k)/S_(k) is the ratio of the variance
constants. Therefore, the optimal bias-sd ratio is given by ¢t = argmin, R(t, 1), and depends

only on the performance criterion. The optimal bandwidth ratio p is given by

: 2 2y.\7/2 1-r 2
p = argmin(l +¢(k)“p™* )" (1 + p7) " = ¢(k)»=s,
P

and doesn’t depend on the performance criterion.
Consequently, inference that restricts the two bandwidths to be the same (i.e. restricting

p = 1) has asymptotic efficiency given by

lim ~
n—00 min, R(T'(h; k))

ming, n_ R(T(h+, hosk))  ((1+ (k)2 p2r)W/2 (1 4 p) e
a (1 + o(k)2)m/22

1-7/2
(1+< )

(1+c(k)?)7?

— 27‘71

In the RD application in Section 3.2.2, (k) = 0.(0)/0_(0), and r = 4/5. The display above
implies that the efficiency of restricting the bandwidths to be the same on either side of the
cutoff is at least 99.0% if 2/3 < 0, /o_ < 3/2, and the efficiency is still 94.5% when the ratio
of standard deviations equals 3. There is therefore little gain from allowing the bandwidths to
be different.
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D.2 Optimal kernels for inference at a point

The optimal equivalent kernel under the Taylor class Fr (M) solves Eq. (17) in the main text.

The solution is given by

ksyp(u) = <b+ Z] Loyl — |u|p> <b+ Z] agul + |u|1’) :

the coefficients b and « solving

/ w kgy p(u) du = 0, j=1...,p—1, and / ksyp(u)du = 1.
X X

For p = 1, the triangular kernel kri(u) = (1 — |ul); is optimal both in the interior and on
the boundary. In the interior for p = 2, a; = 0 solves the problem, yielding the Epanechnikov
kernel kppa(u) = 3(1 — u?), after rescaling. For other cases, the solution can be easily found
numerically. Figure S1 plots the optimal equivalent kernels for p = 2, 3, and 4, rescaled to be
supported on [0,1] and [—1, 1] in the boundary and interior case, respectively.

The optimal equivalent kernel under the Holder class Fyg 2(M) has the form of a quadratic
spline with infinite number of knots on a compact interval. In particular, in the interior, the

optimal kernel is given by f%,(u)/ [ fi% ,(u) du, where

o0

Ha1.2(1) = 1——$2+Z Y (|l = k)3

and the knots k; are given by k; = (}J_rng (2 — ¢?/? — qUtV/2) where ¢ is a constant ¢ =

(3 + /33 — /26 + 64/33)%/16.

At the boundary, the optimal kernel is given by fg4,(u)/ [* Hom u) du, where

fo2(w) = (1= zoz + 2 /2) {0 < & < o} + (1 — a) figh o (x — wo) /(af — 1)) iz > w0},

with xo ~ 1.49969, so that for x > xg, the optimal boundary kernel is given by a rescaled

version of the optimal interior kernel. The optimal kernels are plotted in Figure S2.

D.3 Kernel constants

For the uniform, triangular, and Epanechnikov kernels, the kernel constants [, k7 (u)?du,
B, ,(k), and B}[%!(k) discussed in Section 3.2.1 involve integrals that can be computed in closed
form. Table S1 gives these constants for the case in which the point of interest is an interior

point, and Table S2 gives them for the boundary case.
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Appendix E Data-driven Bandwidths

This appendix considers Cls with the bandwidth chosen based on the data, with the smoothness
constant M treated as unknown. In particular, we formalize the statements in Section 3.3
regarding honesty and near-optimality of Cls based on the rule-of-thumb bandwidth suggested
in that section, over a regularity class that imposes further restrictions.

Consider the regression setting in Section 3.1. Let F(M) denote the Taylor or Holder class
defined in Section 3.2.1, which places the bound M on the pth derivative of the regression func-
tion. Let F(M;n) denote the class that imposes this bound only over z € [—n, n]. We note that
all of our asymptotic results for F(M) hold for F(M;n) as well. Let T, (h; k) denote the gth or-
der local polynomial estimator, with ¢ > p—1. Let h,, = h(M) = (n=2S(k)t/(M B(k)))/ =)
denote a sequence of bandwidths corresponding to bias-sd ratio t. Here, B(k) and S(k) are
given in Theorem 3.1 and 7, = p and v, = —1/2. Let r = 2p/(2p — 1) denote the rate exponent.
It follows from the results in the main text that the CI {T,(hn; k) & 86(hn; k) - cvi_a(t)} has
correct asymptotic coverage, and it is near-optimal if highly efficient choices for ¢ and k are
used.

We consider the CI {T,(h; k) 4 se(h; k) - cvi_o(t)}, which uses a data-driven bandwidth
h to estimate the optimal bandwidth h, = h(M), thereby avoiding the requirement of prior
knowledge of M. As discussed in the main text, results from Low (1997), Cai and Low (2004)
and Armstrong and Kolesar (2018) imply that it is impossible for such a CI to achieve coverage
and near-optimality over F(M;n) when M is unknown. We therefore consider a class G(M) C
F(M;n) that imposes additional conditions that allow M to be estimated consistently. We allow
G(M) to depend directly on the sample size as well, but we leave this implicit in the notation.
Appendix E.1 presents results under high level consistency conditions on h over the class G (M).
Appendix E.2 defines a particular class G(M) that formalizes the notion that local smoothness
of f is no smaller than its smoothness at large scales, and verifies that the rule-of-thumb
bandwidth suggested in Section 3.3 leads to honest Cls over this class. Appendix E.3 derives
asymptotic efficiency bounds that show formally that the CI with rule-of-thumb bandwidth
considered in Appendix E.2 is highly efficient over the class G(M). In particular, it is impossible
to substantively improve upon this CI using the additional restrictions in the class G(M).
Appendix E.4 presents auxiliary results and intuition for the efficiency bounds presented in
Appendix E.3.

E.1 General results for estimated h

We maintain Assumptions 3.1 and 3.2. We make the following additional assumptions on the

kernel.
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Assumption E.1. The kernel k is bounded and Lipschitz continuous with finite support.

Theorem E.1. Let h(M) = (n~Y25(k)t/(MB(k)))¥ @) where t > 0. Let h be a band-
width sequence, which may depend on the data, such that h/h(M) % 1 and nh(M) — oo
uniformly over Uyein 77,19(M), where G(M) C F(M;n). Let se(h;k) be a standard error
such that se(h; k)/sdg(h; k) converges in probability to one uniformly over UMG[MWMn]Q(M).
Let Assumption 3.2 and Assumption E.1 hold, and let Assumption 3.1 hold for any sequence
M, € [M,, M,]. Then

. . . - 7 . ~/3 . > o )
h}gg}f feu]vje&ljil,fﬁn]g(M) Py (T(f) € (Tq(h, k) +se(h; k) cvl_a(t)>> >1—a
> 5> — 0

To prove this theorem, let M, € [M,, M,] be given, and let f, be a sequence of functions

The length of the CI satisfies

2 (s )
2n=r2 M- S(k)" B

EVI —a(t) 1

lim  sup sup Py ( BT vy (D)

"0 MeM,, M, fEG(M)

for any 6 > 0.

in G(M,,). Let h, = h(M,). For any sequence ¢, — 0, the coverage probability under f, is
bounded from below by

an<

For the first term, we first note that Theorem 2.2 continues to hold with y/1/r — 1 replaced by

t and h},, replaced by h,, with obvious modifications to the proof. The first term is asymp-

A ~

Ty(h; k) = T,y (has )
so(h; k)

a(hni k) = T(fn)

7Ae(h k)

< cevi_o(t)(1 — cn)) — Py, (

> cvl_a(t)cn) )

totically bounded from below by 1 — « by Theorem 3.1 and this generalization of Theorem 2.2,
applied with §e(h; k)(1 — ¢,) playing the role of the standard error in Theorem 2.2 (note that,
by Theorem 3.1 and the assumptions on A, e(h; k)/[n"Y2h, /*S(k)] converges in probability
to one under f,). The second term will converge to zero for ¢, decreasing slowly enough so
long as v/nh, (T q(fz; k) — Tq(hn; k:)) converges in probability to zero (again using the fact that
se(h; k) /[n=2hy /2 S (k)] converges in probability to one).

Let

%W=Q52Mwwmwwmww)a,mmwzﬁmmmwwm
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and let wy (z; h, k) = a,(h)'by(zi; h). We have

Ve [Ty ) = Ty (i k)| = v/l Z 2(wi; by k) — w0y (255 B, B)ys
— Vnh, Z o (25 by K) = w0y (2 b, B)) f ()
+ v nh Z $zvhn>k (xuilak)]ul (87)

Using a Taylor approximation to f(x;) around x = 0 and the fact that > ", w} (2;; h, k)zl =0
for 5 < p, it follows that the first term is bounded by

P

nho My, Y Wi (2 h, k) — w) (235 1, k)| ’xz = Z 2 o k) — w2 (s )|

h
=1 -1 n

Y

where we substitute M, = tn="/25(k)/(B(k)h5™/?). Letting C' be a bound on the support of

the kernel k, we have |z;| < C max{iz, hy} for any x; such that the summand is nonzero. Thus,
(20)P¢5(k)

B times

on the event h < 2h,, the above display is bounded by
>l (s b ) — w0l b )|
i=1

USing the fact that wg(xi;hn7k> - wg(mi;ha k) = an(hn)l[bn(l‘z;hn) - bn(l’zaﬁ)] + [an(h) -
an(R)]'by (24 ), it follows that the above display is bounded by

[an(ha)] Z 10n (255 hn) — by (s )H + llan(hs) — an(h || Z [0 ( xu

Similarly, the last term in (S7) is bounded by

l[an (hn) || H\/WZ (@i; hn) (mwh)]

+ ||an(hy) — an(h H H\/nhann(a:i;iL)ui )
i—1

Both of these quantities converge in probability to zero by the following lemma.

Lemma E.1. Suppose that Assumption 3.1 and Assumption E.1 hold. Let §(z) = k(x)x? or
G(z) = |k(z)2?| for some j > 0. Then

n

Z 19(i/ (shn)) = §(i/hn)| =

1
limlimsup sup
00 nooo  sell—s,14] Mhn
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and
1

=0.
nsh,,

U; >€) = 0.

Proof. By Assumption 3.1, the second display in the lemma follows from the first. By Assump-
tion E.1, for large enough C, |g(u) — g(u’)| < Clu — /| {max{|u|, |v'|} < C}. Thus, the first
display in the lemma is bounded by

limlimsup sup
=0 nooo  se[l—6,149)

> gt/ (sh)) — d [ gta) du

If, in addition, Assumption 3.2 holds, then, for all € > 0,

1
vnh,

=0 nooo se[1-5,1+0) s€[1-8,1+4]

limlimsup sup P( sup

N 1
limlimsup sup ——
=0 nooo  se[l—6,14) nhy,

> ClsTt = 1|/ hal < 2C}
=1

=lim| sup |s ' —1||limsup
020 | 5e[1-5,144]

LSO /b < 207}
=1

n—00 nhn i

020 | 5e[1-6,146]

zlim[ sup |s_1—1|]/l{u§20}du-020.
x

For the second part of the lemma, we have, for s, s in a small enough neighborhood of 1, letting

@2 denote a bound on ¢?(x) in a neighborhood of zero,

n

E(Z[ o (sh) i () u> <73 (3l (sha) — 3 ()

n " oi=1

<o’

1 n
> CPlai/hal?)s™ = 5 PI{|wi/hal < 2C
=1

nh,, 4

For large enough n, this is bounded by |s™' — 57| times a constant that does not depend on

n. The result now follows from Example 2.2.12 in van der Vaart and Wellner (1996). [l

Finally, for the last statement of the theorem, note that the length of the CI is given by

2SAe(fL; k) cvi_o(t) which, under the sequence f,, is equal to a 1 + op(1) term times
on V2R Y28 (k) evi_o(t) = 2072 MITTS (R) B(k) T evy o (t).

E.2 Bounds based on global polynomial approximations

We now verify the conditions of Theorem E.1 in a particular setting. In particular, we consider

classes G that relate M to a global polynomial approximation to the regression function, along
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with a plug-in bandwidth h based on this assumption.
Let F(M) be the Taylor or Holder class of order p, and let F(M;n) denote the class that
imposes this bound only over = € [—n,n|. Let p > p be given. Let @;f denote the minimum

mean squared error pth order polynomial predictor for the regression function f:
Qsf = argin [ (7(z) = h(o) Pd(a)o (o) do

where the minimum is taken over polynomials of order p. Here, d(x) is such that the x;’s behave
as if drawn from a distribution with density x;, as formalized in the Assumption E.2 below.

Let Zpin, Tmax be given with —o00 < Xpin < Tmax < 00. Let

J(f) = J(f,ﬁ, Lmin, 'Tmax) = sup HQﬁf](p)(xN

xre [mein 7xmax}

denote the maximum pth derivative of the minimum mean squared error pth order approxima-
tion of f.
Let € > 0 be given. Let

QM. P, Tmin, Tmax, €) = {f : J(f) = eM},
g(M) = g(M;ﬁ>57naxmim$max) = ‘F(Ma 7]) N Q(Maﬁa *Tminaxmaxvg) N {f - Sup ’f(l')’ < K}’

where K is some large constant, and
H(M, M) = Unrenr 709 (M D, €7, Tmins Trmasx)-

This class formalizes the notion that the pth derivative in a neighborhood of zero is bounded by
e~! times the maximum pth derivative of a global pth order global polynomial approximation.
Setting € = 1 corresponds to the suggestion in the main text.

Let n
Qp = argmhinZ(yi —h(z)’ J= sw Q) ()]
=1

re [Imin )mmax]

We make the following additional assumption on the z;’s.

Assumption E.2. For some bounded function d(x) and a sequence c, with ¢, — oo and

cn/v/n — 0, we have, for each j =0,...,p,

Ch, — 0

for any uniformly bounded sequence of functions f,,. Furthermore, the p+ 1 by p + 1 matrix
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with (j,€)th element given by [ w/™2d(u) du is invertible.

Given a sequence c¢,, satisfying the conditions of Assumption E.2, if the x;’s are drawn iid
from a distribution with density d(x) for which all moments are finite, then Assumption E.2
will hold with probability approaching one.

We note the following consistency result for J.

Lemma E.2. Suppose Assumption 3.2 holds with o*(z) bounded and that Assumption E.2
holds. Then c,|J — J(f)| 2 0 uniformly over {f : sup, |f(x)| < K}.

Proof. Let A denote the p+ 1 by p + 1 matrix with (4, £)th element given by [ w/**~2d(u) du,
and let A denote the sample analogue with (7, £)th element given by %Z?:l :Eg+£_2. Let by be
the (p+1) x 1 vector with jth element [ f(u)d(u)du and b be the sample analogue with jth
element % S xf “ly;. Then A~ ¢ gives the coefficients of the polynomial Q)5 f, and A1 gives
the coefficients of the polynomial Q Let s(A, b) denote the function that takes the maximum of
the pth derivative of this polynomial over [Zmin, Zmax], S0 that J(f) = s(A,bs) and J = s(A, b).
Note that |s(A,b) — s(A,bs)| is bounded by max{||A — Al|,||b—b;||} times a constant that does
not depend on f, so it suffices to show that ¢, max{||A— A|, [|b—b;||} converges in probability
to zero uniformly over bounded f.

We have ¢,||A — A|| = 0 by Assumption E.2. The jth element of ¢,(b — by) is given by

n

n
%n 2 wrl ™+ e, (% Zzlf(xz)xfl — /f(u)uj_ld(u) du) .
The expectation of the square of the first term converges to zero, since it is bounded by ¢2 /n?
times a sequence that converges to a constant by Assumption E.2. The last term converges
to zero uniformly over bounded f by Assumption E.2. Thus, ¢,||b — bs|| £ 0 uniformly over
bounded f. O]

Let M, and e, be given, and consider honesty over the sequence of classes G(M,;p,en,
1, Tmins Tmax)- Let ¢ be given, and let h = (n=28(k)t/(MB(k))) >+ where S(k)/S(k) and
B(k)/B(k) converge in probability to one uniformly over G(M,) (as discussed in Section 3.3, we
can also directly minimize the sample analogue of the criterion such that ¢ is the asymptotically
optimal bias-sd ratio). Then h will satisfy the conditions of Theorem E.1 so long as h/h(M,)

converges in probability to one uniformly over G(M,,), where
h(M) = (n_l/QS(k:)t/(MB(]{:)))Q/(2P+1),

For this, it suffices that M /M, converges in probability to one uniformly over G(M,).
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According to Lemma E.2; we can use the estimate M = 1], which gives

Mo e = I

A A =op(1/(e, M,cy))

uniformly over G(M; P, €, 1, Tmin, Tmax)- 1f Assumption E.2 holds for any ¢, with ¢,/\/n — 0,
then this can be made to go to zero so long as €, M, /n — oo. Thus, the resulting CI is honest
over the class H(M,,, M,) so long as €, M, /n — oo, and such that Assumption 3.1 holds for
the sequences M, and M,,. Note also that, if one uses M =&1] where £ < ¢ (thereby choosing
e to be “too small”), then the resulting CI will be wider, but will still have correct coverage.
While Assumption 3.1 is stated as a high level condition, note that, in order for this condition
to hold with probability approaching one when the z;’s are drawn iid from a distribution
satisfying appropriate regularity conditions, we will need nh,, — oo and h,, — 0 for the given
sequence h,,. This will be ensured for any sequence M, € [M,,, M,] iff. M, satisfies nM? — oo

and M, satisfies M, /n? — 0 so that n(nd )Y+ = 22/ DTGP o0 Also, note

that we have assumed a uniform bound on the magnitude of the regression function, which
means that &,M, must be bounded uniformly over n (although this condition could likely be

relaxed).

E.3 Lower bounds

7

The CI in Theorem E.1 has the property that the ratio of its length to the length of an “oracle
FLCI that uses the unknown true M converges to one. If the optimal kernel is used and the
bias-sd ratio is chosen to be optimal for FLCI length, then this CI is efficient among FLCIs over
the class F(M;n). Furthermore, it is highly efficient among all Cls that are honest over the class
F(M;n), since one can apply bounds such as Corollary 3.3 in Armstrong and Kolesar (2018).
However, these results do not apply to the class G(M) over which the feasible CI with estimated
optimal bandwidth has coverage, since G(M) C F(M;n): they do not rule out the possibility
that this restricted class might allow for a more informative CI. To address this, we now derive

efficiency bounds for the class G(M) = G(M; P, &, 1, Tmin, Tmax) used in Appendix E.2.

Theorem E.2. Let M, ¢,  and [Tpin, Tmax] be given. Suppose that Assumptions 3.1 and 3.2
hold with o(x) bounded from above and below away from zero and u; following a normal distri-
bution, and that Assumption E.2 holds with d(z) strictly positive on some open set in R\[—n, 7).
Then, if the constant K used to define G(M) is large enough, the following holds. For any
sequence of Cls {T + x} with asymptotic coverage at least 1 — v under G(M),

NSk Bk e
lim liminf inf B, min{2n"/%%,C} > S(E)"B(k") /

C—o0 n feg(m) rr(l _ ,',.)7'—1 (Zl—a - Z) d(D(Z)

Z=—00
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where k* minimizes S(k*)"B(k*)'™".

If h and se(h; k) satisfy the conditions of Theorem E.1, then, by Theorem E.2, the relative
efficiency of any CI {T = {} to {T,(h; k) £ &&(h; k) cvi_a(t)} satisfies the lower bound

T E;min{2n"/2x, C}
lim liminf sup —
Cooo n peg(m) By min{2n7/28e(k; k) cvi_o(t), C}
2 (zra—2)7d®(2) Sk B(R)YT infrovy_ofD)

= rr(L—r)rinfittevi_o(f) Sk BT tTevy_o(t)

The first term is the lower bound in Theorem E.1 of Armstrong and Kolesar (2018), which
corresponds to the lower bound in Corollary 3.3 of that paper applied to the case where the
modulus w(d) is proportional to ¢" (as is the case in the relevant limiting experiment in the
present setting; see Appendix E.4). The second term is the relative efficiency of the kernel k,
and the final term is the efficiency of the bias-sd ratio used in the bandwidth h relative to the
optimal bias-sd ratio for FLCI construction.

We now prove Theorem E.2. We begin by noting some properties of the optimal kernel £*.

Lemma E.3. Let &* solve

K

max k(0)  s.t. /XFL(U)2 du <1, k€ F(1)

and let k*(x) = k*(x)/ [, k(u) du. Then k* has finite support, and it minimizes S(k)"B(k)'™"
over kernels k. Furthermore, S(k*) = [02(0)/d]"*rx*(0) and B(k*) = (1 — r)x*(0), so that
SO B = [0/l 7 (1 = 1) 0).

Proof. The result follows from Low (1995) and Donoho and Low (1992). See Appendix E.4.3.
[l

The next lemma uses functions constructed from x* to derive testing bounds.

Lemma E.4. Suppose that the conditions of Theorem E.2 hold. Given ¢ € R, let K., =
{f: f(0) = en /@Y N G(M). Then, if the constant K used to define G(M) is larger than a
constant that depends only on € and M, there exists a sequence of functions Ko, € Ko, such
that the following holds. For any ¢ € R and any sequence of tests with asymptotic size o under

Ken, the asymptotic power under ko . is no greater than
) (|c/,{*(0)|(2p+1)/(2p)M—1/(2p) [d/o?(0)]/% — Zl—a) .

Proof. Tt suffices to prove the result for ¢ > 0. Let A and by be defined as in the proof of

Lemma E.2, so that the coefficients of the minimum mean squared error pth order polynomial
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predictor are given by A~'b;. We first note that, under the conditions of the lemma, there
exist bounded functions fi,..., fs+1 supported on R\[—n,n] such that the vectors by, ..., by,
are linearly independent. Thus, these vectors span RP*!, which means that there exist func-
tions g1, ...,9y,,,, which are linear combinations of the f;’s (and therefore also bounded and
supported on R\[—7,7n]) such that by, = e; for each j, where ¢; denotes the jth standard basis
vector.

We construct functions in the sets K.,, as follows. Let g be a bounded function supported
on R\[—n, n] such that J(g) = eM. This function can be constructed by finding a polynomial
such that the supremum of the pth derivative over [Zyin, Tmax| i equal to e M, and constructing
a function with the given polynomial predictor coefficients as a linear combination of the g;s
defined above. Given a function f supported on [—n,7|, the function bs1g1 + brags + - -+ +
bs 19541 is supported on R\[—7,n] and has the same polynomial predictor coefficients as f.
Thus, the function f — (bs191 +br292 + - - +bssr195+1) + G has the same polynomial predictor
coefficients as §. It therefore follows that, if f € F(M;n) and K is larger than some constant
that depends only on an upper bound for the elements of by and the functions gy, ..., gs+1 and
g, this function will be in G(M).

Let K, be defined in this way with the function k. ar, playing the role of f, where
Ken(x) = MIE 55 (x/hep) with he, = én™/PD where ¢ = |¢/[Mr*(0)]]'/. Note that
Ken € F(M) by the renormalization property of Taylor and Holder classes. Thus, once n is
large enough that the support of k. s, is contained in [—n,n], we will have Rearn € Kep-

It follows that, for large enough n, the power under kg ar,, of a level a, test of K., is bounded
by the power under /g s, of a test with rejection probability no greater than «,, under K. s .
By the Neyman-Pearson lemma and standard calculations, this is no greater than ®(s, — z1_4, )

where

n n

= [Fentn(®:) — Fopra(:)) 072 (@) = M2h2, Z K5 (@i hen) 0 (1)
=1

p+1 2
+Z > gi(xi)o (@ /Mh *(u/hep)u? " d(u )d] .
=1 Lj=1

Note that hZe, = ¢Pp=2P/@pHl) = p-lgptlpl/@rilel = (71671*1/(2”“))*1~2p+1 Thus, the first

term equals P MZ 13" k¥ (zi/hen)?0? () — o 2(0)eP T M?d [, k" (u)?du. The last

nhen

term is bounded from above by a constant times

9 2
n {h’;n / K (u/hen) du] =n {hﬁ,ﬁl / K (v) dv} = !~/ { / K" (u) du} — 0.

The result then follows by plugging in ¢ and noting [ x*(u)* du = 1. O
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To derive the lower bound on expected length, we argue as in the proof of Theorem C.2
in Armstrong and Kolesdr (2019). Consider the set Z(m) = {¢,j/m : j € Z, |j| < m?} where
&n = 15 (0) MY D [2(0) /d]p/ @t D2/ (2p+1) | Let T + § be a CI with asymptotic coverage at
least 1 — a over G(M), and let A/(n, m) denote the number of elements in Z(m) that are in this
confidence interval. Note that min{2x, 2¢,m} > ¢,[N(m,n) — 1]/m. Let ko, and K., be as
defined in Lemma E.4. Let 1), ; denote the test that rejects when the point &,j/m € N(n,m)
is not in the CI T+ X- Then 1, ; is an asymptotically level a test of K.,,, so, by Lemma E.4,

m2 m2
By, N(m,n) = > (1= By thnj) > > (1= 0(5/m|®/% — 21 0)) +o(1).
j=—m? j=—m?

Thus, for all m € N, lim¢_, liminf,, E,, , min{2¢, 1%, C} is bounded from below by

1 m
w2 0o im0/ L5 [ i mleren <z, 2y dage)

J——m2

1 m
~ o X [l oo = e

> / %mm{? (510 = 2)/® V1] m} do(z)

Z=—00

This converges to 2 [17% (21_q — 2)®/*1) d®(z) by the Dominated Convergence Theorem.
Thus,

lim liminf B, , min{2n?/® ™y, C}
C—o0 n
Z1—

> 25 (0)MYVCr D[ (0) fdP/ D [ (21 — 2)0/CrH) d(2)

zZ=—00
Z1—

— 2k (0) MY [02(0) /]2 / T (o1 — ) dD(2).

Z=—00

Plugging in S(k*)"B(k*)'™" = [02(0)/d]"/?>r"(1 — )} ~"x*(0) gives the result.

E.4 Limiting model and optimal kernel

In this appendix we derive the properties of the optimal kernel given in Lemma E.3. To do so,

we apply results from Low (1995) and Donoho and Low (1992) to the limiting model

Y(dt) = f(t)dt + \W(dt), te X (S8)

30



where X = R in the case where the point of interest is on the interior of the support of x; and
X = [0,00) when it is on the boundary. We also use this limiting model to give some intuitive
motivation for the efficiency bound in Theorem E.2.

The white noise model (S8) is the same model as in Appendix B.2, with A playing the
role of o/y/n in that appendix. Brown and Low (1996) establish a formal sense in which this
white noise model, with A replaced by the function \,(t) = [02(t)/(nd(t))]*/?, is asymptotically
equivalent to the fixed design regression model. Since the asymptotic behavior of our estimators
and bounds depends only on z; in a shrinking neighborhood of zero, we then expect that A, (t)
can be replaced by the constant function A,(0). For technical reasons, however, the proof of
Theorem E.2 uses direct arguments, rather than appealing to the equivalence results of Brown
and Low (1996) (in particular, these results do not apply immediately for Taylor classes, or

when smoothness is only assumed in the neighborhood [—n, n]).

E.4.1 Kernel estimators

Let k be a kernel with [, k(u)du =1 and [, k(u)u’ du =0 for j =1,...,p — 1. The kernel k
will play the role of the equivalent kernel k7 in Section 3.2.1. A linear estimator in the white

noise model takes the form

T(h;k) =h~t / k(t)dY (t).

Since this falls into the Donoho and Low (1992) framework given in Appendix B.2, it follows
that Eq. (2) holds with the o(1) terms equal to zero. Indeed, under f € F(M), T(h; k) follows

a normal distribution with bias

n [ kamO = FO)de = [ ()~ FO)du =M1 [ k() = Fo) du
where f(u) = M~'h~Pf(hu) is in F(1) iff. f € F(M), by the renormalization property of the

Holder and Taylor class. The variance is given by

AZp 2 / k(t/h)2dt = \2h ™t / k(w)? du.
X X

Thus, if we take A = [02(0)/(nd)]"/?, Eq. (2) holds with S(k) = o(0)d~/%,/ [, k(u) du, B(k) =
SUP fe 7(1) I k(u)(f(u) — £(0)) du, v = p and ~, = —1/2. Note that S(k) matches Equation (5)
with & playing the role of the equivalent kernel &} in Equation (5). In addition, B(k) matches
the expression given in Theorem 3.1 (this can be shown by deriving B(k) using the arguments

in the proof of this theorem).
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E.4.2 Modulus of continuity

The modulus of continuity for the limiting model, as defined in Donoho (1994), is given by
w(d) =2sup f(0) s.t. / f(x)?dx < 6%/4, fe€ F(M).
f X

Let f5 ), denote the solution to this problem. Note that the function x* defined in Lemma E.3
is given by f5,. By Donoho and Low (1992), we have f5,/(z) = Mﬁ§7Mﬁ*<Ji/ﬁg’M) where
hsar = (6/(2M))%/ P+ which gives

w(8) = 2M(5/(2M))*/ P07 (0) = (2M)' 76"k (0)
where r = 2p/(2p + 1) is the rate exponent. Note that
W/ (8) = r(2M) 78 (0) = 1 (9)

E.4.3 Optimal kernel

By Low (1995), the bias-sd optimizing kernel takes the form ¢ — f3,/(t)/ [ fia(w) du for some
4, so this implies that k*(t) = k*(t)/ [, & » ®*(u) du is the optimal kernel. For Taylor classes, the
support can be seen to be compact by examining the formula given in Section 3.2.1. For Holder
classes, this can be shown indirectly (see Lepski and Tsybakov, 2000). The worst-case bias of

the estimate with bandwidth hs s is given by

(1/2)(w(9) = 0w'(9)) = (1/2)w(@)(1 = r) = (1/2)(1 — r)(2M)""8"w"(0) = M(1 — 7)™ (0)hf

where we substitute 6 = 2M hfﬁrl) in the last step. This gives the formula B(k*) = (1 —
r)x*(0). The standard deviation is given by

A (8) = Ar(2M)7 8 (0) = Arw*(0)hy ) = [02(0) /d]Y 2w (0)n ™Y 2y 11,

which gives S(k*) = [02(0)/d]*/?>rk*(0). Thus, the leading term in the minimax performance is
S(E) B(k*)' =" = [02(0)/d]"*r" (1 — r)'="57(0).

E.4.4 Optimal FLCI and efficiency bound

We now show that the efficiency bound in Theorem E.2 corresponds to the bound given in
Corollary 3.3 in Armstrong and Kolesar (2018), applied to the class F in the limiting model (S8).
Thus, Theorem E.2 can be interpreted as showing that this efficiency bound holds in a formal

asymptotic sense, with F(M;n) replaced by the smaller class G(M). We note that, for Taylor
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classes, such a bound is given for the class F(M) in Theorem E.1 in Armstrong and Kolesar
(2018). Theorem E.2 shows that this efficiency bound holds for G(M).

First, we derive the length of the optimal FLCI, which is the denominator of the expression
in Corollary 3.3 in Armstrong and Kolesar (2018). The bias-sd ratio is

_ (12 =r)@M)TeTRT(0)
b= @ e~ WA= DA

Since optimizing over the bandwidth is equivalent to optimizing over 9, it follows that the
optimal FLCI has length

i%lf 20evi_qo(ts) - A'(0) = il}f 2¢vi_qo(ts) - Ar(2M) 76" k*(0)
= ir;chvl_a(t(;) Ar2M) I e = 1) 27 RR(0)

= A"M""r(1/r — 1)7"6%(0) i161f2 cVi_alts) - t5t

Plugging in A = [0%(0)/(nd)]*/? and S(k*)"B(k*)'™" = [0%(0)/d]"/?>r"(1 — r)'""k*(0) gives
20T 2MATTS(K*) B(k*) T infs ovy_o(ts) - 51, which is the asymptotic length of the CI given
in Theorem E.1 with £ and h chosen optimally.

The lower bound given the numerator of the expression in Corollary 3.3 in Armstrong and
Kolesar (2018) is

Zl—a

/ @A — 2)) dz = (2M) TR (0)2°N / (1o — 2)" d.

Z=—00 Z=—00

Plugging in A = [02(0)/(nd)]*/? and S(k*)"B(k*)'™" = [0%(0)/d]"?>r"(1 — 7)'""k*(0) gives

—r/2 1_TS(k*)TB(k*)17T

Theorem E.2.

J717* (21-4 — 2)"dz, which is the asymptotic lower bound given in

Z=—00

Appendix F Additional Monte Carlo results

In this appendix, we revisit the simulation study from Section 5 in the paper, and consider an
additional method for constructing Cls, as well as a number of variations on the DGP.

In particular, we also consider a conventional CI based on the coverage-error optimal band-
width BCE, which can be considered a form of undersmoothing, but without any bias correction.
Table S3 reports the results for Designs 1-3 with this additional methods added. Using the
bandwidth he; leads to better coverage of conventional CIs relative to B;T,ROT when M = 2,

but worse coverage when M = 6.

Next, we investigate the robustness of the results to a number of variations on the baseline
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design. Table S4 reports the results when z; is drawn from a Beta(2,5) distribution. In
Table S5, to consider the effects of heteroskedasticity, we draw the errors form the distribution
N(0,1/4(1 + +/|z;])?), while z; is drawn from a uniform distribution, as in the baseline. In
Table S6, z; ~ Beta(2,5) distribution, and u; ~ AN(0,1/4(1 + +/|z;|)?). In Table S7, we
draw wu; from a log-normal distribution, scaled to have mean zero and variance 1/4, while x;
is drawn from a uniform distribution. Table S8 reports the results for u; drawn from a log-
normal distribution, scaled to have mean zero and variance 1/4, and z; ~ Beta(2,5). Table S9
returns to the baseline specification, but with uw; ~ A(0,1/16). Finally, in Table S10 we
consider a smooth approximation to the functions fi, fo, and f3. In particular, we replace the
function s(-) in the definition of these functions by the function sy(z) = — Liy(—e**) /A2, where
Lis(z) = fom 1Og(#ds is the dilogarithm function. The function s) is analytic for any A, and
it converges to s as A — co. We set A = 40.

The results in Table S10 are nearly identical to those in Table S3, indicating that the lack
of differentiability is not driving the results. The FLCIs perform well for all designs in terms of
coverage when the correct or conservative M is used, or when one uses Myor. The coverage is
at least 92.5% in all designs except Table S7, where the coverage, where the FLCIs undercover
slightly for Design 3, with coverage around 90%. The RBC Cls with bandwidth chosen based

on uniform-in-f asymptotics (either A%, 2 n or h* ) also perform well in terms

RMSE, 67 RMSE, Myor
of coverage, with coverage at least 93% for all designs, although they are longer than FLCI Cls.
The remaining Cls, based on pointwise-in-f asymptotics, suffer from poor coverage in these

alternative specifications, just like in the baseline specification in the main text.
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Table S1: Kernel constants for standard deviation and maximum bias of local polynomial
regression estimators of order ¢ for selected kernels. Inference at a boundary point

Bly(K) = Jyluky(w)] du By (k)

Kernel (k(u)) q fol ki(wy?du p=1 p=2 p=3 p=1 p=2 p=3
0 1 : 3
Uniform 36 59 28 1
{]u| < 1 b no T
{lul <1} 216 1
2 9 0.7055 0.4374 0.3294 0.2352 5 30
0 4 1 1
Triangular S § 3 327 1
(1~ [ul s S o
+ 2 2 0.4293 0.2147 0.1400 0.1699 22 =
o 0 : :
Epanechnikov 11
31— u?) 1 4.498 0.4382 0.2290 0.2369 5=
4 * 2 9.816 0.5079 0.2662 0.1777 0.1913 0.0508 3%

Table S2: Kernel constants for standard deviation and maximum bias of local polynomial
regression estimators of order ¢ for selected kernels. Inference at an interior point.

1 * o
B;q(k) = f_1|upk:q(u)|du ngl(k)
Kernel q f_llk;‘(u)Qdu p=1 p=2 p=3 p=1 p=2 p=3
0 1 1 1
Uniform ) f f 1 ? 1
Ll <1 3 2 3 2 3
llul <1} 2 % 0.4875 0.2789 0.1975  0.2898 0.0859 1—16
0 2 1 1
Triangular ] ‘3 i’ 1 i’ 1
(1= fubs 3 T ol
2 % 0.3116 0.1399 0.0844  0.2103 0.0517 2%5
0 3 3 3
Epanechnikov ) ; 5 . 3 .
801 — o2 5 5 5 5 5
il =)y 2 2 0.3603 0.1718 0.1067  0.2347 0.0604 ¢
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Table S3: Monte Carlo simulation: baseline DGP

E
RMSE, Myon

M =2 M=6
Method Bandwidth Bias SE E[h] Cov RL Bias SE En[h] Cov RL

Design 1
RBC h=ht, b=>b%, 0.063 0.035 0.75 55.6 0.73 0.157 0.036 0.62 0.1 0.61
RBC h=b=h%, 0.025 0.042 0.75 93.1 0.88 0.042 0.047 0.62  89.1 0.78
RBC h = heg, b= bes 0.030 0.041 045 85.8 0.85 0.059 0.045 034 724 0.76
RBC h=b=hiyums 0.001 0.061 0.36 945 1.27 0.002 0.061 0.36 945 1.01
RBC h=b=hiywe 0.000 0.076 0.23 94.2 1.58 0.000 0.075 023 942 1.26
RBC h=b=h* 4. 0000 0078 022 939 1.64 0.000 0.097 0.14 934 1.63
Conventional - | 0.032 0.036 0.56 76.6 0.76 0.049 0.046 031 774 0.77
Conventional he 0.029 0.039 045 852 0.1 0.058 0.044 034 723 0.74
FLCI, M =2 s 0.021 0.043 0.36 949 1.00 0.065 0.043 036 752 0.80
FLCL, M =6 s 0.009 0.054 023 96.6 1.25 0.028 0.053 0.23 947 1.00
FLCL, M = Myor ﬁ;MSE’ . 0.008 0.056 0.22 95.6 1.29 0.010 0.069 0.14  96.3 1.30

Design 2
RBC h=h%. b=>bk, 0.043 0.035 0.77 75.9 0.72 0.129 0.035 0.77 4.6 0.58
RBC h=b=h%, 0.026 0.041 0.77 90.9 0.87 0.077 0.042 0.77  53.0 0.70
RBC h = heg, b= beg 0.028 0.040 0.49 874 0.83 0.074 0.041 044 541 0.69
RBC h=b=hfeo 0.002 0.061 0.36 945 1.27 0.006 0.061 0.36 944 1.01
RBC h=b=hfwe 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 942 1.26
RBC h=b= i};Mm 4. 0001 0068 030 940 1.43 0.000 0.083 0.20  93.8 1.38
Conventional 5. 0.032 0.032 0.78 744 0.67 0.073 0.040 044  53.0 0.66
Conventional e 0.028 0.037 049 859 0.78 0.076 0.039 044  50.1 0.66
FLCI, M =2 s 0.020 0.043 0.36 951 1.00 0.061 0.043 0.36 781 0.80
FLCL, M =6 Wse.6 0.009 0.054 023 96.6 1.25 0.028 0.053 0.23 947 1.00
FLCL M = Myor b 0.013 0.048 0.30 943 1.13 0.020 0.059 020 943 1.10
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Monte Carlo simulation: baseline DGP (continued)

M=2 M=6
Method Bandwidth Bias SE E[h] Cov RL Bias SE E.[h] Cov RL

Design 3
RBC h=ht,b=0bt,  -0.043 0.035 0.77 757 0.72  -0.123 0.035 0.74 9.9 0.59
RBC h=b=h, -0.024 0.042 077 90.8 0.87  -0.066 0.043 0.74  60.3 0.71
RBC h=hes, b=bey  -0.026 0.040 049 88.1 0.83  -0.063 0.043 043 642 0.71
RBC h=0b=hiymo -0.002 0.061 0.36 945 127  -0.007 0.061 0.36 944 1.01
RBC h=b=hiywe 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 942 1.26
RBC h=b=ht o~ 0000 0074 025 942 154 0.000 0.092 0.16  93.6 1.54
Conventional - -0.032 0.033 072 747 0.69  -0.065 0.042 0.39 620 0.70
Conventional hes -0.028 0.037 049 857 0.78  -0.074 0.040 043 520 0.66
FLCI, M =2 Pfse.2 -0.020 0.043 0.36 950 1.00  -0.060 0.043 0.36  78.1 0.80
FLCI, M =6 Pfse.o -0.009 0.054 0.23 965 125  -0.027 0.053 023 947 1.00
FLCL M = Myor  h% o -0.010 0.052 025 956 122  -0.013 0.065 0.16  96.1 1.22

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of Cls (in %);
RL—relative (to optimal FLCI) length.

Bandwidth descriptions: E;T—plugin estimate of pointwise MSE optimal bandwidth (bw); lA);T—analog for estimate of
the bias; ﬁ(;E—plugin estimate of coverage error optimal bw; Z;(;E—analog for estimate of the bias; The implementation of
Calonico et al. (2018) is used for all four bws. iL;MSE’Q, fL;‘{MSE’G—RMSE optimal bw, assuming M = 2, and M = 6, respectively.
lAzf,TA’ROT—Fan and Gijbels (1996) rule of thumb; h* —RMSE optimal bw, using rule-of-thumb for M. 50,000 Monte

RMSE, Mror
Carlo draws.
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Table S4: Monte Carlo simulation

: beta distribution for z;

RMSE, Mpor

M =2 M =6
Method Bandwidth Bias SE E[h] Cov RL Bias SE E.,[h] Cov RL
Design 1
RBC h=hi, b=bt, 0030 0037 056 856 0.83 0.056 0.041 043 648 0.74
RBC h=b= izﬁl 0.009 0.044 0.56 93.7 0.98 0.009 0.050 0.43 91.7 0.92
RBC h = hep, b= beg 0.009 0.044 0.38 93.1 0.99 0.011 0.049 0.29 92.6 0.90
RBC h=b=htea 0.001 0.054 036 946 121 0003 0.054 037 946 0.98
RBC h=b= e 0.000 0.068 023 943 153 0000 0.068 023 944 124
RBC h=0b= ]/:L;MSE,M,{OT 0.000 0.073 0.21 941 1.62 0.000 0.089 0.14 93.8 1.61
Conventional R wor 0.025 0.038 053 856 0.84 0.038 0.045 029 838 0.82
Conventional iLCE 0.019 0.040 0.38 90.3 0.90 0.038 0.045 0.29 82.4 0.81
FLCI, M = 2 Psn.2 0.019 0.041 036 947 1.00 0.058 0.041 037  77.0 0.81
FLCIL, M =6 e 0.009 0.050 0.23 96.5 1.23 0.025 0.050 023 947 1.00
FLCI, M = MROT iL;MSE,MROT 0.007 0.063 0.21 96.1 1.31 0.009 0.064 0.14 96.3 1.29
Design 2

RBC h=ht,b=0b5, 0027 0037 057 88.0 0.82 0073 0038 053  49.0 0.68
RBC h=b= iL}’iT 0.013 0.043 0.57 932 097 0.032 0.045 0.53 84.3 0.82
RBC h= iALCE, b=bep 0.014 0.043 040 92.7 0.96 0.032 0.045 0.36 84.8 0.83
RBC h=b= ﬁ;MSEQ 0.003 0.054 036 946 1.21 0.007 0.054 0.37 94.5 0.98
RBC h=b= e 0.000 0.068 0.23 943 153 0000 0.068 023 944 124
RBC h=b= }AL;,I\'ISE,I\;IRQT 0.001 0.068 0.25 94.2 1.51 0.001 0.075 0.20 94.0 1.35
Conventional ing,ROT 0.026 0.035 0.70 85.1 0.79 0.060 0.039 0.43 62.8 0.71
Conventional iLCE 0.019 0.039 0.40 90.8 0.88 0.050 0.041 0.36 72.2 0.7
FLCI, M = 2 e 0.018 0041 036 949 1.00 0.055 0.041 037  79.1 0.81
FLCI, M = 6 e 0.009 0.050 023 965 1.23 0.025 0.050 023 947 1.00
FLCI, M = MROT h* 0.009 0.049 0.25 95.7 1.22 0.019 0.054 0.20 94.2 1.09
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Monte Carlo simulation: beta distribution for z; (continued)

M =2 M =6
Method Bandwidth Bias SE E[h] Cov RL Bias SE E.[h] Cov RL
Design 3

RBC h=hi,b=0bt,  -0.031 0037 055 862 083  -0.070 0.039 049 529 0.71
RBC h=0b= ]Alf,T -0.012 0.044 0.55 939 0.98 -0.024 0.047 0.49 89.4 0.85
RBC h = fAlCE, b= b -0.011 0.044 0.39 929 0.99 -0.018 0.049 0.31 91.3 0.89
RBC h=b=hiyme  -0.002 0054 036 946 121  -0.007 0054 037 945 0.98
RBC h=b=h%eme 0.000 0.068 0.23 94.3 1.53 0.000 0.068 023 943 1.24
RBC h=b= E:;MSE,MRUT 0.000 0.072 0.22 942 1.60 0.000 0.085 0.15 93.9 1.54
Conventional B vor 0.025 0036 065 853 0.80  -0.051 0041 037 721 0.75
Conventional hew -0.018 0.040 0.39 91.3 0.89 -0.040 0.044 0.31 81.6 0.79
FLCI, M = 2 B svses 0.018 0.041 036 951 1.00  -0.054 0.041 037  79.6 0.1
FLCI, M =6 iL;MSE,G -0.008 0.050 0.23 96.6 1.23 -0.024 0.050 0.23 94.8 1.00
FLCL, M = Myor iL;h’ISE’MmT -0.007 0.052 0.22 96.1 1.29 -0.011  0.061 0.15 96.3 1.23

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of Cls (in %);
RL—relative (to optimal FLCI) length.

Bandwidth descriptions: E;T—plugin estimate of pointwise MSE optimal bandwidth (bw); lA);T—analog for estimate of
the bias; ﬁ(;E—plugin estimate of coverage error optimal bw; Z;(;E—analog for estimate of the bias; The implementation of
Calonico et al. (2018) is used for all four bws. iL;MSE’Q, fL;‘{MSE’G—RMSE optimal bw, assuming M = 2, and M = 6, respectively.
lAzf,TA’ROT—Fan and Gijbels (1996) rule of thumb; h* —RMSE optimal bw, using rule-of-thumb for M. 50,000 Monte

RMSE, Mror
Carlo draws.
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Table S5: Monte Carlo simulation: heteroskedastic errors

E
RMSE, Myon

M =2 M=6
Method Bandwidth Bias SE E[h] Cov RL Bias SE En[h] Cov RL

Design 1
RBC h=ht, b=>b%, 0.058 0.049 0.69 78.8 0.83 0.160 0.050 0.63 6.7 0.70
RBC h=b=h%, 0.019 0.058 0.69 94.3 0.97 0.044 0.060 0.63  91.0 0.84
RBC h = heg, b= bes 0.029 0.054 045 904 0.91 0.065 0.057 0.37  76.3 0.80
RBC h=b=hiyums 0.003 0.070 043 945 1.17 0.006 0.070 042 945 0.99
RBC h=b=hiywe 0.000 0.083 0.28 944 1.40 0.000 0.084 027 944 1.18
RBC h=b=h* 4. 0001 0087 027 942 1.46 0.000 0.105 0.16  93.8 1.47
Conventional - | 0.038 0.045 0.73 8.1 0.76 0.074 0.053 040  67.6 0.75
Conventional he 0.028 0.051 045 89.8 0.86 0.064 0.055 037 751 0.77
FLCI, M =2 s 0.029 0.052 043 951 1.00 0.083 0.052 042 736 0.83
FLCL, M =6 s 0.013 0.061 0.28 97.3 1.20 0.036 0.062 0.27 948 1.00
FLCI, M = Myor izjwm . 0.012 0.064 027 964 125 0.013 0.077 0.16 969 1.25

Design 2
RBC h=h%. b=>bk, 0.040 0.049 0.69 87.2 0.83 0.121 0.049 0.69  29.9 0.69
RBC h=b=h%, 0.022 0.058 0.69 93.5 0.97 0.064 0.058 0.69  79.9 0.81
RBC h = heg, b= beg 0.026 0.054 0.46 91.4 0.90 0.074 0.054 044  69.6 0.76
RBC h=b=hfeo 0.005 0.069 0.43 945 1.16 0.014 0.070 0.43  94.0 0.98
RBC h=b=hfwe 0.000 0.083 0.28 944 1.39 0.001 0.083 0.27 944 117
RBC h=b= ﬁ;MSE’ 4. 0003 0081 031 945 1.36 0.003 0.090 0.24 935 1.26
Conventional 5. 0.034 0.043 0.85 841 0.73 0.091 0.047 0.61  49.6 0.66
Conventional e 0.027 0.050 0.46 90.7 0.85 0.076 0.051 044  65.0 0.72
FLCI, M =2 s 0.026 0.051 043 956 1.00 0.076 0.052 043  77.7 0.83
FLCL, M =6 Wse.6 0.013 0.061 0.28 97.3 1.20 0.037 0.061 027 948 1.00
FLCL M = Myor b 0.015 0.060 0.31 965 1.18 0.029 0.066 024  92.8 1.08
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Monte Carlo simulation: heteroskedastic errors (continued)

M=2 M=6
Method Bandwidth Bias SE E[h] Cov RL Bias SE E.[h] Cov RL

Design 3
RBC h=hi,b=0bi,  -0.040 0.049 0.69 87.2 0.83 -0.118 0.049 0.69 332 0.69
RBC h=b=h:, -0.020 0.058 0.69 934 0.97 -0.058 0.058 0.69  81.1 0.1
RBC h=hep, b=bey  -0.024 0.054 0.46 91.4 0.90 -0.066 0.055 044 743 0.77
RBC h=0b=hiymo -0.005 0.069 043 945 1.17 -0.014 0.070 042 939 0.98
RBC h=b=hiywe 0.000 0.083 0.28 944 1.39 -0.001 0.084 0.27 943 1.17
RBC h=b= ﬁ;MSE’ i, 0002 0.084 029 944 141 -0.001 0.099 019 939 1.38
Conventional - -0.035 0.044 0.82 832 0.73 -0.085 0.049 053 562 0.69
Conventional hes -0.026 0.050 0.46 90.4 0.85 -0.075 0.052 044  65.1 0.72
FLCI, M =2 s -0.026 0.051 043 95.6 1.00 -0.075 0.052 042 782 0.83
FLCI, M =6 Wfse.o -0.013 0.061 028 97.2 1.20 -0.037  0.062 0.27 947 1.00
FLCIL, M = Myor iL;MSE’ . -0.013 0.062 029 96.8 1.22 -0.018 0.072 019 965 1.18

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of Cls (in %);
RL—relative (to optimal FLCI) length.
Bandwidth descriptions: E;T—plugin estimate of pointwise MSE optimal bandwidth (bw); lA);T—analog for estimate of

the bias; ﬁ(;E—plugin estimate of coverage error optimal bw; Z;(;E—analog for estimate of the bias; The implementation of

Calonico et al. (2018) is used for all four bws. iL;MSE’Q, fL;‘{MSE’G—RMSE optimal bw, assuming M = 2, and M = 6, respectively.
lAzf,TA’ROT—Fan and Gijbels (1996) rule of thumb; iAz:‘{MSF 1. —RMSE optimal bw, using rule-of-thumb for M. 50,000 Monte

Carlo draws.
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Table S6: Monte Carlo simulation: heteroskedastic errors and beta

distribution for z;

M=2 M=6
Method Bandwidth Bias SE E[h] Cov RL Bias SE En[h] Cov RL
Design 1
RBC h=hi., b=b:, 0.027 0.050 0.50 90.8 0.90 0.062 0.052 0.44 72.1  0.79
RBC h=b=h:, 0.006 0.059 0.50 94.5 1.05 0.011 0.062 0.44 93.0 0.94
RBC h = heg, b= beg 0.009 0.057 0.37 94.0 1.03 0.015 0.060 0.31 924 0.92
RBC h=b= ﬁ;MSE’Q 0.003 0.062 0.44 946 1.11 0.008 0.062 0.43 94.4  0.95
RBC h=b= iAL’];MS]L6 0.000 0.075 0.27 945 1.35 0.000 0.076 0.26 94.5 1.16
RBC h=b= iL:&MSE.M,{OT 0.001 0.083 0.23 943 1.50 0.001 0.096 0.16 94.0 1.46
Conventional B:T,ROT | 0.029 0.048 0.64 88.3 0.86 0.054 0.052 0.36 78.5 0.80
Conventional hes 0.018 0.052 0.37 924 0.94 0.043 0.055 0.31 84.0 0.83
FLCI, M =2 A;‘{MSEQ 0.025 0.049 0.44 949 1.00 0.073 0.050 0.43 76.0 0.85
FLCI, M =6 A;‘{MSE,G 0.012 0.057 0.27 97.1 1.18 0.033 0.058 0.26 94.7 1.00
FLCIL, M = Myor ifr‘msg,Mm 0.008 0.063 0.23 97.0 1.31 0.013 0.070 0.16 96.8 1.24
Design 2

RBC h=hi., b=0b%, 0.024 0.050 0.50 91.8 0.89 0.069 0.050 0.49 69.8 0.76
RBC h=b=h:, 0.010 0.058 0.50 94.3 1.05 0.025 0.059 0.49 91.3 0.90
RBC h = hep, b= beg 0.012 0.057 0.37 93.8 1.02 0.032 0.058 0.36 89.0 0.88
RBC h=b= fzﬁMSE’Q 0.006 0.061 0.44 945 1.10 0.017 0.062 0.44 93.6 0.94
RBC h=b= fzﬁMSE,G 0.001 0.075 0.27 945 1.35 0.001 0.075 0.27 94.5 1.15
RBC h=b= }ALEMSE,MROT 0.001 0.081 0.25 94.3 1.46 0.002 0.085 0.22 94.0 1.29
Conventional il:nROT 0.028 0.047 0.73 89.6 0.84 0.072 0.048 0.57 64.1 0.74
Conventional hes 0.018 0.052 0.37 92.7 0.93 0.050 0.053 0.36 80.8 0.80
FLCI, M =2 . 0.023 0.049 044 954 1.00 0.068 0.049 0.44 79.3 0.85

FLCI, M =6 Rrvise.6 0.012 0.057 0.27 97.1 1.18 0.034 0.057 0.27 94.8 1.00
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Monte Carlo simulation: heteroskedastic errors and beta distribu-

tion for z; (continued)

Method Bandwidth Bias SE E[h] Cov RL Bias SE Enlh] Cov RL
FLCIL, M = Myor ’A‘ZMSE 0 0.009 0.061 025 97.1 1.27 0.023 0.063 0.22 94.8 1.12
Design 3
RBC h=hi,b=0bt,  -0.027 0050 050 91.0 0.90  -0.071 0.051 047  69.0 0.78
RBC h=b= ]A”L;T -0.008 0.059 0.50 94.5 1.05 -0.020 0.060 0.47 92.8 0.92
RBC h = ]A”LCE, b= ZA)CE -0.011 0.057 0.37 93.8 1.03 -0.021 0.060 0.32 91.6 0.92
RBC h=b=hiyms  -0.005 0061 044 946 110  -0.016 0062 044  93.7 0.94
RBC h=b=h%eme 0.000 0.075 027 945 1.35 0.000 0.076 027 945 1.15
RBC h=b= ]A”L:MSE A 0.000 0.083 0.23 94.3 1.49 0.000 0.092 0.17 94.2 1.40
Conventional B;T,ROT -0.027 0.047 0.70 894 0.85 -0.066 0.050 0.49 69.4 0.76
Conventional hos -0.017 0.052 0.37 93.0 0.93 -0.043 0.054 0.32 84.5 0.82
FLCL, M = 2 Piyisn.2 0.022 0049 044 955 100  -0.067 0.049 044  79.9 0.85
FLCI, M =6 B;MSE,G -0.011 0.057 0.27 97.2 1.18 -0.032 0.057 0.27 94.9 1.00
FLCI, M = Myor I o -0.008 0.062 023 971 1.30  -0.014 0.068 017 968 1.21
Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of Cls (in %);

RL—relative (to optimal FLCI) length.
Bandwidth descriptions: h¥,—plugin estimate of pointwise MSE optimal bandwidth (bw); b%,—analog for estimate of

the bias; BCE—plugin estimate of coverage error optimal bw; Z;CE—analog for estimate of the bias; The implementation of

Calonico et al. (2018) is used for all four bws. IE;MSE’Q, iL;MSEﬁ—RMSE optimal bw, assuming M = 2, and M = 6, respectively.

]Al*

Carlo draws.

% or—Fan and Gijbels (1996) rule of thumb; h*

RMSE, Mgor

—RMSE optimal bw, using rule-of-thumb for M. 50,000 Monte
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Table S7

: Monte Carlo simulation: log-normal errors

RMSE, Myor

M =2 M=6
Method Bandwidth Bias SE E[h] Cov RL Bias SE Enlh] Cov RL
Design 1
RBC h=hk,, b=Db%, 0.062 0.034 0.73 57.3 0.73 0.151 0.035 0.60 0.2 0.62
RBC h=0b=h%, 0.022 0.041 0.73 945 0.88 0.036 0.045 0.60 91.5 0.78
RBC h = heg, b= beg 0.042 0.037 0.55 83.0 0.79 0.111 0.037 0.50 18.8 0.66
RBC h=b= ilﬁmsm 0.001 0.058 0.35 91.1 1.24 0.003 0.057 0.35 91.5 1.01
RBC h=b= ilﬁmsn,e 0.000 0.070 0.23 89.7 1.52 0.000 0.070 0.23 89.6 1.23
RBC h=b= iL;MSE.M,wT 0.000 0.072 0.22 89.3 1.56 0.000 0.087 0.14 87.6 1.54
Conventional - | 0.032 0.034 055 787 0.74 0.048 0.044 031 822 0.77
Conventional hes 0.041 0.034 0.55 81.2 0.73 0.107 0.035 0.50 16.4 0.61
FLCI, M = 2 s 0.021 0041 035 96.2 1.00 0.062 0041 035 79.1 081
FLCI, M = 6 Pisisn. 0.009 0051 023 955 1.23 0.027 0050 023 962 1.00
FLCI, M = MROT fAL:;I\’{SE,MROT 0.007 0.052 0.22 946 1.27 0.010 0.064 0.14 94.8 1.27
Design 2

RBC h=ht,, b=>b%, 0.042 0.033 0.76 80.5 0.72 0.127 0.033 0.76 25 0.59
RBC h=0b=h%, 0.024 0.040 0.76 93.3 0.86 0.073 0.040 0.76 52.2  0.70
RBC h = heg, b= beg 0.033 0.036 0.56 89.8 0.79 0.097 0.037 0.55 19.0 0.64
RBC h=b= iAL;MSEJ 0.002 0.057 0.35 91.3 1.24 0.006 0.057 0.35 91.9 1.01
RBC h=b= iAL;MSw 0.000 0.070 0.23 89.6 1.52 0.000 0.070 0.23 89.7 1.23
RBC h=b= }AL;MSE,]\;IROT 0.002 0.063 0.29 90.3 1.37 0.000 0.075 0.19 89.0 1.32
Conventional H:T,ROT 0.032 0.030 0.76 774 0.66 0.072 0.037 0.43 53.3 0.66
Conventional hes 0.034 0.033 0.56 87.8 0.72 0.099 0.034 0.55 11.4  0.59
FLCI, M =2 visE,2 0.019 0.041 0.35 96.4 1.00 0.059 0.041 0.35 83.5 0.81
FLCI, M =6 A;‘;Msm 0.009 0.051 0.23 956 1.23 0.027 0.051 0.23 96.5 1.00
FLCL, M = Moy I 0.013 0.046 0.29 947 1.11 0.019 0.055 0.19 94.9 1.08
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Monte Carlo simulation: log-normal errors (continued)

M=2 M=6
Method Bandwidth Bias SE E[h] Cov RL Bias SE E.[h] Cov RL

Design 3
RBC h=h., b=>0b5  -0043 0.034 076 67.1 0.73 -0.121  0.034 0.72 123 0.60
RBC h=b=h, -0.024 0.040 0.76 839 0.86  -0.065 0.041 0.72  56.1 0.72
RBC h=hes, b=bes  -0.030 0.037 0.55 787 0.80  -0.077 0.039 0.51 458 0.69
RBC h=0b=hiymo -0.002 0.057 0.36 90.7 123  -0.006 0.057 0.36  90.1 1.00
RBC h=b=hiywe 0.000 0.069 0.23 89.7 1.50 0.000 0.069 0.23  89.7 1.22
RBC h=b=ht .~ 0000 0068 025 8.6 L48 0.000 0.083 0.16  88.1 1.46
Conventional - -0.031 0.033 071 693 0.72  -0.063 0.040 0.39 549 0.71
Conventional her -0.033 0.034 055 742 0.73  -0.093 0.035 051  27.8 0.61
FLCI, M =2 Pfse.2 -0.020 0.041 0.36 899 1.00  -0.059 0.041 036  70.1 0.81
FLCI, M =6 Pfse.o -0.009 0.050 0.23 93.0 123  -0.027 0.050 0.23 884 1.00
FLCL M = Myor  h% o -0.010 0.050 0.25 91.8 122  -0.012 0.060 0.16  91.6 1.21

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of Cls (in %);
RL—relative (to optimal FLCI) length.

Bandwidth descriptions: E;T—plugin estimate of pointwise MSE optimal bandwidth (bw); lA);T—analog for estimate of
the bias; ﬁ(;E—plugin estimate of coverage error optimal bw; Z;(;E—analog for estimate of the bias; The implementation of
Calonico et al. (2018) is used for all four bws. iL;MSE’Q, fL;‘{MSE’G—RMSE optimal bw, assuming M = 2, and M = 6, respectively.
lAzf,TA’ROT—Fan and Gijbels (1996) rule of thumb; fz:‘{MSH,MROT—RMSE optimal bw, using rule-of-thumb for M. 50,000 Monte
Carlo draws.
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Table S8: Monte Carlo simulation: log-normal errors and beta

distribution for z;

M=2 M =6
Method Bandwidth Bias SE E[h] Cov RL Bias SE En[h] Cov RL

Design 1
RBC h=ht, b=>b%, 0.027 0.035 0.55 88.4 0.82 0.049 0.039 041 651 0.73
RBC h=b=hi, 0.006 0.041 0.55 91.7 0.96 0.007 0.047 041  87.0 0.90
RBC h = hop, b= beg 0.011 0.041 046 922 0.94 0.015 0.045 041  88.9 0.85
RBC h=0b=hiyums 0.001 0.052 0.36 91.7 1.19 0.004 0.051 0.36  91.9 0.98
RBC h=b=hiywe 0.000 0.064 0.22 90.1 1.48 0.000 0.064 0.22  90.2 1.21
RBC h=b=h* i, 0000 0.067 021 898 1.56 0.000 0.081 0.13 885 1.54
Conventional Wi or | 0.024 0.035 0.52 87.9 0.82 0.037 0.043 0.28 879 0.81
Conventional hen 0.026 0.036 046 91.3 0.82 0.064 0.037 041  51.5 0.70
FLCI, M =2 fisp.2 0.019 0.039 0.36 96.2 1.00 0.055 0.039 0.36  81.0 0.82
FLCI, M =6 Psise.6 0.008 0.047 0.22 957 1.22 0.024 0.047 022 961 1.00
FLCIL, M = Myor ifém, . 0.006 0.049 0.21 95.0 1.28 0.009 0.059 0.13 949 1.27

Design 2
RBC h=h%., b=>bk, 0.024 0.035 0.56 91.4 0.81 0.067 0.036 0.52  49.0 0.68
RBC h=b=h%, 0.010 0.041 0.56 92.2 0.95 0.028 0.042 052  81.6 0.81
RBC h = heg, b= beg 0.015 0.040 0.47 929 093 0.037 0.042 045  81.9 0.79
RBC h=b=hfeo 0.002 0.052 0.36 91.8 1.19 0.007 0.051 0.36 924 0.98
RBC h=b=hlewe 0.000 0.064 0.22 90.0 1.48 0.000 0.064 0.22  90.1 1.21
RBC h=b= EZMSE, . 0001 0.062 025 904 1.44 0.000 0.069 0.19 895 1.31
Conventional Wi or 0.026 0.033 0.69 88.9 0.77 0.059 0.037 043 649 0.70
Conventional hes 0.023 0.036 0.47 925 0.82 0.068 0.036 045  48.7 0.68
FLCI, M =2 B ss o 0.018 0.039 0.36 96.4 1.00 0.053 0.039 0.36 845 0.82

FLCI, M =6 Rrvise.6 0.008 0.047 0.22 95.8 1.22 0.024 0.047 0.22 96.4 1.00
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Monte Carlo simulation: log-normal errors and beta distribution

for x; (continued)

M=2 M=6
Method Bandwidth Bias SE E[h] Cov RL Bias SE Enlh] Cov RL
FLCL M = Myor b7, o 0.009 0.046 0.25 953 1.19 0.018 0.050 0.19  95.0 1.08

Design 3
RBC h=ht,b=0bi,  -0.032 0035 055 77.2 082  -0.068 0.038 047  50.6 0.72
RBC h=b=h, -0.015 0.041 055 889 095  -0.025 0.045 047 854 0.85
RBC h=hep, b=bey  -0.014 0041 044 87.8 096  -0.022 0.045 0.37 854 0.86
RBC h=b=hfyems -0.002 0.051 0.36 91.0 1.18  -0.006 0.051 0.36  90.5 0.97
RBC h=b=hlews 0.000 0.064 0.23 90.1 1.47 0.000 0.064 0.23  90.1 1.21
RBC h=b=h: o 0000 0066 022 89.7 1.53 0.000 0.077 0.15  88.7 1.47
Conventional hir vor -0.025 0.035 0.64 775 0.81 -0.050 0.040 0.36  63.6 0.76
Conventional hee -0.023 0.036 044 823 084  -0.055 0.038 037 624 0.73
FLCI, M =2 Rise.2 -0.018 0.039 036 90.1 1.00  -0.053 0.039 0.36 71.1 0.82
FLCIL, M =6 Rvise. -0.008 0.047 023 931 122  -0.024 0.047 023  88.6 1.00
FLCL M = Muor  h7 o -0.007 0.049 022 926 127  -0.011 0.056 0.15 91.9 1.22

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of Cls (in %);
RL—relative (to optimal FLCI) length.

Bandwidth descriptions: h¥,—plugin estimate of pointwise MSE optimal bandwidth (bw); b%,—analog for estimate of
the bias; BCE—plugin estimate of coverage error optimal bw; Z;CE—analog for estimate of the bias; The implementation of
Calonico et al. (2018) is used for all four bws. lAl;:MSE’Q, iL;MSEﬁ—RMSE optimal bw, assuming M = 2, and M = 6, respectively.
b or—Fan and Gijbels (1996) rule of thumb; h* —RMSE optimal bw, using rule-of-thumb for M. 50,000 Monte

RMSE, Mror
Carlo draws.
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Table S9: Monte Carlo simulation: sd(u;) =1/4

RMSE, Mror

M =2 M=6
Method Bandwidth Bias SE E[h] Cov RL Bias SE E.[h] Cov RL

Design 1
RBC h=h%. b=>bk, 0.058 0.018 0.68 4.5 0.64 0.116 0.020 0.49 0.0 0.57
RBC h=b=ht, 0.019 0.022 0.68 90.2 0.80 0.017 0.026 049  91.2 0.76
RBC h = hep, b= beg 0.024 0.022 039 774 0.78 0.041 0.025 028  60.8 0.72
RBC h=b=h}eo 0.000 0.035 0.27 94.3 1.26 0.000 0.035 0.28 943 1.01
RBC h=b=hiyewe 0.000 0.043 0.18 93.8 1.57 0.000 0.043 0.18  93.8 1.26
RBC h=b= ﬁ;MSE’ 4. 0000 0.045 016 93.7 1.64 0.000 0.056 0.11  93.0 1.62
Conventional S 0.022 0.021 038 76.3 0.77 0.028 0.026 0.24 789 0.77
Conventional hew 0.023 0.021 0.39 76.9 0.76 0.040 0.024 0.28  61.0 0.71
FLCI, M =2 B om0 0.013 0.025 0.27 94.7 1.00 0.038 0.025 0.28  73.9 0.80
FLCL, M =6 Pfse.o 0.005 0.031 0.18 96.5 1.25 0.016 0.031 0.18 945 1.00
FLCL, M = Myor iL;MSE’ - 0.004 0.032 0.16 96.2 1.30 0.006 0.040 0.11  96.2 1.29

Design 2
RBC h=ht, b=>b%, 0.043 0.017 0.77 28.8 0.63 0.128 0.017 0.76 0.0 0.51
RBC h=b=ht, 0.026 0.021 0.77 765 0.75 0.075 0.021 0.76 55 0.61
RBC h = heg, b= bes 0.026 0.020 047 70.2 0.73 0.061 0.022 037 248 0.64
RBC h=b=hiyums 0.000 0.035 0.27 943 1.26 0.001 0.035 0.28 943 1.01
RBC h=b=hiywe 0.000 0.043 0.18 93.8 1.57 0.000 0.043 0.18  93.8 1.25
RBC h=b=h" 4, 0000 0038 024 935 138 0.000 0.047 0.5  93.6 1.37
Conventional - | 0.029 0.018 0.57 585 0.66 0.048 0.023 0.32  46.0 0.67
Conventional hex 0.027 0.019 047 66.1 0.69 0.062 0.021 037  21.8 0.62
FLCI, M =2 P vism.2 0.012 0.025 0.27 94.8 1.00 0.039 0.024 028  73.6 0.80
FLCL, M =6 P isn.6 0.005 0.031 0.18 965 1.25 0.016 0.030 0.18  94.6 1.00
FLCL, M = Myor h* 0.009 0.027 024 929 1.09 0.011 0.033 0.15 954 1.10
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Monte Carlo simulation: sd(u;) = 1/4 (continued)

M =2 M =6
Method Bandwidth Bias SE E[h] Cov RL Bias SE E.[h] Cov RL
Design 3

RBC h=hi,b=0bt,  -0.042 0017 076 323 0.63  -0.107 0018 0.63 1.7 0.54
RBC h=0b= ]Alf,T -0.023 0.021 0.76 77.5 0.76 -0.048 0.023 0.63 454  0.67
RBC h = fAlCE, b= b -0.024 0.021 046 75.0 0.75 -0.046 0.023 0.35 49.5 0.68
RBC h=b=hiyes 0.000 0.035 027 943 1.26  -0.001 0035 028 944 1.01
RBC h=b=h%eme 0.000 0.043 0.18 938 157 0.000 0.043 0.18 938 1.25
RBC h=b= E:;MSE,MRUT 0.000 0.042 0.19 938 154 0.000 0.053 0.12 93.3 1.53
Conventional B vor 0.026 0.019 049 652 069  -0.041 0.024 0290 587 0.70
Conventional hew -0.026 0.019 046 66.5 0.69 -0.057 0.022 0.35 304 0.63
FLCI, M = 2 B svses 0.012 0025 027 947 100  -0.038 0.025 028 739 0.80
FLCL, M = 6 B vses 0.005 0.031 018 964 125  -0.016 0031 0.18 945 1.00
FLCL, M = Myor iL:{MSE,MROT -0.006 0.030 0.19 95.8 1.22 -0.007 0.037 0.12 96.2 1.23

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of Cls (in %);
RL—relative (to optimal FLCI) length.

Bandwidth descriptions: E;T—plugin estimate of pointwise MSE optimal bandwidth (bw); lA);T—analog for estimate of
the bias; ﬁ(;E—plugin estimate of coverage error optimal bw; Z;(;E—analog for estimate of the bias; The implementation of
Calonico et al. (2018) is used for all four bws. iL;MSE’Q, fL;‘{MSE’G—RMSE optimal bw, assuming M = 2, and M = 6, respectively.
lAzf,TA’ROT—Fan and Gijbels (1996) rule of thumb; h* —RMSE optimal bw, using rule-of-thumb for M. 50,000 Monte

RMSE, Mror
Carlo draws.



RS

Table S10: Monte Carlo simulation: smooth DGP with A = 40

E
RMSE, Myon

M =2 M=6
Method Bandwidth Bias SE E[h] Cov RL Bias SE En[h] Cov RL

Design 1
RBC h=ht, b=>b%, 0.062 0.035 0.74 57.7 0.73 0.151 0.036 0.61 0.2 0.61
RBC h=b=h%, 0.024 0.042 0.74 93.3 0.88 0.039 0.047 0.61  90.1 0.78
RBC h = heg, b= bes 0.029 0.041 046 86.1 0.85 0.059 0.045 034 726 0.76
RBC h=b=hiyums 0.001 0.061 0.36 945 1.27 0.003 0.061 0.36 945 1.01
RBC h=b=hiywe 0.000 0.076 0.23 94.2 1.58 0.000 0.075 023 942 1.26
RBC h=b=h* 4. 0000 0078 022 939 1.63 0.000 0.097 0.14 934 1.63
Conventional - | 0.032 0.036 0.57 77.0 0.75 0.050 0.046 0.32  76.9 0.77
Conventional he 0.028 0.039 046 85.7 0.80 0.057 0.044 034 728 0.74
FLCI, M =2 s 0.021 0.043 0.36 95.0 1.00 0.063 0.043 036  76.2 0.80
FLCL, M =6 s 0.009 0.054 023 96.6 1.25 0.027 0.053 0.23 947 1.00
FLCL, M = Myor izjww . 0.008 0.055 0.22 956 1.29 0.010 0.069 0.14  96.3 1.29

Design 2
RBC h=h%. b=>bk, 0.041 0.035 0.77 774 0.72 0.124 0.035 0.77 54 0.58
RBC h=b=h%, 0.024 0.042 0.77 914 0.87 0.072 0.042 0.77  58.0 0.70
RBC h = heg, b= beg 0.026 0.040 0.49 88.1 0.83 0.071 0.041 044 564 0.69
RBC h=b=hfeo 0.002 0.061 0.36 945 1.27 0.007 0.061 0.36 944 1.01
RBC h=b=hfwe 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 942 1.26
RBC h=b= ﬁ;MSK 4. 0002 0068 030 940 143 0.000 0.083 0.20  93.8 1.38
Conventional 5. 0.030 0.032 0.78 76.0 0.67 0.071 0.040 044 547 0.66
Conventional e 0.027 0.037 049 86.7 0.77 0.072 0.039 044 525 0.66
FLCI, M =2 s 0.019 0.043 0.36 95.3 1.00 0.058 0.043 0.36  80.0 0.80
FLCL, M =6 Wse.6 0.009 0.054 023 96.6 1.25 0.027 0.053 023 948 1.00
FLCL M = Myor b 0.013 0.048 0.30 945 1.13 0.019 0.059 020 944 1.10
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Monte Carlo simulation: smooth DGP, with A = 40 (continued)

M =2 M =6
Method Bandwidth Bias SE E[h] Cov RL Bias SE E.[h] Cov RL
Design 3

RBC h=hi,b=0bt,  -0.041 0035 077 77.0 072  -0.119 0035 074 11.0 0.59
RBC h=0b= ]Alf,T -0.023 0.042 0.77 91.3 0.87 -0.064 0.042 0.74 62.4 0.71
RBC h = fAlCE, b= b -0.025 0.040 049 88.6 0.83 -0.061 0.043 0.43 66.1 0.71
RBC h=b=hiyme  -0.002 0061 036 945 127  -0.007 0061 036 943 1.01
RBC h=b=h%eme 0.000 0.076 023 942 158  -0.001 0075 023 942 1.26
RBC h=b= E:;MSE,MRUT -0.001 0.074 0.25 942 154 0.000 0.092 0.16 93.6 1.54
Conventional R vor 0.030 0.033 072 759 069  -0.062 0.042 0.39 634 0.70
Conventional hes -0.027 0.037 049 864 0.78 -0.071 0.040 0.43 53.9 0.66
FLCL, M = 2 B svses 0.019 0.043 036 951 100  -0.058 0.043 0.36 79.8 0.80
FLCI, M =6 iL;{MSE,G -0.009 0.054 0.23 96.5 1.25 -0.027  0.053 0.23 94.7 1.00
FLCL, M = Myor iL;h’ISE’MmT -0.010 0.052 0.25 95.7 1.22 -0.013 0.065 0.16 96.1 1.22

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of Cls (in %);
RL—relative (to optimal FLCI) length.
Bandwidth descriptions: E;T—plugin estimate of pointwise MSE optimal bandwidth (bw); lA);T—analog for estimate of

the bias; ﬁ(;E—plugin estimate of coverage error optimal bw; Z;(;E—analog for estimate of the bias; The implementation of

Calonico et al. (2018) is used for all four bws. iL;MSE’Q, fL;‘{MSE’G—RMSE optimal bw, assuming M = 2, and M = 6, respectively.
lAzf,TA’ROT—Fan and Gijbels (1996) rule of thumb; iAz:‘{MSF 1. —RMSE optimal bw, using rule-of-thumb for M. 50,000 Monte

Carlo draws.



Interior Boundary

0.6 61
0.4+ 4 5
[\
2_
0.2
0_
0.0
20 4
1.54 15
1.0 10+ <
Pl I
~2 w
0.5 9
0.0 01
1.54
40 -
1.0 1 30
=
20 - I
0.5 -
10+
0.0+ 0+
1.0 -05 0.0 0.5 1.0 0.00 025 050 075 1.00
u u

Figure S1: Optimal equivalent kernels for Taylor class Fr (M) on the interior, and in the
boundary, rescaled to be supported on [0, 1] on the boundary and [—1, 1] in the interior.
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Figure S2: Optimal equivalent kernels for Holder class Fug (M) on the interior, and in the
boundary, rescaled to be supported on [0, 1] on the boundary and [—1, 1] in the interior.
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