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These supplemental materials contain further appendices and additional tables and figures.

Appendix B verifies our regularity conditions for some examples, and includes proofs of the

results in Section 3.2. Appendix C discusses two additional applications: estimation of density

at a point, and estimating a bidder valuation in first price auctions. Appendix D contains

additional details for the applications in Section 3. Appendix E presents a formal analysis of

the rule-of-thumb choice of M proposed in Section 3.3. Finally, Appendix F contains additional

Monte Carlo results.

Appendix B Verification of regularity conditions

We verify the main condition (4) in some applications. Appendix B.1 gives sufficient conditions

for (4) which do not require convergence of moments. Appendix B.2 shows that (4) holds

in the Gaussian white noise model under a mild extension of conditions in Donoho and Low

(1992). Thus, the results apply to estimating, among other things, a function or one of its

derivatives evaluated at a given point, when the function is observed in the white noise model.

By equivalence results in Brown and Low (1996) and Nussbaum (1996), our results also apply

when the function of interest is a density or conditional mean. Appendix B.3 verifies (4) directly

for local polynomial estimators in the nonparametric regression setting, and Appendix B.4

verifies it for in the fuzzy RD application.
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B.1 Sufficient conditions for main regularity condition

This appendix gives sufficient conditions for the main condition (4). In particular, we show

that a version of (2) stated in terms of convergence in distribution, rather than convergence

of moments, suffices for (4) for the FLCI and OCI criteria, and for a truncated version of the

RMSE criterion. Such conditions are appropriate for functionals that involve smooth nonlinear

transformations, which preserve convergence in distribution but may not preserve convergence

of moments: we show in Appendix B.1.1 that a version of the delta method can be used to

verify our conditions in such cases.

As in the main text, we consider a general setup where, for each n (which typically denotes

sample size), data are drawn from some distribution Pf , which also implicitly depends on n,

for some f . Let Fn ⊆ F be a sequence of function classes, and let T : F → R. Let T̂ = T̂ (h; k)

be a sequence of estimators indexed implicitly by n, and by a kernel k and bandwidth h = hn,

which also depends on n. The function class Fn is indexed by a sequence of constants Mn.

To make concise statements about uniform-in-f convergence, we introduce some additional

notation. For a random variable Wn,f indexed by the sample size n and the distribution f , we

use Wn,fn
d→
fn
L to denote that the distribution of Wn,fn converges in distribution to L under

the sequence fn. When this holds for all sequences fn ∈ Fn for some sequence of sets Fn,

we write Wn,f
d→
Fn
L, and we say that Wn,f converges in distribution to L uniformly over Fn.

When the limiting law L is a point mass at some constant a, we write Wn,fn

p→
fn
a and when

the convergence holds for all fn ∈ Fn, we write Wn,f
p→
Fn

a and say that Wn,f converges in

probability to a uniformly over Fn.

We make the following assumption on the estimators T̂ (h; k). This assumption is similar to

the condition (2) in the main text, but uses convergence in distribution rather than convergence

of moments.

Assumption B.1. For some sequences of random variables Zn,h,f and bn,h,f , we have

T̂ (h; k) = T (f) + hγbMnbn,h,f + hγsn−1/2Zn,h,f

where, for some sequence of constants b∗n,h,f and some S(k) and B(k), |bn,h,f − b∗n,h,f |
p→
Fn

0 and

lim
n→∞

sup
f∈Fn

b∗n,h,f = B(k), lim
n→∞

inf
f∈Fn

b∗n,h,f = −B(k), Zn,h,f
d→
Fn
N(0, S(k)2).

We verify our main condition (4) for a class of performance criteria constructed as follows.

Given a loss function ` : R → R+, let r̃`(b0, s) = EZ∼N(0,1)`(b0 + sZ) denote the risk of an
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estimator that’s normally distributed with standard deviation s and bias b0. Let

ρ̃`(b, s) = sup
b0∈[−b,b]

r̃`(b0, s), and R̃`,α(b, s) = inf
{
χ : ρ̃`(bχ

−1, sχ−1) ≤ α
}

denote its worst-case risk over the all biases bounded by b in absolute value, and the smallest

scaling of the worst-case bias and the standard deviation such that its worst-case risk is bounded

by α. Similarly, for an estimator T̂ of T (f), let

ρ`,χ

(
T̂ ;Fn

)
= sup

f∈Fn
Ef`

(
χ−1

(
T̂ − T (f)

))
, and R`,α(T̂ ;Fn) = inf

{
χ : ρ`,χ

(
T̂ ;Fn

)
≤ α

}
.

Note that if we set `FLCI(x) = I{|x| > 1}, then R`FLCI,α and R̃`FLCI,α yield the performance

criteria RFLCI,α and R̃FLCI,α as defined in the main text. Similarly, R`RMSE,1 and R̃`RMSE,1, where

`RMSE(x) = x2, give the performance criteria RRMSE and R̃RMSE given in the main text.

To cover performance criteria such as OCI which are constructed from requirements on

multiple loss functions, we use the following construction. Let `1, . . . , `m be loss functions and

let α1, . . . , αm be given. Let λ : (0,∞)m → (0,∞) be continuous and homogeneous of degree

one (i.e. it satisfies λ(ax) = aλ(x) for any a > 0). If m = 1, one can take λ to be the identity

function. Let

R(T̂ (h; k)) = λ(R`1,α1(T̂ (h; k)), . . . , R`m,αm(T̂ (h; k))),

R̃(b, s) = λ(R`1,α1(b, s), . . . , R`m,αm(b, s)).

Note that since R̃`j ,αj(tb, ts) = t inf{t−1χ : ρ̃`j(tbχ
−1, tsχ−1) ≤ αj} = tR̃`j ,αj(b, s), R̃ satisfies (5).

To show how this generalization covers the OCI criterionROCI,α,β defined in the main text, define

`+(x) = I{x > 1} and `−(x) = I{x < −1}. Then R`+,α(T̂ ;Fn) is the smallest value of χ+ such

that [T̂−χ+,∞) is a one-sided CI with coverage 1−α, since ρ`+,χ+(T̂ ;Fn) = supf∈Fn Pf (χ
−1
+ (T̂−

T (f)) > 1) = supf∈Fn Pf (T̂−χ+ > T (f)) gives the probability of not covering T (f). The worst-

case β quantile of excess length of this CI is the smallest value of χ− such that inff∈Fn Pf (T (f)−
T̂ + χ+ ≤ χ−) ≥ β, or equivalently, ρ`−,χ−−χ+(T̂ ;Fn) = supf∈Fn Pf (T (f) − T̂ > χ− − χ+) =

supf∈Fn Pf (T (f)− T̂ + χ+ > χ−) ≤ 1− β. Thus, the worst case β-quantile of excess length of

a one-sided CI based on T̂ is given by R`+,α(T̂ ;Fn) + R`−,1−β(T̂ ;Fn) = ROCI,α,β(T̂ ). Similarly,

R̃`+,α(b, s) + R̃`−,1−β(b, s) gives the criterion R̃OCI,α,β(b, s) as defined in the main text.

We make the following assumption on each of the loss functions `.

Assumption B.2. (i) ` : R → [0,∞) is bounded, weakly decreasing on (−∞, 0) and weakly

increasing on (0,∞), and continuous almost everywhere, and there does not exist a constant

function that is almost everywhere equal to `. (ii) b̃ 7→ r̃`(b̃, s) is quasiconvex.

For symmetric loss functions, part (ii) follows from part (i) by Anderson’s lemma.

3



It is immediate that the loss functions `+, `−, and `FLCI satisfy this assumption. The loss

`RMSE, on the other hand, does not satisfy this assumption because it is unbounded. However,

note that, for any c > 0, Assumption B.2 holds for the loss function `c(x) = min{x2, c2}. Since

limc→∞R`c,1(T̂ ,Fn) = R`RMSE,1(T̂ ,Fn), and limc→∞ R̃`c,1(b, s) = R̃`RMSE,1(b, s), we may interpret

this criterion as a truncated version of RMSE.

Theorem B.1. Let hn be a sequence with

0 < lim inf
n

hn(nM2)1/[2(γb−γs)] ≤ lim sup
n

hn(nM2)1/[2(γb−γs)] <∞. (S1)

Suppose that T̂ (h; k) satisfies Assumption B.1 for the sequence h = hn. Let R(T̂ (h; k)) and

R̃(b, s) be given above, where `1, . . . , `m are loss functions satisfying Assumption B.2, and sup-

pose that R̃`j ,αj(b, s) > 0 for all b ≥ 0 and s > 0 for j = 1, . . . ,m. Then (4) holds for R and

R̃. Furthermore, if bn,h,f = b∗n,h,f , EfZn,h,f = 0 and EfZ
2
n,h,f → S(k)2 uniformly over f ∈ Fn,

then supf∈F Ef (T̂ (h; k) − T (f)) = − inff∈F Ef (T̂ (h; k) − T (f))(1 + o(1)) = hγbB(k)(1 + o(1)),

and sdf (T̂ (h; k)) = hγsn−1/2S(k)(1 + o(1)) uniformly over f ∈ Fn, and (4) holds with R and R̃

given by RRMSE and R̃RMSE.

The theorem implies that if Assumption B.1 holds for bandwidth sequences hn satisfy-

ing Eq. (S1), minimizing the criterion limc→∞ limn→∞ n
r/2M r−1R`c(T̂ (h; k)) discussed in foot-

note 4 in the main text, where `c is the truncated squared error loss defined above, is equivalent

to minimizing the asymptotic RMSE:

lim
c→∞

lim
n→∞

nr/2M r−1R`c(T̂ (h; k)) = S(k)rB(k)1−r lim
c→∞

tr−1R̃`c(t, 1)

= S(k)rB(k)1−rtr−1R̃`RMSE,1(t, 1).

Thus, under this criterion, the optimal bandwidth is given by h∗rmse.

To prove Theorem B.1, we first note some properties of loss and risk functions in our

setup. Note that, under Assumption B.2, E`(Wn)→ EW for any sequence of random variables

Wn
d→ W such that W is continuously distributed (this follows from the continuous mapping

theorem and the fact that ` is bounded). This also implies that r̃`(b̃, s) is continuous in b̃

and s (since snZ + b̃n
d→ sZ + b for Z ∼ N(0, 1) and b̃n → b̃, sn → s). Also, by part

(ii), ρ̃`(χ
−1b, χ−1s) = maxb̃∈{−b,b}EZ∼N(0,1)` (χ−1 (Zs+ b)), which is continuous in (b, s, χ), and

is strictly decreasing in χ (since `(χ−1t) is weakly decreasing in χ for each t, and, for any

0 < χ < χ̃, there is a positive measure set of values of t such that `(χ−1t) > `(χ̃−1t) for t on

this set). This implies that R̃`,α(b, s), taken as a function of α, is the inverse of the strictly

increasing function χ 7→ ρ̃`(bχ
−1, sχ−1). Since convergence of a sequence of strictly increasing

functions to a continuous, strictly increasing function implies convergence of their inverse, this
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implies that R̃`,α(b, s) is continuous in (b, s).

We will use the following lemma.

Lemma B.1. Let b, s be given. Suppose that ` satisfies Assumption B.2. Suppose that, for any

sequence fn, there exists b̃ ∈ [−b, b] and a subsequence along which an(T̂ − T (fn))
d→
fn
N(b̃, s2).

Furthermore, suppose that there exists a sequence fn such that an(T̂ −T (fn))
d→
fn
N(b, s2), and a

sequence fn such that an(T̂−T (fn))
d→
fn
N(−b, s2). Then limn→∞ ρ`,χ/an(T̂ ;Fn) = ρ̃`(χ

−1b, χ−1s)

and limn→∞ anR`,α(T̂ ;Fn) = R̃`,α(b, s).

Proof. To show lim supn ρ`,χ/an(T̂ ;Fn) ≤ ρ̃`(χ
−1b, χ−1s) it suffices to show that, for every

sequence fn, there is a subsequence along which Efn`
(
anχ

−1
(
T̂ − T (fn)

))
converges to a

constant that is no greater than ρ̃`(χ
−1b, χ−1s). By assumption, there exists a b̃ ∈ [−b, b]

and a subsequence along which an(T̂ − T (fn))
d→
fn
N(b̃, s2), which, under the assumptions on

the loss function, implies Efn`
(
anχ

−1
(
T̂ − T (fn)

))
→ r̃`(χ

−1b̃, χ−1s) ≤ ρ`(χ
−1b, χ−1s) along

this subsequence. To show that this lim sup is a limit and the inequality is an equality, note

that, letting fn be a sequence such that an(T̂ − T (fn))
d→
fn
N(b, s2), we have ρ`,χ/an(T̂ ;Fn) ≥

Efn`
(
χ−1

(
T̂ − T (fn)

))
→ r̃`(χ

−1b, χ−1s). Similarly, taking a sequence for which the limiting

distribution is N(−b, s2), we have lim infn ρ`,χ/an(T̂ ;Fn) ≥ r̃`(−χ−1b, χ−1s). Noting that, under

Assumption B.2, ρ`(χ
−1b, χ−1s) is equal to either r̃`(χ

−1b̃, χ−1s) or r̃`(−bχ−1b̃, χ−1s) (or both),

it now follows that lim infn ρ`,χ/an(T̂ : Fn) ≥ ρ̃`(χ
−1b, χ−1s). Thus, limn→∞ ρ`,χ/an(T̂ : Fn) =

ρ̃`(χ
−1b, χ−1s).

To derive the limit of R`,α(T̂ ;Fn), first note that ρ`,χ(T̂ ;Fn) is weakly decreasing in χ for any

χ > 0 for each n, since `(χ−1t) is weakly decreasing in χ for all t under Assumption B.2. Also,

ρ̃`(χ
−1b, χ−1s) is strictly decreasing in χ. Thus, for χ > R̃`,α(b, s), we have ρ̃`(χ

−1b, χ−1s) < α so

that, for large enough n, we have ρ`,χ/an(T̂ ;Fn) < α for all χ̃ ≥ χ, which implies R`,α(T̂ ;Fn) ≤
χ/an. Similarly, for χ < R̃`,α(b, s), we have ρ̃`(χ

−1b, χ−1s) > α so that, for large enough n, we

have ρ`,χ/an(T̂ ;Fn) > α for all χ̃ ≤ χ, which implies R`,α(T̂ ;Fn) ≥ χ/an. Thus, for any η > 0,

we have, for large enough n, R̃`,α(b, s) − η ≤ anR`,α(T̂ ;Fn) ≤ R̃`,α(b, s) + η. It follows that

anR`,α(T̂ ;Fn)→ R̃`,α(b, s).

We are now ready to prove Theorem B.1.

Proof of Theorem B.1. The last statement (regarding convergence of standard deviation and

worst-case bias and RMSE) follows immediately from the assumptions. To show (4) for R and

R̃ constructed from loss functions `1, . . . , `m satisfying Assumption B.2, it suffices to show

that, for every subsequence, there exists a further subsequence along which R(T̂ (h; k)) =
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R̃(hγbMB(k), hγsn−1/2S(k))(1+o(1)). By the conditions on hn, we can choose this subsequence

so that hn(nM2
n)1/[2(γb−γs)] → h∞ for some h∞ > 0.

Along this subsequence, we have

hγbn Mn = hγb∞(nM2
n)−γb/[2(γb−γs)]Mn(1 + o(1)) = hγb∞M

1−r
n n−r/2(1 + o(1))

and

hγsn n
−1/2 = hγs∞(nM2

n)−γs/[2(γb−γs)]n−1/2(1 + o(1)) = hγs∞n
−r/2M1−r

n (1 + o(1)).

Thus, on this subsequence, the conditions of Lemma B.1 hold with an = M r−1
n nr/2, b = hγb∞B(k)

and s = hγs∞S(k), so that, for each j = 1, . . . ,m,

M r−1
n nr/2R`j ,αj(T̂ (hn; k);Fn)→ R̃`j ,αj(h

γb
∞B(k), hγs∞S(k)).

Also, on this subsequence, using homogeneity and continuity of R̃`,α,

M r−1
n nr/2R̃`j ,αj(h

γb
n MnB(k), hγsn n

−1/2S(k))

= R̃`j ,αj(M
r−1
n nr/2hγbn MnB(k),M r−1

n nr/2hγsn n
−1/2S(k))→ R̃`j ,αj(h

γb
∞B(k), hγs∞S(k)).

Combining this with the previous display and using homogeneity of the function λ, it follows

that (4) holds along this subsequence, which gives the result.

B.1.1 Delta method

Let Fn ⊆ F be a sequence of function classes, and let L : F → Rm. We are interested in a

parameter T (f) = φ(L(f)), where φ : Rm → R. To cover cases where φ may be nonlinear, we

assume that Fn is localized around a particular value L∗ in the range of L:

L(fn)→ L∗ for all sequences fn ∈ Fn.

This localization of the parameter space plays a similar role to local asymptotic efficiency results

in parametric and regular semiparametric settings (see, for example, Theorem 8.11 in van der

Vaart, 1998).

We now show that, if L̂(h; k) satisfies a multivariate version of Assumption B.1 and φ is

smooth, then Assumption B.1 holds for T̂ (h; k) = φ(L̂(h; k)), with B(k) and S(k) defined below.

This is essentially a version of the delta method applied to our setup.

Assumption B.3. The function φ is continuously differentiable at L∗, with Jacobian matrix
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φ′(L) and, for some sequences of random vectors Zn,h,f and bn,h,f , we have

L̂(h; k) = L(f) + hγbMnbn,h,f + hγsn−1/2Zn,h,f ,

where, for a uniformly bounded sequence of constant vectors b∗n,h,f ∈ Rm and some Σ(k) and

B(k), |bn,h,f − b∗n,h,f |
p→
Fn

0 and

lim
n→∞

sup
f∈Fn

φ′(L∗)b∗n,h,f = B(k), lim
n→∞

inf
f∈Fn

φ′(L∗)b∗n,h,f = −B(k), Zn,h,f
d→
Fn
N(0,Σ(k)).

Theorem B.2. Suppose that Assumption B.3 holds, and put S(k)2 = φ′(L∗)Σ(k)φ′(L∗)′. Then,

if hγbMn → 0 and hγsn−1/2 → 0, Assumption B.1 holds for T̂ (h; k) = φ(L̂(h; k)).

Proof. First, note that the conditions on the bandwidth imply L̂
p→
Fn

L∗. Then, by a Taylor

expansion, for some L̃ = L̃(L̂, L(f)) on the line segment between L̂ and L(f), we have

φ(L̂)− φ(L(f)) = φ′(L̃)[L̂− L(f)]

= φ′(L̃)[hγbMnbn,h,f + hγsn−1/2Zn,h,f ] = hγbMnb̃n,h,f + hγsn−1/2Z̃n,h,f ,

where Z̃n,h,f = φ′(L̃)Zn,h,f
d→
Fn

N(0, S(k)2) by the continuous mapping theorem and b̃n,h,f =

φ′(L̃)bn,h,f satisfies |b̃n,h,f − b̃∗n,h,f | = |φ′(L̃)bn,h,f − φ′(L∗)b∗n,h,f |
p→
Fn

0 where b̃∗n,h,f = φ′(L∗)b∗n,h,f .

Thus, Assumption B.1 holds with b̃n,h,f playing the role of bn,h,f , and b̃∗n,h,f playing the role of

b∗n,h,f .

If the function class Fn places separate restrictions on each mapping x 7→ fj(x) for j =

1, . . . ,m, then the set of limits of the biases b∗n,h,f will take the form [−B̄1(k), B̄1(k)] × · · · ×
[−B̄m(k), B̄m(k)]. In this case, the limiting worst-case bias takes the form

B(k) =
m∑
j=1

|φ′j(L∗)B̄j(k)|. (S2)

Note that, while Theorem B.2 shows that Assumption B.1 is preserved under smooth nonlinear

transformations, such a statement does not hold for a version of this assumption stated in terms

of moments, rather than weak convergence. For such a result, one needs to either use truncation

or place stronger conditions on the class of estimators. This is analogous to parametric and

regular semiparametric settings such as instrumental variables, in which the asymptotic variance

may only be finite if defined in terms of convergence in distribution.
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B.2 Gaussian white noise model

The approximation (4) holds as an exact equality (i.e. with the o(1) term equal to zero) for

the RMSE, OCI, and FLCI criteria in the Gaussian white noise model whenever the problem

renormalizes in the sense of Donoho and Low (1992). We show this below, using notation taken

mostly from that paper. Consider a Gaussian white noise model

Y (dt) = (Kf)(t) dt+ (σ/
√
n)W (dt), t ∈ Rd.

We are interested in estimating the linear functional T (f) where f is known to be in the class

F = {f : J2(f) ≤ C} where J2(f) : F → R and C ∈ R are given. Let Ua,b denote the renormal-

ization operator Ua,bf(t) = af(bt). Suppose that T , J2, and the inner product are homogeneous:

T (Ua,bf) = abs0T (f), J2(Ua,bf) = abs2J2(f) and 〈KUa1,bf,KUa2,bg〉 = a1a2b
2s1〈Kf,Kg〉. These

are the same conditions as in Donoho and Low (1992) except for the last one, which is slightly

stronger since it must hold for the inner product rather than just the norm.

Consider the class of linear estimators based on a given kernel k:

T̂ (h; k) = hsh
∫

(Kk(·/h))(t) dY (t) = hsh
∫

[KU1,h−1k](t) dY (t)

for some exponent sh to be determined below. The worst-case bias of this estimator is

bias(T̂ (h; k)) = sup
J2(f)≤C

|T (f)− hsh〈Kk(·/h), Kf〉| .

Note that J2(f) ≤ C iff. f = Uhs2 ,h−1 f̃ for some f̃ with J2(f̃) = J2(Uh−s2 ,hf) = J2(f) ≤ C. This

gives

bias(T̂ (h; k)) = sup
J2(f)≤C

|T (Uhs2 ,h−1f)− hsh〈Kk(·/h), KUhs2 ,h−1f〉|

= sup
J2(f)≤C

∣∣hs2−s0T (f)− hsh+s2−2s1〈Kk(·), Kf〉
∣∣ .

If we set sh = −s0 + 2s1 so that s2 − s0 = sh + s2 − 2s1, the problem will renormalize, giving

bias(T̂ (h; k)) = hs2−s0 bias(T̂ (1; k)).

The variance does not depend on f and is given by

varf (T̂ (h; k)) = h2sh(σ2/n)〈KU1,h−1k,KU1,h−1k〉 = h2sh−2s1(σ2/n)〈Kk,Kk〉

= h−2s0+2s1(σ2/n)〈Kk,Kk〉.
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Thus, Eq. (2) holds with γb = s2 − s0, γs = s1 − s0,

B(k) = bias(T̂ (1; k)) = sup
J2(f)≤C

|T (f)− 〈Kk,Kf〉|,

and S(k) = σ‖Kk‖ and with both o(1) terms equal to zero. This implies that (4) holds with

the o(1) term equal to zero, since the estimator is normally distributed.

B.3 Local polynomial estimators in fixed design regression

This appendix proves Theorem 3.1 and Eq. (15) in Section 3.2.1.

We begin by deriving the worst-case bias of a general linear estimator

T̂ =
n∑
i=1

w(xi)yi

under Hölder and Taylor classes. For both FT,p(M) and FHöl,p(M) the worst-case bias is infinite

unless
∑n

i=1w(xi) = 1 and
∑n

i=1w(xi)x
j = 0 for j = 1, . . . , p − 1, so let us assume that w(·)

satisfies these conditions. For f ∈ FT,p(M), we can write f(x) =
∑p−1

j=0 x
jf (j)(0)/j! + r(x)

with |r(x)| ≤ M |x|p/p!. As noted by Sacks and Ylvisaker (1978), this gives the bias under f

as
∑n

i=1w(xi)r(xi), which is maximized at r(x) = M sign(w(x))|x|p/p!, giving biasFT,p
(T̂ ) =

M
∑n

i=1|w(xi)x|p/p!.
For f ∈ FHöl,p(M), the (p − 1)th derivative is Lipschitz and hence absolutely continuous.

Furthermore, since
∑n

i=1w(xi) = 1 and
∑n

i=1w(xi)x
j = 0, the bias at f is the same as the

bias at x 7→ f(x)−
∑p−1

j=0 x
jf (j)(0)/j!, so we can assume without loss of generality that f(0) =

f ′(0) = · · · = f (p−1)(0). This allows us to apply the following lemma.

Lemma B.2. Let ν be a finite measure on R (with the Lebesgue σ-algebra) with finite support

and let w : R → R be a bounded measurable function with finite support. Let f be p − 1 times

differentiable with bounded pth derivative on a set of Lebesgue measure 1 and with f(0) =

f ′(0) = f ′′(0) = · · · = f (p−1)(0) = 0. Then∫ ∞
0

w(x)f(x) dν(x) =

∫ ∞
s=0

w̄p,ν(s)f
(p)(s) ds

and ∫ 0

−∞
w(x)f(x) dν(x) =

∫ 0

s=−∞
w̄p,ν(s)f

(p)(s) ds

where

w̄p,ν(s) =


∫∞
x=s

w(x)(x−s)p−1

(p−1)! dν(x) s ≥ 0∫ s
x=−∞

w(x)(s−x)p−1(−1)p
(p−1)! dν(x) s < 0.
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Proof. By the Fundamental Theorem of Calculus and the fact that the first p − 1 derivatives

at 0 are 0, we have

f(x) =

∫ x

t1=0

∫ t1

t2=0

· · ·
∫ tp−1

tp=0

f (p)(tp) dtp · · · dt2dt1 =

∫ x

s=0

f (p)(s)(x− s)p−1

(p− 1)!
ds.

Thus, by Fubini’s Theorem,∫ ∞
x=0

w(x)f(x) dν(x) =

∫ ∞
x=0

w(x)

∫ x

s=0

f (p)(s)(x− s)p−1

(p− 1)!
dsdν(x)

=

∫ ∞
s=0

f (p)(s)

∫ ∞
x=s

w(x)(x− s)p−1

(p− 1)!
dν(x)ds

which gives the first display in the lemma. The second display in the lemma follows from

applying the first display with f(−x), w(−x) and ν(−x) playing the roles of f(x), w(x) and

ν(x).

Applying Lemma B.2 with ν given by the counting measure that places mass 1 on each of

the xi’s (ν(A) = #{i : xi ∈ A}), it follows that the bias under f is given by
∫
w(x)f(x) dν =∫

w̄p,ν(s)f
(p)(s) ds. This is maximized over f ∈ FHöl,p(M) by taking f (p)(s) = M sign(w̄p,ν(s)),

which gives biasFHöl,p(M)(T̂ ) = M
∫
|w̄p,ν(s)| ds.

We collect these results in the following theorem.

Theorem B.3. For a linear estimator T̂ =
∑n

i=1w(xi)yi such that
∑n

i=1w(xi) = 1 and∑n
i=1w(xi)x

j = 0 for j = 1, . . . , p− 1,

biasFT,p(M)(T̂ ) = M
n∑
i=1

|w(xi)x|p/p! and biasFHöl,p(M)(T̂ ) = M

∫
|w̄p,ν(s)| ds

where w̄p,ν(s) is as defined in Lemma B.2 with ν given by the counting measure that places mass

1 on each of the xi’s.

Note that, for t > 0 and any q,∫ ∞
s=t

wq,ν(s) ds =

∫ ∞
s=t

∫ ∞
x=s

w(x)(x− s)q−1

(q − 1)!
dν(x)ds =

∫ ∞
x=t

∫ x

s=t

w(x)(x− s)q−1

(q − 1)!
dsdν(x)

=

∫ ∞
x=t

w(x)

[
−(x− s)q

q!

]x
s=t

dν(x) =

∫ ∞
x=t

w(x)(x− t)q

q!
dν(x) = w̄q+1,ν(t). (S3)

Let us define w̄0,ν(x) = w(x), so that this holds for q = 0 as well.

For the boundary case with p = 2, the bias is given by (using the fact that the support of
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ν is contained in [0,∞))∫ ∞
0

w(x)f(x) dν(x) =

∫ ∞
0

w̄2,ν(x)f (2)(x) dx where w̄2,ν(s) =

∫ ∞
x=s

w(x)(x− s) dν(x).

For a local linear estimator based on a kernel with nonnegative weights and support [−A,A],

the equivalent kernel w(x) is positive at x = 0 and negative at x = A and changes signs

once. From (S3), it follows that, for some 0 ≤ b ≤ A, w̄1,ν(x) is negative for x > b and

nonnegative for x < b. Applying (S3) again, this also holds for w̄2,ν(x). Thus, if w̄2,ν(s̃) were

strictly positive for any s̃ > 0, we would have to have w̄2,ν(s) nonnegative for s ∈ [0, s̃]. Since

w̄2,ν(0) =
∑n

i=1w(xi)xi = 0, we have

0 < w̄2,ν(0)− w̄2,ν(s̃) = −
∫ s̃

x=0

w(x)(x− s̃) dν(x)

which implies that
∫ s
x=s

w(x)dν(x) < 0 for some 0 ≤ s < s < s̃. Since w(x) is positive for small

enough x and changes signs only once, this means that, for some s∗ ≤ s̃, we have w(x) ≥ 0

for 0 ≤ x ≤ s∗ and
∫ s∗
x=0

w(x)dν(x) > 0. But this is a contradiction, since it means that

w̄2,ν(s
∗) = −

∫ s∗
0
w(x)(x − s∗) dν(x) < 0. Thus, w̄2,ν(s) is weakly negative for all s, which

implies that the bias is maximized at f(x) = −(M/2)x2.

We now provide a proof for Theorem 3.1 by proving the result for a more general sequence

of estimators of the form

T̂ =
1

nh

n∑
i=1

k̃n(xi/h)yi,

where k̃n satisfies 1
nh

∑n
i=1 k̃n(xi/h) = 1 and 1

nh

∑n
i=1 k̃n(xi/h)xji = 0 for j = 1, . . . , p − 1. We

further assume

Assumption B.4. The support and magnitude of k̃n are bounded uniformly over n, and, for

some k̃, supu∈R |k̃n(u)− k̃(u)| → 0.

Theorem B.4. Suppose Assumption 3.1 and Assumption B.4 hold. Then for any bandwidth

sequence hn such that nhn →∞, lim infn hn(nM2)1/(2p+1) > 0, and lim supn hn(nM2)1/(2p+1) <

∞,

biasFT,p(M)(T̂ ) =
Mhpn
p!
B̃T
p (k̃)(1 + o(1)), B̃T

p (k̃) = d

∫
X
|upk̃(u)| du

and

biasFHöl,p(M)(T̂ ) =
Mhpn
p!
B̃Höl
p (k̃)(1 + o(1)),

B̃Höl
p (k̃) = dp

∫ ∞
t=0

∣∣∣∣∫
u∈X ,|u|≥t

k̃(u)(|u| − t)p−1 du
∣∣∣∣ dt.
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If Assumption 3.2 holds as well, then

sd(T̂ ) = h−1/2n n−1/2S(k̃)(1 + o(1)),

where S(k̃) = d1/2σ(0)
√∫

X k̃(u)2 du, and (4) holds for the RMSE, FLCI and OCI performance

criteria with γb = p and γs = −1/2.

Proof. Let Ks denote the bound on the support of k̃n, and Km denote the bound on the

magnitude of k̃n.

The first result for Taylor classes follows immediately since

biasFT,p(M)(T̂ ) =
M

p!
hp

1

nh

n∑
i=1

|k̃n(xi/h)||xi/h|p =

(
M

p!
hpd

∫
X
|k̃(u)||u|p du

)
(1 + o(1)),

where the first equality follows from Theorem B.3 and the second equality follows from the fact

that for any function g(u) that is bounded over u in compact sets,∣∣∣∣∣ 1

nh

n∑
i=1

k̃n(xi/h)g(xi/h)− d
∫
X
k(u)g(u) du

∣∣∣∣∣
≤

∣∣∣∣∣ 1

nh

n∑
i=1

k̃(xi/h)g(xi/h)− d
∫
X
k(u)g(u) du

∣∣∣∣∣+
1

nh

n∑
i=1

∣∣∣k̃n(xi/h)g(xi/h)− k̃(xi/h)g(xi/h)
∣∣∣

≤ o(1) +
1

nh

n∑
i=1

I{|xi/h| ≤ Ks} sup
u∈[−Ks,Ks]

|g(u)| · sup
u∈[−Ks,Ks]

|k̃n(u)− k̃(u)| = o(1), (S4)

where the second line follows by triangle inequality, the third line by Assumption 3.1 applied

to the first summand (with x 7→ k̃(x)g(x) playing the role of g(·) in Assumption 3.1), and the

last equality follows by Assumption 3.1 applied to the first term, and Assumption B.4 applied

to the last term.

For Hölder classes,

biasFHöl,p(M)(T̂ (h; k̃n)) = M

∫
|w̄p,ν(s)| ds

by Theorem B.3 where w̄p,ν is as defined in that theorem with w(x) = 1
nh
k̃n(x/h). We have, for

s > 0,

w̄p,ν(s) =

∫
x≥s

1
nh
k̃n(x/h)(x− s)p−1

(p− 1)!
dν(x) =

1

nh

n∑
i=1

k̃n(xi/h)(xi − s)p−1

(p− 1)!
I{xi ≥ s}

= hp−1
1

nh

n∑
i=1

k̃n(xi/h)(xi/h− s/h)p−1

(p− 1)!
I{xi/h ≥ s/h}.
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Thus, by Eq. (S4), for t ≥ 0, h−(p−1)w̄p,ν(t · h)→ d · w̄p(t), where

w̄p(t) =

∫
u≥t

k̃(u)(u− t)p−1

(p− 1)!
du

(i.e. w̄p(t) denotes w̄p,ν(t) when w = k̃ and ν is the Lebesgue measure). Furthermore,

|h−(p−1)w̄p,ν(t · h)| ≤

[
Km

nh

n∑
i=1

I{0 ≤ xi/h ≤ Ks}(xi/h)p−1

(p− 1)!

]
· I{t ≤ Ks} ≤ K1 · I{t ≤ Ks},

where the last inequality holds for some K1 by Assumption 3.1. Thus,

M

∫
s≥0
|w̄p,ν(s)| ds = hpM

∫
t≥0
|h−(p−1)w̄p,ν(t · h)| dt = hpM

[
d

∫
t≥0
|w̄p(t)| dt

]
(1 + o(1))

by the Dominated Convergence Theorem. Combining this with a symmetric argument for t ≤ 0

gives the result.

For the second part of the theorem, the variance of T̂ doesn’t depend on f , and equals

var(T̂ ) =
1

n2h2

n∑
i=1

k̃n(xi/h)2σ2(xi) =
1

nh
S̃2
n, where S̃2

n =
1

nh

n∑
i=1

k̃n(xi/h)2σ2(xi).

By the triangle inequality,∣∣∣∣S̃2
n − dσ2(0)

∫
X
k̃(u)2 du

∣∣∣∣
≤ sup
|x|≤hKs

∣∣∣k̃n(x/h)2σ2(x)− k̃(x/h)2σ2(0)
∣∣∣ · 1

nh

n∑
i=1

I{|xi/h| ≤ Ks}

+ σ2(0)

∣∣∣∣∣ 1

nh

n∑
i=1

k̃(xi/h)2 − d
∫
X
k̃(u)2 du

∣∣∣∣∣ = o(1),

where the equality follows by Assumption 3.1 applied to the second summand and the second

term of the first summand, and Assumption 3.2 and Assumption B.4 applied to the first term

of the first summand. This gives the second display in the theorem.

To show the last statement (verification of Eq. (4)), we note that the above arguments

show that Assumption B.1 holds with bn,h,f = b∗n,h,f equal to the bias of the estimator and

EfZ
2
n,h,f → S(k) uniformly over F , so long as we can verify the uniform central limit theorem for

Zn,h,f = (nh)1/2[T̂ −Ef T̂ ] = (nh)−1/2
∑n

i=1 k̃n(xi/h)ui. By the conditions on the errors ui, this

follows from the Lindeberg central limit theorem so long as maxi[(nh)−2kn(xi/u)]2/(nh)−1 =

maxi nhkn(xi/u)/(nh) → 0. By uniform boundedness of the kernel kn, this holds so long as
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nh→∞.

The local polynomial estimator takes the form given above with

k̃n(u) = e′1

(
1

nh

n∑
i=1

k(xi/h)mq(xi/h)mq(xi/h)′

)−1
mq(u)k(u).

If k is bounded with bounded support, then, under Assumption 3.1 this sequence satisfies

Assumption B.4 with

k̃(u) = e′1

(
d

∫
X
k(u)mq(u)mq(u)′ du

)−1
mq(u)k(u) = d−1k∗q(u),

where k∗q is the equivalent kernel defined in Eq. (14). Theorem 3.1 and Eq. (15) then follow

immediately by applying Theorem B.4 with this choice of k̃n and k̃.

B.4 Fuzzy RD

We consider the sequence of parameter spaces Fn ⊆ F(M1,M2), such that L(fn) → L∗ for all

sequences fn ∈ Fn. Here L∗ ∈ R2 is a fixed vector such that L∗2 6= 0. Let M = M1, and suppose

Assumption 3.1 holds (since the ratio M1/M2 is fixed, it suffices to verify the assumption

for M = M1). Assume also that the random variables {ui}ni=1 are independent with Eui = 0,

var(ui) = Ω(xi) and E(u21i+u
2
2i)

1+η ≤ 1/η for some η > 0, and that the covariance function Ω(x)

is left- and right- continuous at x = 0 with Ω+(0) = limx↓0 Ω(x) > 0 and Ω−(0) = limx↑0 Ω(x) >

0. It then follows by adapting arguments in the proof of Theorem 3.1 that for any bandwidth

sequence hn with nhn →∞ and 0 < lim infn hn(nM2)1/(2p+1) < lim supn hn(nM2)1/(2p+1) <∞,

L̂(h; k) = L(f) + h2

M1b
∗
n,h,f,1

M2b
∗
n,h,f,2

+
1√
nh
Zn,h,f ,

where Zn,h,f converges in distribution to N(0,Σ(k)) uniformly over Fn with

Σ(k) =

∫ ∞
0

k∗1(u)2 du · (Ω+(0) + Ω−(0))/d,

and b∗n,h,f,j =
∑n

i=1(w+(xi) + w−(xi))fj(xi)/Mj for j = 1, 2, and the limits of these biases lie

in the set [B̃(k),−B̃(k)]2, where B̃(k) =
∫∞
0
u2k∗1(u) du. From (S2), we obtain that Assump-

tion B.3 holds with γb = 2, γs = −1/2, and

B(k) = −(|φ′1(L∗)|+M2/M1|φ′2(L∗)|)
∫ ∞
0

u2k∗1(u) du = −1 +M2/M1|L∗1/L∗2|
|L∗2|

∫ ∞
0

u2k∗1(u) du.
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Thus, by Theorem B.2, condition (4) holds for FLCI, OCI, and truncated RMSE with

S(k)2 =

∫∞
0
k∗1(u)2 du

d

ς2+(0;L∗1/L
∗
2) + ς2+(0;L∗1/L

∗
2)

(L∗2)
2

,

where ς2(x;T ) = (1,−T )Ω(x)(1,−T )′, ς2+(0;T ) = limx↓0 ς
2(x;T ), and ς2−(0;T ) = limx↑0 ς

2(x;T ).

The expressions for avar(T̂ (h; k)) and abias(T̂ (h; k)) in the main text then follow by observ-

ing that
∑n

i=1 w̃
n(xi;h, k)2φ′(L(f))Ω(xi)φ

′(L(f))′ = S(k)/nh(1 + o(1)), and (|φ′1(L(f))|M1 +

|φ′2(L(f))|M2)
∑n

i=1 w̃
n(xi;h, k)/2 = M1h

2B(k)(1 + o(1)).

Appendix C Additional applications

This appendix considers additional applications not considered in the main text, using the

sufficient conditions from Appendix B.1. Appendix C.1 verifies our conditions in the density

setting, and Appendix C.2 applies these results to a problem in the auctions literature.

C.1 Density estimation

Consider estimating a density at a point, which we normalize to 0. We observe {Xi}ni=1 iid

with density f on the intersection of X and some neighborhood of 0, where either X = R or

X = [0,∞). We are interested in T (f) = f(0). Let T̂ = T̂ (h; k) = 1
nh

∑n
i=1 k(Xi/h) be a kernel

estimate where k is a kernel with
∫
X k(u) du = 1 and finite support. Let F = F(M) denote

the Hölder class FHöl,p(M) or Taylor class FT,p(M) of order p, as defined in the paper. Assume

that the kernel k satisfies
∫
X u

jk(u) du = 0 for j = 1, . . . , p− 1. Let f ∗ > 0 be given, and let an

be a sequence converging to zero more slowly than any polynomial. Let F(M, [−a, a]) denote

the class for which the Hölder or Taylor condition is imposed only for x ∈ [−a, a] ∩ X , and let

Fn = F(Mn; [−an, an])∩{f : |f(x)−f ∗| ≤ an all x ∈ [−an, an]∩X , f(x) ≥ 0 all x,
∫
f(x) dx =

1}.
We show that (4) holds for the performance criteria considered in the main text by verifying

Assumption B.1. This gives a generalization of the results in Sacks and Ylvisaker (1981), who

consider RMSE optimal kernels in Taylor classes, to performance criteria other than RMSE,

and to cover Hölder classes in addition to Taylor classes. Note that Fn localizes the parameter

space around a density with T (f) = f ∗, similar to Appendix B.1.1. This differs slightly from

Sacks and Ylvisaker (1981), who consider a fixed parameter space F which only places an upper

bound f ∗ on f(0). However, the result given below is essentially the same, since the worst-case

risk over this class is taken in a shrinking neighborhood of f ∗ (i.e. the worst-case risk is the

same as in our setup). Also, note that we only impose the Hölder or Taylor condition in the set

[−an, an], although we would obtain the same result if we did not impose this condition so long
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as Mn increases slowly enough so that the function can be extended to satisfy the smoothness

condition outside of [−an, an].

Theorem C.1. For any bandwidth sequence with hn → 0, hpnMn → 0, nhn →∞ and

0 < lim inf
n

hn(nM2)1/(2p−1) ≤ lim sup
n

hn(nM2)1/(2p−1) <∞,

the kernel density estimator satisfies Assumption B.1 with S(k) =
√
f ∗
∫
X k(u)2 du, B(k) given

in Theorem 3.1 and with γb = p and γs = −1/2. In particular, (4) holds for the FLCI and

OCI criteria. Furthermore, we can take bn,h,f = b∗n,h,f to be nonrandom, and EfZn,h,f = 0 and

EfZ
2
n,h,f → S(k) uniformly over Fn, so that (4) holds for the RMSE criterion.

Proof. We have

T̂ (h; k) = T (f) + hpMbn,h,f + (nh)−1/2Zn,h,f (S5)

where

bn,h,f = h−pM−1[Ef T̂ (h; k)− T (f)] = h−pM−1 1

h

∫
X
k(x/h)[f(x)− f(0)] dx

is nonrandom and can be taken to be equal to b∗n,h,f , and

Zn,h,f =
1√
nh

n∑
i=1

[k(Xi/h)− Efk(Xi/h)].

Once hn is small enough relative to an and f ∗, the set of possible biases for the class Fn will

be the same as for the Taylor or Hölder class F(M), without the additional local restriction of

f(x) for x near zero, or the restriction that f be a density (note, in particular, that, letting C

be a bound on the support of the kernel k, the bias depends only on f(x) for x in [−Chn, Chn],

and that the first p− 1 derivatives of f at zero can be taken to be equal to zero without loss of

generality, so that, for any function f satisfying the Hölder or Taylor condition, f(x) is bounded

from below by f ∗ − an − C̃Mnh
p
n on this set for some constant C̃; this function can then be

extrapolated so that it is positive on [−an, an] while maintaining the Hölder or Taylor condition,

and then defined outside of [−an, an] so that it integrates to one), so that

{bn,h,f : f ∈ Fn} =

{
h−pM−1 1

h

∫
X
k(x/h)[f(x)− f(0)] dx : f ∈ F(M)

}
.

By the renormalization property of F (f ∈ F(1) iff. x 7→ hpMf(x/h) is in F(M)), the set in

the above display remains the same if h and M are each replaced by 1. Thus, the expressions for

asymptotic bias derived in Theorem 3.1 holds exactly with γb = p and B(k) given in Theorem 3.1
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(with k playing the role of the equivalent kernel, k∗q). For the variance, we have

varf (Zn,h,f ) =
1

h

∫
X
k(x/h)2f(x) dx− 1

h

[∫
X
k(x/h)f(x) dx

]2
.

The second term converges to 0 uniformly over Fn, and the first term converges to f ∗
∫
X k(u)2 du

uniformly over Fn. To verify the Lindeberg condition for asymptotic normality, note that
1
nh

∑n
i=1EfK(Xi/h)2 I{K(Xi/h)2 ≥ εnh} → 0 uniformly over f ∈ Fn since nh→∞.

C.2 First price auctions

Our results for density estimation and nonparametric regression can be combined with the

delta method (Theorem B.2) to verify our conditions for nonlinear functions of densities and

nonparametric regression functions evaluated at finitely many points. To illustrate, we consider

a setting from the auctions literature involving a nonlinear function of a density.

Guerre et al. (2000) consider the problem of recovering valuations from bids in a first price

auction setting. Here, we consider a simple version of their setting with no covariates, and the

same number of bidders in each auction. We observe n total bids from symmetric independent

private value sealed bid auctions with I > 1 bidders each, with independent valuations. The

bids {Xi}ni=1 are then iid and, letting f denote their density, the valuation for a bidder with

bid Xi = x is given by

ξ(x; f, I) = x+
1

I − 1

∫ x
−∞ f(t) dt

f(x)

(Equation (3) in Guerre et al., 2000). Consider the problem of estimating T (f) = ξ(x0; f, I)

at a particular point x0. Let FGPV,n be defined in the same way as the class Fn defined

in Appendix C.1 with X = R, but with an additional local restriction on the cumulative

distribution function (CDF)
∫ x
−∞ f(t) dt: FGPV,n = Fn ∩ {f : |

∫ x
−∞ f(t) dt − F ∗| ≤ an} where

F ∗ ∈ (0, 1) is given.

Let L̂(h; k) = (L̂1(h; k), L̂2(h, k)) =
(
1
n

∑n
i=1 I{Xi ≤ x0}, 1

nh

∑n
i=1 k((Xi − x0)/h)

)
, where k

is a kernel satisfying the conditions in Appendix C.1 and h satisfies the conditions of The-

orem C.1 for some p. Let φ(L) = x0 + 1
I−1

L1

L2
. Then a plug-in estimator of T (f) is given

by T̂ (h; k) = φ(L̂(h; k)). To verify (4), we verify Assumption B.3. First, note that, by a

slight generalization of Theorem C.1, L̂2(h; k) satisfies (S5), where bn,h,f is nonrandom and,

for large enough n, ranges over the set [−B2(k), B2(k)], with B2(k) given by B(k) in Theo-

rem 3.1, and with Zn,h,f converging to a N(0, S2(k)) distribution uniformly over FGPV,n, where

S2(k) =
√
f ∗
∫
k(u) du. (This follows from the arguments in Theorem C.1 along with the obser-

vation that the local restriction on
∫ x
−∞ f(t) dt does not restrict the set of possible biases bn,h,f

for large enough n.) Also, L̂1(h; k) satisfies L̂1(h; k) = L1(f) + hγbMnbn,h,f,1 + hγsn−1/2Zn,h,f,1
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with γs = −1/2, where bn,h,f,1 = 0 and Zn,h,f,1 = n1/2h−γs
(
L̂1(h; k)− L1(h; k)

)
converges in

probability to zero uniformly over FGPV,n. Thus, Assumption B.3 holds with bn,h,f ranging over

the set {0} × [−B2(k), B2(k)] and with Σ(k) =
(
0 0
0 S2(k)

)
and φ′(L∗) = 1

I−1 [ 1
f∗
,−F ∗

f∗
]. It follows

that (4) holds for the FLCI and OCI criteria, with γs = −1/2 and γb = p, B(k) = B2(k) F ∗

(I−1)f∗ ,

and S(k) = S2(k) F ∗2

(I−1)2f∗2 . Note, however, that, since a density estimator appears in the de-

nominator of the estimator of T (f), the RMSE may not even be finite, and so truncation will

be needed to apply our results to the RMSE criterion.

We note that the class FGPV,n places assumptions conditions directly on the bid distribution,

and does not incorporate additional restrictions that may arise from the assumption that f

arises from an equilibrium in a first price auction model. We leave for future research whether

such restrictions place sharper bounds on the bias, as well as the question of deriving primitive

conditions on the value distribution for our smoothness assumptions on the bid distribution.

Such questions are addressed by Guerre et al. (2000), although they focus on a slightly different

setting, since they consider rate optimality in the supremum norm for estimation of the value

distribution (rather than asymptotic constants for estimation of the function ξ(x; f, I) at a

given point x0).

Appendix D Additional details for applications

This appendix gives additional details for applications in Section 3. Appendix D.1 calculates

the efficiency gain from using different bandwidths on either side of the cutoff in sharp RD. Ap-

pendix D.2 gives details of optimal kernel calculations discussed in Section 3.2.1. Appendix D.3

gives the kernels constants
∫
X k
∗
q(u)2 du, and Bp,q(k) for selected kernels.

D.1 Regression discontinuity with different bandwidths on either

side of the cutoff

We consider a slightly more general setup than that considered in Section 3.2.2. Consider

estimating a parameter T (f), f ∈ F , using a class of estimators T̂ (h+, h−; k) indexed by two

bandwidths h− and h+. Suppose that the worst-case (over F) performance of T̂ (h+, h−; k)

according to a given criterion satisfies

R(T̂ (h+, h−; k)) = R̃(MB(k)(hγb− + hγb+ ), n−1/2(S+(k)2h2γs+ + S−(k)2h2γs− )1/2)(1 + o(1)), (S6)

where R̃(b, s) denotes the value of the criterion when T̂ (h+, h−; k) − T (f) ∼ N(b, s2), and

S(k) > 0 and B(k) > 0. Assume that R̃ satisfies (5).

In the RD application in Section 3.2.2, if Assumptions 3.1 and 3.2 hold (with the re-
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quirement that σ2(x) is continuous 0 replaced by right- and left-continuity of σ2
+(x) and

σ2
−(x)), then Condition (S6) holds with γs = −1/2, γb = 2, S+(k) = σ2

+(0)
∫∞
0
k∗1(u)2 du/d,

S−(k) = σ2
−(0)

∫∞
0
k∗1(u)2 du/d, and B(k) = −

∫∞
0
u2k∗1(u)du/2.

Let ρ = h+/h− denote the ratio of the bandwidths, and let t denote the ratio of the leading

worst-case bias and standard deviation terms,

t =
MB(k)(hγb− + hγb+ )

n−1/2(S+(k)2h2γs+ + S−(k)2h2γs− )1/2
= hγb−γs−

MB(k)(1 + ργb)

n−1/2(S+(k)2ρ2γs + S−(k)2)1/2
.

Substituting h+ = ρh− and h− = (tn−1/2(S+(k)2ρ2γs +S−(k)2)1/2M−1B(k)−1(1+ργb)−1)1/(γb−γs)

into (S6) and using linearity of R̃ gives

R(T̂ (h+, h−; k)) = R̃(MB(k)hγb− (1 + ργb), hγs− n
−1/2(S+(k)2ρ2γs + S−(k)2)1/2)(1 + o(1))

= M1−rn−r/2(1 + ς(k)2ρ2γs)r/2 (1 + ργb)1−r S−(k)rB(k)1−rR̃(t, 1)(1 + o(1)),

where r = γb/(γb−γs) is the rate exponent, and ς(k) = S+(k)/S−(k) is the ratio of the variance

constants. Therefore, the optimal bias-sd ratio is given by t∗R = argmint>0 R̃(t, 1), and depends

only on the performance criterion. The optimal bandwidth ratio ρ is given by

ρ∗ = argmin
ρ

(1 + ς(k)2ρ2γs)r/2 (1 + ργb)1−r = ς(k)
2

γb−2γs ,

and doesn’t depend on the performance criterion.

Consequently, inference that restricts the two bandwidths to be the same (i.e. restricting

ρ = 1) has asymptotic efficiency given by

lim
n→∞

minh+,h− R(T̂ (h+, h−; k))

minhR(T̂ (h; k))
=

(
(1 + ς(k)2ρ2γs∗ )γb/2 (1 + ργb∗ )−γs

(1 + ς(k)2)γb/22−γs

) 1
γb−γs

= 2r−1

(
1 + ς(k)

2r
2−r

)1−r/2
(1 + ς(k)2)r/2

.

In the RD application in Section 3.2.2, ς(k) = σ+(0)/σ−(0), and r = 4/5. The display above

implies that the efficiency of restricting the bandwidths to be the same on either side of the

cutoff is at least 99.0% if 2/3 ≤ σ+/σ− ≤ 3/2, and the efficiency is still 94.5% when the ratio

of standard deviations equals 3. There is therefore little gain from allowing the bandwidths to

be different.
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D.2 Optimal kernels for inference at a point

The optimal equivalent kernel under the Taylor class FT,p(M) solves Eq. (17) in the main text.

The solution is given by

kSY,p(u) =
(
b+

∑p−1
j=1 αju

j − |u|p
)
+
−
(
b+

∑p−1
j=1 αju

j + |u|p
)
−
,

the coefficients b and α solving∫
X
ujkSY,p(u) du = 0, j = 1, . . . , p− 1, and

∫
X
kSY,p(u) du = 1.

For p = 1, the triangular kernel kTri(u) = (1 − |u|)+ is optimal both in the interior and on

the boundary. In the interior for p = 2, α1 = 0 solves the problem, yielding the Epanechnikov

kernel kEpa(u) = 3
4
(1 − u2)+ after rescaling. For other cases, the solution can be easily found

numerically. Figure S1 plots the optimal equivalent kernels for p = 2, 3, and 4, rescaled to be

supported on [0, 1] and [−1, 1] in the boundary and interior case, respectively.

The optimal equivalent kernel under the Hölder class FHöl,2(M) has the form of a quadratic

spline with infinite number of knots on a compact interval. In particular, in the interior, the

optimal kernel is given by f Int
Höl,2(u)/

∫∞
−∞ f

Int
Höl,2(u) du, where

f Int
Höl,2(u) = 1− 1

2
x2 +

∞∑
j=0

(−1)j(|x| − kj)2+,

and the knots kj are given by kj = (1+q)1/2

1−q1/2 (2 − qj/2 − q(j+1)/2), where q is a constant q =

(3 +
√

33−
√

26 + 6
√

33)2/16.

At the boundary, the optimal kernel is given by fBd
Höl,2(u)/

∫∞
−∞ f

Bd
Höl,2(u) du, where

fBd
Höl,2(u) = (1− x0x+ x2/2) I{0 ≤ x ≤ x0}+ (1− x20)f Int

Höl,2((x− x0)/(x20 − 1)) I{x > x0},

with x0 ≈ 1.49969, so that for x > x0, the optimal boundary kernel is given by a rescaled

version of the optimal interior kernel. The optimal kernels are plotted in Figure S2.

D.3 Kernel constants

For the uniform, triangular, and Epanechnikov kernels, the kernel constants
∫
X k
∗
q(u)2 du,

BT
p,q(k), and BHöl

p,q (k) discussed in Section 3.2.1 involve integrals that can be computed in closed

form. Table S1 gives these constants for the case in which the point of interest is an interior

point, and Table S2 gives them for the boundary case.
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Appendix E Data-driven Bandwidths

This appendix considers CIs with the bandwidth chosen based on the data, with the smoothness

constant M treated as unknown. In particular, we formalize the statements in Section 3.3

regarding honesty and near-optimality of CIs based on the rule-of-thumb bandwidth suggested

in that section, over a regularity class that imposes further restrictions.

Consider the regression setting in Section 3.1. Let F(M) denote the Taylor or Hölder class

defined in Section 3.2.1, which places the bound M on the pth derivative of the regression func-

tion. Let F(M ; η) denote the class that imposes this bound only over x ∈ [−η, η]. We note that

all of our asymptotic results for F(M) hold for F(M ; η) as well. Let T̂q(h; k) denote the qth or-

der local polynomial estimator, with q ≥ p−1. Let hn = h(M) = (n−1/2S(k)t/(MB(k)))1/(γb−γs)

denote a sequence of bandwidths corresponding to bias-sd ratio t. Here, B(k) and S(k) are

given in Theorem 3.1 and γb = p and γs = −1/2. Let r = 2p/(2p−1) denote the rate exponent.

It follows from the results in the main text that the CI {T̂q(hn; k) ± ŝe(hn; k) · cv1−α(t)} has

correct asymptotic coverage, and it is near-optimal if highly efficient choices for t and k are

used.

We consider the CI {T̂q(ĥ; k) ± ŝe(ĥ; k) · cv1−α(t)}, which uses a data-driven bandwidth

ĥ to estimate the optimal bandwidth hn = h(M), thereby avoiding the requirement of prior

knowledge of M . As discussed in the main text, results from Low (1997), Cai and Low (2004)

and Armstrong and Kolesár (2018) imply that it is impossible for such a CI to achieve coverage

and near-optimality over F(M ; η) when M is unknown. We therefore consider a class G(M) (
F(M ; η) that imposes additional conditions that allow M to be estimated consistently. We allow

G(M) to depend directly on the sample size as well, but we leave this implicit in the notation.

Appendix E.1 presents results under high level consistency conditions on ĥ over the class G(M).

Appendix E.2 defines a particular class G(M) that formalizes the notion that local smoothness

of f is no smaller than its smoothness at large scales, and verifies that the rule-of-thumb

bandwidth suggested in Section 3.3 leads to honest CIs over this class. Appendix E.3 derives

asymptotic efficiency bounds that show formally that the CI with rule-of-thumb bandwidth

considered in Appendix E.2 is highly efficient over the class G(M). In particular, it is impossible

to substantively improve upon this CI using the additional restrictions in the class G(M).

Appendix E.4 presents auxiliary results and intuition for the efficiency bounds presented in

Appendix E.3.

E.1 General results for estimated h

We maintain Assumptions 3.1 and 3.2. We make the following additional assumptions on the

kernel.

21



Assumption E.1. The kernel k is bounded and Lipschitz continuous with finite support.

Theorem E.1. Let h(M) = (n−1/2S(k)t/(MB(k)))2/(2p+1) where t > 0. Let ĥ be a band-

width sequence, which may depend on the data, such that ĥ/h(M)
p→ 1 and nh(M) → ∞

uniformly over ∪M∈[Mn,Mn]
G(M), where G(M) ⊂ F(M ; η). Let ŝe(h; k) be a standard error

such that ŝe(ĥ; k)/ sdf (ĥ; k) converges in probability to one uniformly over ∪M∈[Mn,Mn]
G(M).

Let Assumption 3.2 and Assumption E.1 hold, and let Assumption 3.1 hold for any sequence

Mn ∈ [Mn,Mn]. Then

lim inf
n→∞

inf
f∈∪M∈[Mn,Mn]G(M)

Pf

(
T (f) ∈

(
T̂q(ĥ; k)± ŝe(ĥ; k) cv1−α(t)

))
≥ 1− α.

The length of the CI satisfies

lim
n→∞

sup
M∈[Mn,Mn]

sup
f∈G(M)

Pf

(∣∣∣∣∣ 2ŝe(ĥ; k) cv1−α(t)

2n−r/2M1−rS(k)rB(k)1−rtr−1 cv1−α(t)
− 1

∣∣∣∣∣ > δ

)
→ 0

for any δ > 0.

To prove this theorem, let Mn ∈ [Mn,Mn] be given, and let fn be a sequence of functions

in G(Mn). Let hn = h(Mn). For any sequence cn → 0, the coverage probability under fn is

bounded from below by

Pfn

(∣∣∣∣∣ T̂q(hn; k)− T (fn)

ŝe(ĥ; k)

∣∣∣∣∣ ≤ cv1−α(t)(1− cn)

)
− Pfn

(∣∣∣∣∣ T̂q(ĥ; k)− T̂q(hn; k)

ŝe(ĥ; k)

∣∣∣∣∣ > cv1−α(t)cn

)
.

For the first term, we first note that Theorem 2.2 continues to hold with
√

1/r − 1 replaced by

t and h∗rmse replaced by hn, with obvious modifications to the proof. The first term is asymp-

totically bounded from below by 1−α by Theorem 3.1 and this generalization of Theorem 2.2,

applied with ŝe(ĥ; k)(1− cn) playing the role of the standard error in Theorem 2.2 (note that,

by Theorem 3.1 and the assumptions on ĥ, ŝe(ĥ; k)/[n−1/2h
−1/2
n S(k)] converges in probability

to one under fn). The second term will converge to zero for cn decreasing slowly enough so

long as
√
nhn

(
T̂q(ĥ; k)− T̂q(hn; k)

)
converges in probability to zero (again using the fact that

ŝe(ĥ; k)/[n−1/2h
−1/2
n S(k)] converges in probability to one).

Let

an(h) =

(
1

nh

n∑
i=1

k(xi/h)mq(xi/h)mq(xi/h)′

)−1
e1, bn(xi;h) =

1

nh
mq(xi/h)k(xi/h)
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and let wnq (x;h, k) = an(h)′bn(xi;h). We have

√
nhn

[
T̂q(hn; k)− T̂q(ĥ; k)

]
=
√
nhn

n∑
i=1

[wnq (xi;hn, k)− wnq (xi; ĥ, k)]yi

=
√
nhn

n∑
i=1

[wnq (xi;hn, k)− wnq (xi; ĥ, k)]f(xi)

+
√
nhn

n∑
i=1

[wnq (xi;hn, k)− wnq (xi; ĥ, k)]ui. (S7)

Using a Taylor approximation to f(xi) around x = 0 and the fact that
∑n

i=1w
n
q (xi;h, k)xji = 0

for j < p, it follows that the first term is bounded by

√
nhnMn

n∑
i=1

|wnq (xi;hn, k)− wnq (xi; ĥ, k)| |xi|
p

p!
=

tS(k)

B(k)p!

n∑
i=1

|wnq (xi;hn, k)− wnq (xi; ĥ, k)|
∣∣∣∣ xihn
∣∣∣∣p,

where we substitute Mn = tn−1/2S(k)/(B(k)h
p+1/2
n ). Letting C be a bound on the support of

the kernel k, we have |xi| ≤ C max{ĥ, hn} for any xi such that the summand is nonzero. Thus,

on the event ĥ ≤ 2hn, the above display is bounded by (2C)ptS(k)
B(k)p!

times

n∑
i=1

|wnq (xi;hn, k)− wnq (xi; ĥ, k)|.

Using the fact that wnq (xi;hn, k) − wnq (xi; ĥ, k) = an(hn)′[bn(xi;hn) − bn(xi; ĥ)] + [an(h) −
an(ĥ)]′bn(xi; ĥ), it follows that the above display is bounded by

‖an(hn)‖
n∑
i=1

‖bn(xi;hn)− bn(xi; ĥ)‖+ ‖an(hn)− an(ĥ)‖
n∑
i=1

‖bn(xi; ĥ)‖.

Similarly, the last term in (S7) is bounded by

‖an(hn)‖

∥∥∥∥∥√nhn

n∑
i=1

[bn(xi;hn)− bn(xi; ĥ)]ui

∥∥∥∥∥+ ‖an(hn)− an(ĥ)‖

∥∥∥∥∥√nhn

n∑
i=1

bn(xi; ĥ)ui

∥∥∥∥∥ .
Both of these quantities converge in probability to zero by the following lemma.

Lemma E.1. Suppose that Assumption 3.1 and Assumption E.1 hold. Let g̃(x) = k(x)xj or

g̃(x) = |k(x)xj| for some j ≥ 0. Then

lim
δ→0

lim sup
n→∞

sup
s∈[1−δ,1+δ]

1

nhn

n∑
i=1

|g̃(xi/(shn))− g̃(xi/hn)| = 0.
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and

lim
δ→0

lim sup
n→∞

sup
s∈[1−δ,1+δ]

∣∣∣∣∣ 1

nshn

n∑
i=1

g̃(xi/(shn))− d
∫
X
g̃(u) du

∣∣∣∣∣ = 0.

If, in addition, Assumption 3.2 holds, then, for all ε > 0,

lim
δ→0

lim sup
n→∞

sup
s∈[1−δ,1+δ]

P

(
sup

s∈[1−δ,1+δ]

∣∣∣∣∣ 1√
nhn

n∑
i=1

[g̃(xi/(shn))− g̃(xi/hn)]ui

∣∣∣∣∣ > ε

)
= 0.

Proof. By Assumption 3.1, the second display in the lemma follows from the first. By Assump-

tion E.1, for large enough C, |g̃(u) − g̃(u′)| ≤ C|u − u′| I{max{|u|, |u′|} ≤ C}. Thus, the first

display in the lemma is bounded by

lim
δ→0

lim sup
n→∞

sup
s∈[1−δ,1+δ]

1

nhn

n∑
i=1

C · |s−1 − 1| I{|xi/hn| ≤ 2C}

= lim
δ→0

[
sup

s∈[1−δ,1+δ]
|s−1 − 1|

]
lim sup
n→∞

1

nhn

n∑
i=1

C · I{|xi/hn| ≤ 2C}

= lim
δ→0

[
sup

s∈[1−δ,1+δ]
|s−1 − 1|

]∫
X

I{u ≤ 2C} du · C = 0.

For the second part of the lemma, we have, for s, s̃ in a small enough neighborhood of 1, letting

σ2 denote a bound on σ2(x) in a neighborhood of zero,

E

(
n∑
i=1

[
1√
nhn

g̃(xi/(shn))− g̃(xi/(s̃hn))

]
ui

)2

≤ σ2 1

nhn

n∑
i=1

[g̃(xi/(shn))− g̃(xi/(s̃hn))]2

≤ σ2 1

nhn

n∑
i=1

C2|xi/hn|2|s−1 − s̃−1|2 I{|xi/hn| ≤ 2C}.

For large enough n, this is bounded by |s−1 − s̃−1|2 times a constant that does not depend on

n. The result now follows from Example 2.2.12 in van der Vaart and Wellner (1996).

Finally, for the last statement of the theorem, note that the length of the CI is given by

2ŝe(ĥ; k) cv1−α(t) which, under the sequence fn, is equal to a 1 + oP (1) term times

2n−1/2h−1/2n S(k) cv1−α(t) = 2n−r/2M1−r
n S(k)rB(k)1−rtr−1 cv1−α(t).

E.2 Bounds based on global polynomial approximations

We now verify the conditions of Theorem E.1 in a particular setting. In particular, we consider

classes G that relate M to a global polynomial approximation to the regression function, along

24



with a plug-in bandwidth ĥ based on this assumption.

Let F(M) be the Taylor or Hölder class of order p, and let F(M ; η) denote the class that

imposes this bound only over x ∈ [−η, η]. Let p̃ ≥ p be given. Let Qp̃f denote the minimum

mean squared error p̃th order polynomial predictor for the regression function f :

Qp̃f = arg min
h

∫
(f(x)− h(x))2d(x)σ2(x) dx

where the minimum is taken over polynomials of order p̃. Here, d(x) is such that the xi’s behave

as if drawn from a distribution with density xi, as formalized in the Assumption E.2 below.

Let xmin, xmax be given with −∞ < xmin < xmax <∞. Let

J(f) = J(f ; p̃, xmin, xmax) = sup
x∈[xmin,xmax]

|[Qp̃f ](p)(x)|

denote the maximum pth derivative of the minimum mean squared error p̃th order approxima-

tion of f .

Let ε > 0 be given. Let

Q(M, p̃, xmin, xmax, ε) = {f : J(f) = εM},

G(M) = G(M ; p̃, ε, η, xmin, xmax) = F(M, η) ∩Q(M, p̃, xmin, xmax, ε) ∩ {f : sup
x
|f(x)| ≤ K},

where K is some large constant, and

H(M,M) = ∪M∈[M,M ]G(M ; p̃, ε, η, xmin, xmax).

This class formalizes the notion that the pth derivative in a neighborhood of zero is bounded by

ε−1 times the maximum pth derivative of a global p̃th order global polynomial approximation.

Setting ε = 1 corresponds to the suggestion in the main text.

Let

Q̂p̃ = arg min
h

n∑
i=1

(yi − h(xi))
2, Ĵ = sup

x∈[xmin,xmax]

|Q̂(p)
p̃ (x)|

We make the following additional assumption on the xi’s.

Assumption E.2. For some bounded function d(x) and a sequence cn with cn → ∞ and

cn/
√
n→ 0, we have, for each j = 0, . . . , p̃,

cn

∣∣∣∣∣ 1n
n∑
i=1

xjifn(xi)−
∫
ujfn(u)d(u) du

∣∣∣∣∣→ 0

for any uniformly bounded sequence of functions fn. Furthermore, the p̃ + 1 by p̃ + 1 matrix
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with (j, `)th element given by
∫
uj+`−2d(u) du is invertible.

Given a sequence cn satisfying the conditions of Assumption E.2, if the xi’s are drawn iid

from a distribution with density d(x) for which all moments are finite, then Assumption E.2

will hold with probability approaching one.

We note the following consistency result for Ĵ .

Lemma E.2. Suppose Assumption 3.2 holds with σ2(x) bounded and that Assumption E.2

holds. Then cn|Ĵ − J(f)| p→ 0 uniformly over {f : supx |f(x)| ≤ K}.

Proof. Let A denote the p̃ + 1 by p̃ + 1 matrix with (j, `)th element given by
∫
uj+`−2d(u) du,

and let Â denote the sample analogue with (j, `)th element given by 1
n

∑n
i=1 x

j+`−2
i . Let bf be

the (p̃+ 1)× 1 vector with jth element
∫
ujf(u)d(u) du and b̂ be the sample analogue with jth

element 1
n

∑n
i=1 x

j−1
i yi. Then A−1bf gives the coefficients of the polynomial Qp̃f , and Â−1b̂ gives

the coefficients of the polynomial Q̂. Let s(A, b) denote the function that takes the maximum of

the pth derivative of this polynomial over [xmin, xmax], so that J(f) = s(A, bf ) and Ĵ = s(Â, b̂).

Note that |s(Â, b̂)− s(A, bf )| is bounded by max{‖Â−A‖, ‖b̂− bf‖} times a constant that does

not depend on f , so it suffices to show that cn max{‖Â−A‖, ‖b̂− bf‖} converges in probability

to zero uniformly over bounded f .

We have cn‖Â− A‖ → 0 by Assumption E.2. The jth element of cn(b̂− bf ) is given by

cn
n

n∑
i=1

uix
j−1
i + cn

(
1

n

n∑
i=1

f(xi)x
j−1
i −

∫
f(u)uj−1d(u) du

)
.

The expectation of the square of the first term converges to zero, since it is bounded by c2n/n
2

times a sequence that converges to a constant by Assumption E.2. The last term converges

to zero uniformly over bounded f by Assumption E.2. Thus, cn‖b̂ − bf‖
p→ 0 uniformly over

bounded f .

Let Mn and εn be given, and consider honesty over the sequence of classes G(Mn; p̃, εn,

η, xmin, xmax). Let t be given, and let ĥ = (n−1/2Ŝ(k)t/(M̂B̂(k)))2/(2p+1) where Ŝ(k)/S(k) and

B̂(k)/B(k) converge in probability to one uniformly over G(Mn) (as discussed in Section 3.3, we

can also directly minimize the sample analogue of the criterion such that t is the asymptotically

optimal bias-sd ratio). Then ĥ will satisfy the conditions of Theorem E.1 so long as ĥ/h(Mn)

converges in probability to one uniformly over G(Mn), where

h(M) = (n−1/2S(k)t/(MB(k)))2/(2p+1).

For this, it suffices that M̂/Mn converges in probability to one uniformly over G(Mn).
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According to Lemma E.2, we can use the estimate M̂ = ε−1Ĵ , which gives

M̂

Mn

− 1 =
ε−1n [Ĵ − J(f)]

Mn

= oP (1/(εnMncn))

uniformly over G(M ; p̃, εn, η, xmin, xmax). If Assumption E.2 holds for any cn with cn/
√
n → 0,

then this can be made to go to zero so long as εnMn

√
n→∞. Thus, the resulting CI is honest

over the class H(Mn,Mn) so long as εnMn

√
n → ∞, and such that Assumption 3.1 holds for

the sequences Mn and Mn. Note also that, if one uses M̂ = ε̃−1Ĵ where ε̃ < ε (thereby choosing

ε to be “too small”), then the resulting CI will be wider, but will still have correct coverage.

While Assumption 3.1 is stated as a high level condition, note that, in order for this condition

to hold with probability approaching one when the xi’s are drawn iid from a distribution

satisfying appropriate regularity conditions, we will need nhn → ∞ and hn → 0 for the given

sequence hn. This will be ensured for any sequence Mn ∈ [Mn,Mn] iff. Mn satisfies nM2
n →∞

and Mn satisfies Mn/n
p → 0 so that n(nM

2

n)−1/(2p+1) = n2p/(2p+1)M
−2/(2p+1)

n →∞. Also, note

that we have assumed a uniform bound on the magnitude of the regression function, which

means that εnMn must be bounded uniformly over n (although this condition could likely be

relaxed).

E.3 Lower bounds

The CI in Theorem E.1 has the property that the ratio of its length to the length of an “oracle”

FLCI that uses the unknown true M converges to one. If the optimal kernel is used and the

bias-sd ratio is chosen to be optimal for FLCI length, then this CI is efficient among FLCIs over

the class F(M ; η). Furthermore, it is highly efficient among all CIs that are honest over the class

F(M ; η), since one can apply bounds such as Corollary 3.3 in Armstrong and Kolesár (2018).

However, these results do not apply to the class G(M) over which the feasible CI with estimated

optimal bandwidth has coverage, since G(M) ( F(M ; η): they do not rule out the possibility

that this restricted class might allow for a more informative CI. To address this, we now derive

efficiency bounds for the class G(M) = G(M ; p̃, ε, η, xmin, xmax) used in Appendix E.2.

Theorem E.2. Let M , ε, η and [xmin, xmax] be given. Suppose that Assumptions 3.1 and 3.2

hold with σ(x) bounded from above and below away from zero and ui following a normal distri-

bution, and that Assumption E.2 holds with d(x) strictly positive on some open set in R\[−η, η].

Then, if the constant K used to define G(M) is large enough, the following holds. For any

sequence of CIs {T̂ ± χ̂} with asymptotic coverage at least 1− α under G(M),

lim
C→∞

lim inf
n

inf
f∈G(M)

Efn min{2nr/2χ̂, C} ≥ 2M1−rS(k∗)rB(k∗)1−r

rr(1− r)r−1

∫ z1−α

z=−∞
(z1−α − z)r dΦ(z)

27



where k∗ minimizes S(k∗)rB(k∗)1−r.

If ĥ and ŝe(h; k) satisfy the conditions of Theorem E.1, then, by Theorem E.2, the relative

efficiency of any CI {T̂ ± χ̂} to {T̂q(ĥ; k)± ŝe(ĥ; k) cv1−α(t)} satisfies the lower bound

lim
C→∞

lim inf
n

sup
f∈G(M)

Ef min{2nr/2χ̂, C}
Ef min{2nr/2ŝe(k̂; k) cv1−α(t), C}

≥
∫ z1−α
z=−∞(z1−α − z)r dΦ(z)

rr(1− r)r inf t̃ t̃
r−1 cv1−α(t̃)

· S(k∗)rB(k∗)1−r

S(k)rB(k)1−r
· inf t̃ cv1−α(t̃)

tr−1 cv1−α(t)
.

The first term is the lower bound in Theorem E.1 of Armstrong and Kolesár (2018), which

corresponds to the lower bound in Corollary 3.3 of that paper applied to the case where the

modulus ω(δ) is proportional to δr (as is the case in the relevant limiting experiment in the

present setting; see Appendix E.4). The second term is the relative efficiency of the kernel k,

and the final term is the efficiency of the bias-sd ratio used in the bandwidth ĥ relative to the

optimal bias-sd ratio for FLCI construction.

We now prove Theorem E.2. We begin by noting some properties of the optimal kernel k∗.

Lemma E.3. Let κ∗ solve

max
κ

κ(0) s.t.

∫
X
κ(u)2 du ≤ 1, κ ∈ F(1)

and let k∗(x) = κ∗(x)/
∫
X κ(u) du. Then k∗ has finite support, and it minimizes S(k)rB(k)1−r

over kernels k. Furthermore, S(k∗) = [σ2(0)/d]1/2rκ∗(0) and B(k∗) = (1 − r)κ∗(0), so that

S(k∗)rB(k∗)1−r = [σ2(0)/d]r/2rr(1− r)1−rκ∗(0).

Proof. The result follows from Low (1995) and Donoho and Low (1992). See Appendix E.4.3.

The next lemma uses functions constructed from κ∗ to derive testing bounds.

Lemma E.4. Suppose that the conditions of Theorem E.2 hold. Given c ∈ R, let Kc,n =

{f : f(0) = cn−p/(2p+1)} ∩ G(M). Then, if the constant K used to define G(M) is larger than a

constant that depends only on ε and M , there exists a sequence of functions κ̃0,n ∈ K0,n such

that the following holds. For any c ∈ R and any sequence of tests with asymptotic size α under

Kc,n, the asymptotic power under κ̃0,c is no greater than

Φ
(
|c/κ∗(0)|(2p+1)/(2p)M−1/(2p)[d/σ2(0)]1/2 − z1−α

)
.

Proof. It suffices to prove the result for c > 0. Let A and bf be defined as in the proof of

Lemma E.2, so that the coefficients of the minimum mean squared error p̃th order polynomial
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predictor are given by A−1bf . We first note that, under the conditions of the lemma, there

exist bounded functions f1, . . . , fp̃+1 supported on R\[−η, η] such that the vectors bf1 , . . . , bfp̃+1

are linearly independent. Thus, these vectors span Rp̃+1, which means that there exist func-

tions g1, . . . , gfp̃+1
, which are linear combinations of the fj’s (and therefore also bounded and

supported on R\[−η, η]) such that bgj = ej for each j, where ej denotes the jth standard basis

vector.

We construct functions in the sets Kc,n as follows. Let g̃ be a bounded function supported

on R\[−η, η] such that J(g̃) = εM . This function can be constructed by finding a polynomial

such that the supremum of the pth derivative over [xmin, xmax] is equal to εM , and constructing

a function with the given polynomial predictor coefficients as a linear combination of the gjs

defined above. Given a function f supported on [−η, η], the function bf,1g1 + bf,2g2 + · · · +
bf,p̃+1gp̃+1 is supported on R\[−η, η] and has the same polynomial predictor coefficients as f .

Thus, the function f − (bf,1g1 + bf,2g2 + · · ·+ bf,p̃+1gp̃+1) + g̃ has the same polynomial predictor

coefficients as g̃. It therefore follows that, if f ∈ F(M ; η) and K is larger than some constant

that depends only on an upper bound for the elements of bf and the functions g1, . . . , gp̃+1 and

g̃, this function will be in G(M).

Let κ̃c,M,n be defined in this way with the function κc,M,n playing the role of f , where

κc,M,n(x) = Mhpc,nκ
∗(x/hc,n) with hc,n = c̃n−1/(2p+1) where c̃ = |c/[Mκ∗(0)]|1/p. Note that

κc,M,n ∈ F(M) by the renormalization property of Taylor and Hölder classes. Thus, once n is

large enough that the support of κc,M,n is contained in [−η, η], we will have κ̃c,M,n ∈ Kc,n.

It follows that, for large enough n, the power under κ̃0,M,n of a level αn test of Kc,n is bounded

by the power under κ̃0,M,n of a test with rejection probability no greater than αn under κ̃c,M,n.

By the Neyman-Pearson lemma and standard calculations, this is no greater than Φ(sn−z1−αn)

where

s2n =
n∑
i=1

[κ̃c,M,n(xi)− κ̃0,M,n(xi)]
2 σ−2(xi) = M2h2pc,n

n∑
i=1

κ∗(xi/hc,n)2σ−2(xi)

+
n∑
i=1

[
p̃+1∑
j=1

gj(xi)σ
−2(xi)

∫
Mhpc,nκ

∗(u/hc,n)uj−1d(u) du

]2
.

Note that h2pc,n = c̃2pn−2p/(2p+1) = n−1c̃2p+1n1/(2p+1)c̃−1 = (nc̃n−1/(2p+1))−1c̃2p+1. Thus, the first

term equals c̃2p+1M2 1
nhc,n

∑n
i=1 κ

∗(xi/hc,n)2σ2(xi) → σ−2(0)c̃2p+1M2d
∫
X κ
∗(u)2 du. The last

term is bounded from above by a constant times

n

[
hpc,n

∫
κ∗(u/hc,n) du

]2
= n

[
hp+1
c,n

∫
κ∗(v) dv

]
= n1−(2p+2)/(2p+1)c̃(2p+2)/p

[∫
κ∗(u) du

]2
→ 0.

The result then follows by plugging in c̃ and noting
∫
κ∗(u)2 du = 1.
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To derive the lower bound on expected length, we argue as in the proof of Theorem C.2

in Armstrong and Kolesár (2019). Consider the set I(m) = {c̃nj/m : j ∈ Z, |j| ≤ m2} where

c̃n = κ∗(0)M1/(2p+1)[σ2(0)/d]p/(2p+1)n−p/(2p+1). Let T̂ ± χ̂ be a CI with asymptotic coverage at

least 1−α over G(M), and let N (n,m) denote the number of elements in I(m) that are in this

confidence interval. Note that min{2χ̂, 2c̃nm} ≥ c̃n[N (m,n) − 1]/m. Let κ0,n and Kc,n be as

defined in Lemma E.4. Let ψn,j denote the test that rejects when the point c̃nj/m ∈ N (n,m)

is not in the CI T̂ ± χ̂. Then ψn,j is an asymptotically level α test of Kc,n, so, by Lemma E.4,

Eκ0,nN (m,n) =
m2∑

j=−m2

(1− Eκ0,nψn,j) ≥
m2∑

j=−m2

(1− Φ(|j/m|(2p+1)/2p − z1−α)) + o(1).

Thus, for all m ∈ N, limC→∞ lim infnEκ0,n min{2c̃−1n χ̂, C} is bounded from below by

1

m

m2∑
j=−m2

Φ(z1−α − |j/m|(2p+1)/(2p)) =
1

m

m2∑
j=−m2

∫
I{|j/m|(2p+1)/(2p) ≤ z1−α − z} dΦ(z)

=
1

m

m2∑
j=−m2

∫
I{|j| ≤ (z1−α − z)2p/(2p+1)m} dΦ(z)

≥
∫ z1−α

z=−∞

1

m
min

{
2
[
(z1−α − z)2p/(2p+1)m− 1

]
,m
}
dΦ(z).

This converges to 2
∫ z1−α
z=−∞(z1−α − z)2p/(2p+1) dΦ(z) by the Dominated Convergence Theorem.

Thus,

lim
C→∞

lim inf
n

Eκ0,n min{2np/(2p+1)χ̂, C}

≥ 2κ∗(0)M1/(2p+1)[σ2(0)/d]p/(2p+1)

∫ z1−α

z=−∞
(z1−α − z)2p/(2p+1) dΦ(z)

= 2κ∗(0)M1−r[σ2(0)/d]r/2
∫ z1−α

z=−∞
(z1−α − z)r dΦ(z).

Plugging in S(k∗)rB(k∗)1−r = [σ2(0)/d]r/2rr(1− r)1−rκ∗(0) gives the result.

E.4 Limiting model and optimal kernel

In this appendix we derive the properties of the optimal kernel given in Lemma E.3. To do so,

we apply results from Low (1995) and Donoho and Low (1992) to the limiting model

Y (dt) = f(t) dt+ λW (dt), t ∈ X (S8)
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where X = R in the case where the point of interest is on the interior of the support of xi and

X = [0,∞) when it is on the boundary. We also use this limiting model to give some intuitive

motivation for the efficiency bound in Theorem E.2.

The white noise model (S8) is the same model as in Appendix B.2, with λ playing the

role of σ/
√
n in that appendix. Brown and Low (1996) establish a formal sense in which this

white noise model, with λ replaced by the function λn(t) = [σ2(t)/(nd(t))]1/2, is asymptotically

equivalent to the fixed design regression model. Since the asymptotic behavior of our estimators

and bounds depends only on xi in a shrinking neighborhood of zero, we then expect that λn(t)

can be replaced by the constant function λn(0). For technical reasons, however, the proof of

Theorem E.2 uses direct arguments, rather than appealing to the equivalence results of Brown

and Low (1996) (in particular, these results do not apply immediately for Taylor classes, or

when smoothness is only assumed in the neighborhood [−η, η]).

E.4.1 Kernel estimators

Let k be a kernel with
∫
X k(u) du = 1 and

∫
X k(u)uj du = 0 for j = 1, . . . , p− 1. The kernel k

will play the role of the equivalent kernel k∗q in Section 3.2.1. A linear estimator in the white

noise model takes the form

T̂ (h; k) = h−1
∫
k(t) dY (t).

Since this falls into the Donoho and Low (1992) framework given in Appendix B.2, it follows

that Eq. (2) holds with the o(1) terms equal to zero. Indeed, under f ∈ F(M), T̂ (h; k) follows

a normal distribution with bias

h−1
∫
X
k(t/h)(f(t)− f(0)) dt =

∫
X
k(u)(f(hu)− f(0)) du = Mhp

∫
X
k(u)(f̃(u)− f̃(0)) du

where f̃(u) = M−1h−pf(hu) is in F(1) iff. f ∈ F(M), by the renormalization property of the

Hölder and Taylor class. The variance is given by

λ2h−2
∫
X
k(t/h)2 dt = λ2h−1

∫
X
k(u)2 du.

Thus, if we take λ = [σ2(0)/(nd)]1/2, Eq. (2) holds with S(k) = σ(0)d−1/2
√∫

X k(u) du, B(k) =

supf̃∈F(1)
∫
X k(u)(f̃(u)− f̃(0)) du, γb = p and γs = −1/2. Note that S(k) matches Equation (5)

with k playing the role of the equivalent kernel k∗q in Equation (5). In addition, B(k) matches

the expression given in Theorem 3.1 (this can be shown by deriving B(k) using the arguments

in the proof of this theorem).
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E.4.2 Modulus of continuity

The modulus of continuity for the limiting model, as defined in Donoho (1994), is given by

ω(δ) = 2 sup
f
f(0) s.t.

∫
X
f(x)2 dx ≤ δ2/4, f ∈ F(M).

Let f ∗δ,M denote the solution to this problem. Note that the function κ∗ defined in Lemma E.3

is given by f ∗2,1. By Donoho and Low (1992), we have f ∗δ,M(x) = Mh̃pδ,Mκ
∗(x/h̃δ,M) where

h̃δ,M = (δ/(2M))2/(2p+1), which gives

ω(δ) = 2M(δ/(2M))2p/(2p+1)κ∗(0) = (2M)1−rδrκ∗(0)

where r = 2p/(2p+ 1) is the rate exponent. Note that

ω′(δ) = r(2M)1−rδr−1κ∗(0) = rδ−1ω(δ).

E.4.3 Optimal kernel

By Low (1995), the bias-sd optimizing kernel takes the form t 7→ f ∗δ,M(t)/
∫
X f
∗
δ,M(u) du for some

δ, so this implies that k∗(t) = κ∗(t)/
∫
X κ
∗(u) du is the optimal kernel. For Taylor classes, the

support can be seen to be compact by examining the formula given in Section 3.2.1. For Hölder

classes, this can be shown indirectly (see Lepski and Tsybakov, 2000). The worst-case bias of

the estimate with bandwidth hδ,M is given by

(1/2)(ω(δ)− δω′(δ)) = (1/2)ω(δ)(1− r) = (1/2)(1− r)(2M)1−rδrκ∗(0) = M(1− r)κ∗(0)hpδ,M

where we substitute δ = 2Mh
(2p+1)/2
δ,M in the last step. This gives the formula B(k∗) = (1 −

r)κ∗(0). The standard deviation is given by

λω′(δ) = λr(2M)1−rδr−1κ∗(0) = λrκ∗(0)h
−1/2
δ,M = [σ2(0)/d]1/2rκ∗(0)n−1/2h

−1/2
δ,M ,

which gives S(k∗) = [σ2(0)/d]1/2rκ∗(0). Thus, the leading term in the minimax performance is

S(k∗)rB(k∗)1−r = [σ2(0)/d]r/2rr(1− r)1−rκ∗(0).

E.4.4 Optimal FLCI and efficiency bound

We now show that the efficiency bound in Theorem E.2 corresponds to the bound given in

Corollary 3.3 in Armstrong and Kolesár (2018), applied to the class F in the limiting model (S8).

Thus, Theorem E.2 can be interpreted as showing that this efficiency bound holds in a formal

asymptotic sense, with F(M ; η) replaced by the smaller class G(M). We note that, for Taylor
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classes, such a bound is given for the class F(M) in Theorem E.1 in Armstrong and Kolesár

(2018). Theorem E.2 shows that this efficiency bound holds for G(M).

First, we derive the length of the optimal FLCI, which is the denominator of the expression

in Corollary 3.3 in Armstrong and Kolesár (2018). The bias-sd ratio is

tδ =
(1/2)(1− r)(2M)1−rδrκ∗(0)

λr(2M)1−rδr−1κ∗(0)
= (1/2)(1/r − 1)δ/λ.

Since optimizing over the bandwidth is equivalent to optimizing over δ, it follows that the

optimal FLCI has length

inf
δ

2 cv1−α(tδ) · λω′(δ) = inf
δ

2 cv1−α(tδ) · λr(2M)1−rδr−1κ∗(0)

= inf
δ

2 cv1−α(tδ) · λr(2M)1−rtr−1δ λr−1(1/r − 1)1−r2r−1κ∗(0)

= λrM1−rr(1/r − 1)1−rκ∗(0) inf
δ

2 cv1−α(tδ) · tr−1δ .

Plugging in λ = [σ2(0)/(nd)]1/2 and S(k∗)nB(k∗)1−r = [σ2(0)/d]r/2rr(1 − r)1−rκ∗(0) gives

2n−r/2M1−rS(k∗)rB(k∗)1−r infδ cv1−α(tδ) · tr−1δ , which is the asymptotic length of the CI given

in Theorem E.1 with k and h chosen optimally.

The lower bound given the numerator of the expression in Corollary 3.3 in Armstrong and

Kolesár (2018) is∫ z1−α

z=−∞
ω(2λ(z1−α − z)) dz = (2M)1−rκ∗(0)2rλr

∫ z1−α

z=−∞
(z1−α − z)r dz.

Plugging in λ = [σ2(0)/(nd)]1/2 and S(k∗)rB(k∗)1−r = [σ2(0)/d]r/2rr(1 − r)1−rκ∗(0) gives

2n−r/2M1−r S(k∗)rB(k∗)1−r

rr(1−r)1−r
∫ z1−α
z=−∞(z1−α − z)r dz, which is the asymptotic lower bound given in

Theorem E.2.

Appendix F Additional Monte Carlo results

In this appendix, we revisit the simulation study from Section 5 in the paper, and consider an

additional method for constructing CIs, as well as a number of variations on the DGP.

In particular, we also consider a conventional CI based on the coverage-error optimal band-

width ĥce, which can be considered a form of undersmoothing, but without any bias correction.

Table S3 reports the results for Designs 1–3 with this additional methods added. Using the

bandwidth ĥce leads to better coverage of conventional CIs relative to ĥ∗pt,rot when M = 2,

but worse coverage when M = 6.

Next, we investigate the robustness of the results to a number of variations on the baseline
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design. Table S4 reports the results when xi is drawn from a Beta(2, 5) distribution. In

Table S5, to consider the effects of heteroskedasticity, we draw the errors form the distribution

N (0, 1/4(1 +
√
|xi|)2), while xi is drawn from a uniform distribution, as in the baseline. In

Table S6, xi ∼ Beta(2, 5) distribution, and ui ∼ N (0, 1/4(1 +
√
|xi|)2). In Table S7, we

draw ui from a log-normal distribution, scaled to have mean zero and variance 1/4, while xi

is drawn from a uniform distribution. Table S8 reports the results for ui drawn from a log-

normal distribution, scaled to have mean zero and variance 1/4, and xi ∼ Beta(2, 5). Table S9

returns to the baseline specification, but with ui ∼ N (0, 1/16). Finally, in Table S10 we

consider a smooth approximation to the functions f1, f2, and f3. In particular, we replace the

function s(·) in the definition of these functions by the function sλ(x) = −Li2(−eλx)/λ2, where

Li2(x) = −
∫ x
0

log(1−s)
s

ds is the dilogarithm function. The function sλ is analytic for any λ, and

it converges to s as λ→∞. We set λ = 40.

The results in Table S10 are nearly identical to those in Table S3, indicating that the lack

of differentiability is not driving the results. The FLCIs perform well for all designs in terms of

coverage when the correct or conservative M is used, or when one uses M̂rot. The coverage is

at least 92.5% in all designs except Table S7, where the coverage, where the FLCIs undercover

slightly for Design 3, with coverage around 90%. The RBC CIs with bandwidth chosen based

on uniform-in-f asymptotics (either ĥ∗rmse,2, ĥ
∗
rmse,6, or ĥ∗

rmse,M̂rot
) also perform well in terms

of coverage, with coverage at least 93% for all designs, although they are longer than FLCI CIs.

The remaining CIs, based on pointwise-in-f asymptotics, suffer from poor coverage in these

alternative specifications, just like in the baseline specification in the main text.
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Table S1: Kernel constants for standard deviation and maximum bias of local polynomial
regression estimators of order q for selected kernels. Inference at a boundary point

BT
p,q(k) =

∫ 1

0
|upk∗q(u)| du BHöl

p,q (k)

Kernel (k(u)) q
∫ 1

0
k∗q(u)2 du p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

I{|u| ≤ 1}

0 1 1
2

1
2

1 4 16
27

59
162

8
27

1
6

2 9 0.7055 0.4374 0.3294 0.2352 216
3125

1
20

Triangular

(1− |u|)+

0 4
3

1
3

1
3

1 24
5

3
8

3
16

27
128

1
10

2 72
7

0.4293 0.2147 0.1400 0.1699 32
729

1
35

Epanechnikov
3
4
(1− u2)+

0 6
5

3
8

3
8

1 4.498 0.4382 0.2290 0.2369 11
95

2 9.816 0.5079 0.2662 0.1777 0.1913 0.0508 15
448

Table S2: Kernel constants for standard deviation and maximum bias of local polynomial
regression estimators of order q for selected kernels. Inference at an interior point.

BT
p,q(k) =

∫ 1

−1|u
pk∗q(u)| du BHöl

p,q (k)

Kernel q
∫ 1

−1 k
∗
q(u)2 du p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

I{|u| ≤ 1}

0 1
2

1
2

1
2

1 1
2

1
2

1
3

1
2

1
3

2 9
8

0.4875 0.2789 0.1975 0.2898 0.0859 1
16

Triangular

(1− |u|)+

0 2
3

1
3

1
3

1 2
3

1
3

1
6

1
3

1
6

2 456
343

0.3116 0.1399 0.0844 0.2103 0.0517 8
245

Epanechnikov
3
4
(1− u2)+

0 3
5

3
8

3
8

1 3
5

3
8

1
5

3
8

1
5

2 5
4

0.3603 0.1718 0.1067 0.2347 0.0604 5
128
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Table S3: Monte Carlo simulation: baseline DGP

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 1

RBC h = ĥ∗pt, b = b̂∗pt 0.063 0.035 0.75 55.6 0.73 0.157 0.036 0.62 0.1 0.61

RBC h = b = ĥ∗pt 0.025 0.042 0.75 93.1 0.88 0.042 0.047 0.62 89.1 0.78

RBC h = ĥce, b = b̂ce 0.030 0.041 0.45 85.8 0.85 0.059 0.045 0.34 72.4 0.76

RBC h = b = ĥ∗rmse,2 0.001 0.061 0.36 94.5 1.27 0.002 0.061 0.36 94.5 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.26

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.078 0.22 93.9 1.64 0.000 0.097 0.14 93.4 1.63

Conventional ĥ∗pt,rot 0.032 0.036 0.56 76.6 0.76 0.049 0.046 0.31 77.4 0.77

Conventional ĥce 0.029 0.039 0.45 85.2 0.81 0.058 0.044 0.34 72.3 0.74

FLCI, M = 2 ĥ∗rmse,2 0.021 0.043 0.36 94.9 1.00 0.065 0.043 0.36 75.2 0.80

FLCI, M = 6 ĥ∗rmse,6 0.009 0.054 0.23 96.6 1.25 0.028 0.053 0.23 94.7 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.008 0.056 0.22 95.6 1.29 0.010 0.069 0.14 96.3 1.30

Design 2

RBC h = ĥ∗pt, b = b̂∗pt 0.043 0.035 0.77 75.9 0.72 0.129 0.035 0.77 4.6 0.58

RBC h = b = ĥ∗pt 0.026 0.041 0.77 90.9 0.87 0.077 0.042 0.77 53.0 0.70

RBC h = ĥce, b = b̂ce 0.028 0.040 0.49 87.4 0.83 0.074 0.041 0.44 54.1 0.69

RBC h = b = ĥ∗rmse,2 0.002 0.061 0.36 94.5 1.27 0.006 0.061 0.36 94.4 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.26

RBC h = b = ĥ∗
rmse,M̂rot

0.001 0.068 0.30 94.0 1.43 0.000 0.083 0.20 93.8 1.38

Conventional ĥ∗pt,rot 0.032 0.032 0.78 74.4 0.67 0.073 0.040 0.44 53.0 0.66

Conventional ĥce 0.028 0.037 0.49 85.9 0.78 0.076 0.039 0.44 50.1 0.66

FLCI, M = 2 ĥ∗rmse,2 0.020 0.043 0.36 95.1 1.00 0.061 0.043 0.36 78.1 0.80

FLCI, M = 6 ĥ∗rmse,6 0.009 0.054 0.23 96.6 1.25 0.028 0.053 0.23 94.7 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.013 0.048 0.30 94.3 1.13 0.020 0.059 0.20 94.3 1.10
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Monte Carlo simulation: baseline DGP (continued)

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 3

RBC h = ĥ∗pt, b = b̂∗pt -0.043 0.035 0.77 75.7 0.72 -0.123 0.035 0.74 9.9 0.59

RBC h = b = ĥ∗pt -0.024 0.042 0.77 90.8 0.87 -0.066 0.043 0.74 60.3 0.71

RBC h = ĥce, b = b̂ce -0.026 0.040 0.49 88.1 0.83 -0.063 0.043 0.43 64.2 0.71

RBC h = b = ĥ∗rmse,2 -0.002 0.061 0.36 94.5 1.27 -0.007 0.061 0.36 94.4 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.26

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.074 0.25 94.2 1.54 0.000 0.092 0.16 93.6 1.54

Conventional ĥ∗pt,rot -0.032 0.033 0.72 74.7 0.69 -0.065 0.042 0.39 62.0 0.70

Conventional ĥce -0.028 0.037 0.49 85.7 0.78 -0.074 0.040 0.43 52.0 0.66

FLCI, M = 2 ĥ∗rmse,2 -0.020 0.043 0.36 95.0 1.00 -0.060 0.043 0.36 78.1 0.80

FLCI, M = 6 ĥ∗rmse,6 -0.009 0.054 0.23 96.5 1.25 -0.027 0.053 0.23 94.7 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

-0.010 0.052 0.25 95.6 1.22 -0.013 0.065 0.16 96.1 1.22

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of CIs (in %);

RL—relative (to optimal FLCI) length.

Bandwidth descriptions: ĥ∗pt—plugin estimate of pointwise MSE optimal bandwidth (bw); b̂∗pt—analog for estimate of

the bias; ĥce—plugin estimate of coverage error optimal bw; b̂ce—analog for estimate of the bias; The implementation of

Calonico et al. (2018) is used for all four bws. ĥ∗rmse,2, ĥ
∗
rmse,6—RMSE optimal bw, assumingM = 2, andM = 6, respectively.

ĥ∗pt,rot—Fan and Gijbels (1996) rule of thumb; ĥ∗
rmse,M̂rot

—RMSE optimal bw, using rule-of-thumb for M . 50,000 Monte

Carlo draws.
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Table S4: Monte Carlo simulation: beta distribution for xi

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 1

RBC h = ĥ∗pt, b = b̂∗pt 0.030 0.037 0.56 85.6 0.83 0.056 0.041 0.43 64.8 0.74

RBC h = b = ĥ∗pt 0.009 0.044 0.56 93.7 0.98 0.009 0.050 0.43 91.7 0.92

RBC h = ĥce, b = b̂ce 0.009 0.044 0.38 93.1 0.99 0.011 0.049 0.29 92.6 0.90

RBC h = b = ĥ∗rmse,2 0.001 0.054 0.36 94.6 1.21 0.003 0.054 0.37 94.6 0.98

RBC h = b = ĥ∗rmse,6 0.000 0.068 0.23 94.3 1.53 0.000 0.068 0.23 94.4 1.24

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.073 0.21 94.1 1.62 0.000 0.089 0.14 93.8 1.61

Conventional ĥ∗pt,rot 0.025 0.038 0.53 85.6 0.84 0.038 0.045 0.29 83.8 0.82

Conventional ĥce 0.019 0.040 0.38 90.3 0.90 0.038 0.045 0.29 82.4 0.81

FLCI, M = 2 ĥ∗rmse,2 0.019 0.041 0.36 94.7 1.00 0.058 0.041 0.37 77.0 0.81

FLCI, M = 6 ĥ∗rmse,6 0.009 0.050 0.23 96.5 1.23 0.025 0.050 0.23 94.7 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.007 0.053 0.21 96.1 1.31 0.009 0.064 0.14 96.3 1.29

Design 2

RBC h = ĥ∗pt, b = b̂∗pt 0.027 0.037 0.57 88.0 0.82 0.073 0.038 0.53 49.0 0.68

RBC h = b = ĥ∗pt 0.013 0.043 0.57 93.2 0.97 0.032 0.045 0.53 84.3 0.82

RBC h = ĥce, b = b̂ce 0.014 0.043 0.40 92.7 0.96 0.032 0.045 0.36 84.8 0.83

RBC h = b = ĥ∗rmse,2 0.003 0.054 0.36 94.6 1.21 0.007 0.054 0.37 94.5 0.98

RBC h = b = ĥ∗rmse,6 0.000 0.068 0.23 94.3 1.53 0.000 0.068 0.23 94.4 1.24

RBC h = b = ĥ∗
rmse,M̂rot

0.001 0.068 0.25 94.2 1.51 0.001 0.075 0.20 94.0 1.35

Conventional ĥ∗pt,rot 0.026 0.035 0.70 85.1 0.79 0.060 0.039 0.43 62.8 0.71

Conventional ĥce 0.019 0.039 0.40 90.8 0.88 0.050 0.041 0.36 72.2 0.75

FLCI, M = 2 ĥ∗rmse,2 0.018 0.041 0.36 94.9 1.00 0.055 0.041 0.37 79.1 0.81

FLCI, M = 6 ĥ∗rmse,6 0.009 0.050 0.23 96.5 1.23 0.025 0.050 0.23 94.7 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.009 0.049 0.25 95.7 1.22 0.019 0.054 0.20 94.2 1.09
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Monte Carlo simulation: beta distribution for xi (continued)

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 3

RBC h = ĥ∗pt, b = b̂∗pt -0.031 0.037 0.55 86.2 0.83 -0.070 0.039 0.49 52.9 0.71

RBC h = b = ĥ∗pt -0.012 0.044 0.55 93.9 0.98 -0.024 0.047 0.49 89.4 0.85

RBC h = ĥce, b = b̂ce -0.011 0.044 0.39 92.9 0.99 -0.018 0.049 0.31 91.3 0.89

RBC h = b = ĥ∗rmse,2 -0.002 0.054 0.36 94.6 1.21 -0.007 0.054 0.37 94.5 0.98

RBC h = b = ĥ∗rmse,6 0.000 0.068 0.23 94.3 1.53 0.000 0.068 0.23 94.3 1.24

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.072 0.22 94.2 1.60 0.000 0.085 0.15 93.9 1.54

Conventional ĥ∗pt,rot -0.025 0.036 0.65 85.3 0.80 -0.051 0.041 0.37 72.1 0.75

Conventional ĥce -0.018 0.040 0.39 91.3 0.89 -0.040 0.044 0.31 81.6 0.79

FLCI, M = 2 ĥ∗rmse,2 -0.018 0.041 0.36 95.1 1.00 -0.054 0.041 0.37 79.6 0.81

FLCI, M = 6 ĥ∗rmse,6 -0.008 0.050 0.23 96.6 1.23 -0.024 0.050 0.23 94.8 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

-0.007 0.052 0.22 96.1 1.29 -0.011 0.061 0.15 96.3 1.23

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of CIs (in %);

RL—relative (to optimal FLCI) length.

Bandwidth descriptions: ĥ∗pt—plugin estimate of pointwise MSE optimal bandwidth (bw); b̂∗pt—analog for estimate of

the bias; ĥce—plugin estimate of coverage error optimal bw; b̂ce—analog for estimate of the bias; The implementation of

Calonico et al. (2018) is used for all four bws. ĥ∗rmse,2, ĥ
∗
rmse,6—RMSE optimal bw, assumingM = 2, andM = 6, respectively.

ĥ∗pt,rot—Fan and Gijbels (1996) rule of thumb; ĥ∗
rmse,M̂rot

—RMSE optimal bw, using rule-of-thumb for M . 50,000 Monte

Carlo draws.
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Table S5: Monte Carlo simulation: heteroskedastic errors

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 1

RBC h = ĥ∗pt, b = b̂∗pt 0.058 0.049 0.69 78.8 0.83 0.160 0.050 0.63 6.7 0.70

RBC h = b = ĥ∗pt 0.019 0.058 0.69 94.3 0.97 0.044 0.060 0.63 91.0 0.84

RBC h = ĥce, b = b̂ce 0.029 0.054 0.45 90.4 0.91 0.065 0.057 0.37 76.3 0.80

RBC h = b = ĥ∗rmse,2 0.003 0.070 0.43 94.5 1.17 0.006 0.070 0.42 94.5 0.99

RBC h = b = ĥ∗rmse,6 0.000 0.083 0.28 94.4 1.40 0.000 0.084 0.27 94.4 1.18

RBC h = b = ĥ∗
rmse,M̂rot

0.001 0.087 0.27 94.2 1.46 0.000 0.105 0.16 93.8 1.47

Conventional ĥ∗pt,rot 0.038 0.045 0.73 81.1 0.76 0.074 0.053 0.40 67.6 0.75

Conventional ĥce 0.028 0.051 0.45 89.8 0.86 0.064 0.055 0.37 75.1 0.77

FLCI, M = 2 ĥ∗rmse,2 0.029 0.052 0.43 95.1 1.00 0.083 0.052 0.42 73.6 0.83

FLCI, M = 6 ĥ∗rmse,6 0.013 0.061 0.28 97.3 1.20 0.036 0.062 0.27 94.8 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.012 0.064 0.27 96.4 1.25 0.013 0.077 0.16 96.9 1.25

Design 2

RBC h = ĥ∗pt, b = b̂∗pt 0.040 0.049 0.69 87.2 0.83 0.121 0.049 0.69 29.9 0.69

RBC h = b = ĥ∗pt 0.022 0.058 0.69 93.5 0.97 0.064 0.058 0.69 79.9 0.81

RBC h = ĥce, b = b̂ce 0.026 0.054 0.46 91.4 0.90 0.074 0.054 0.44 69.6 0.76

RBC h = b = ĥ∗rmse,2 0.005 0.069 0.43 94.5 1.16 0.014 0.070 0.43 94.0 0.98

RBC h = b = ĥ∗rmse,6 0.000 0.083 0.28 94.4 1.39 0.001 0.083 0.27 94.4 1.17

RBC h = b = ĥ∗
rmse,M̂rot

0.003 0.081 0.31 94.5 1.36 0.003 0.090 0.24 93.5 1.26

Conventional ĥ∗pt,rot 0.034 0.043 0.85 84.1 0.73 0.091 0.047 0.61 49.6 0.66

Conventional ĥce 0.027 0.050 0.46 90.7 0.85 0.076 0.051 0.44 65.0 0.72

FLCI, M = 2 ĥ∗rmse,2 0.026 0.051 0.43 95.6 1.00 0.076 0.052 0.43 77.7 0.83

FLCI, M = 6 ĥ∗rmse,6 0.013 0.061 0.28 97.3 1.20 0.037 0.061 0.27 94.8 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.015 0.060 0.31 96.5 1.18 0.029 0.066 0.24 92.8 1.08
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Monte Carlo simulation: heteroskedastic errors (continued)

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 3

RBC h = ĥ∗pt, b = b̂∗pt -0.040 0.049 0.69 87.2 0.83 -0.118 0.049 0.69 33.2 0.69

RBC h = b = ĥ∗pt -0.020 0.058 0.69 93.4 0.97 -0.058 0.058 0.69 81.1 0.81

RBC h = ĥce, b = b̂ce -0.024 0.054 0.46 91.4 0.90 -0.066 0.055 0.44 74.3 0.77

RBC h = b = ĥ∗rmse,2 -0.005 0.069 0.43 94.5 1.17 -0.014 0.070 0.42 93.9 0.98

RBC h = b = ĥ∗rmse,6 0.000 0.083 0.28 94.4 1.39 -0.001 0.084 0.27 94.3 1.17

RBC h = b = ĥ∗
rmse,M̂rot

-0.002 0.084 0.29 94.4 1.41 -0.001 0.099 0.19 93.9 1.38

Conventional ĥ∗pt,rot -0.035 0.044 0.82 83.2 0.73 -0.085 0.049 0.53 56.2 0.69

Conventional ĥce -0.026 0.050 0.46 90.4 0.85 -0.075 0.052 0.44 65.1 0.72

FLCI, M = 2 ĥ∗rmse,2 -0.026 0.051 0.43 95.6 1.00 -0.075 0.052 0.42 78.2 0.83

FLCI, M = 6 ĥ∗rmse,6 -0.013 0.061 0.28 97.2 1.20 -0.037 0.062 0.27 94.7 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

-0.013 0.062 0.29 96.8 1.22 -0.018 0.072 0.19 96.5 1.18

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of CIs (in %);

RL—relative (to optimal FLCI) length.

Bandwidth descriptions: ĥ∗pt—plugin estimate of pointwise MSE optimal bandwidth (bw); b̂∗pt—analog for estimate of

the bias; ĥce—plugin estimate of coverage error optimal bw; b̂ce—analog for estimate of the bias; The implementation of

Calonico et al. (2018) is used for all four bws. ĥ∗rmse,2, ĥ
∗
rmse,6—RMSE optimal bw, assumingM = 2, andM = 6, respectively.

ĥ∗pt,rot—Fan and Gijbels (1996) rule of thumb; ĥ∗
rmse,M̂rot

—RMSE optimal bw, using rule-of-thumb for M . 50,000 Monte

Carlo draws.
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Table S6: Monte Carlo simulation: heteroskedastic errors and beta

distribution for xi

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 1

RBC h = ĥ∗pt, b = b̂∗pt 0.027 0.050 0.50 90.8 0.90 0.062 0.052 0.44 72.1 0.79

RBC h = b = ĥ∗pt 0.006 0.059 0.50 94.5 1.05 0.011 0.062 0.44 93.0 0.94

RBC h = ĥce, b = b̂ce 0.009 0.057 0.37 94.0 1.03 0.015 0.060 0.31 92.4 0.92

RBC h = b = ĥ∗rmse,2 0.003 0.062 0.44 94.6 1.11 0.008 0.062 0.43 94.4 0.95

RBC h = b = ĥ∗rmse,6 0.000 0.075 0.27 94.5 1.35 0.000 0.076 0.26 94.5 1.16

RBC h = b = ĥ∗
rmse,M̂rot

0.001 0.083 0.23 94.3 1.50 0.001 0.096 0.16 94.0 1.46

Conventional ĥ∗pt,rot 0.029 0.048 0.64 88.3 0.86 0.054 0.052 0.36 78.5 0.80

Conventional ĥce 0.018 0.052 0.37 92.4 0.94 0.043 0.055 0.31 84.0 0.83

FLCI, M = 2 ĥ∗rmse,2 0.025 0.049 0.44 94.9 1.00 0.073 0.050 0.43 76.0 0.85

FLCI, M = 6 ĥ∗rmse,6 0.012 0.057 0.27 97.1 1.18 0.033 0.058 0.26 94.7 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.008 0.063 0.23 97.0 1.31 0.013 0.070 0.16 96.8 1.24

Design 2

RBC h = ĥ∗pt, b = b̂∗pt 0.024 0.050 0.50 91.8 0.89 0.069 0.050 0.49 69.8 0.76

RBC h = b = ĥ∗pt 0.010 0.058 0.50 94.3 1.05 0.025 0.059 0.49 91.3 0.90

RBC h = ĥce, b = b̂ce 0.012 0.057 0.37 93.8 1.02 0.032 0.058 0.36 89.0 0.88

RBC h = b = ĥ∗rmse,2 0.006 0.061 0.44 94.5 1.10 0.017 0.062 0.44 93.6 0.94

RBC h = b = ĥ∗rmse,6 0.001 0.075 0.27 94.5 1.35 0.001 0.075 0.27 94.5 1.15

RBC h = b = ĥ∗
rmse,M̂rot

0.001 0.081 0.25 94.3 1.46 0.002 0.085 0.22 94.0 1.29

Conventional ĥ∗pt,rot 0.028 0.047 0.73 89.6 0.84 0.072 0.048 0.57 64.1 0.74

Conventional ĥce 0.018 0.052 0.37 92.7 0.93 0.050 0.053 0.36 80.8 0.80

FLCI, M = 2 ĥ∗rmse,2 0.023 0.049 0.44 95.4 1.00 0.068 0.049 0.44 79.3 0.85

FLCI, M = 6 ĥ∗rmse,6 0.012 0.057 0.27 97.1 1.18 0.034 0.057 0.27 94.8 1.00
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Monte Carlo simulation: heteroskedastic errors and beta distribu-

tion for xi (continued)

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.009 0.061 0.25 97.1 1.27 0.023 0.063 0.22 94.8 1.12

Design 3

RBC h = ĥ∗pt, b = b̂∗pt -0.027 0.050 0.50 91.0 0.90 -0.071 0.051 0.47 69.0 0.78

RBC h = b = ĥ∗pt -0.008 0.059 0.50 94.5 1.05 -0.020 0.060 0.47 92.8 0.92

RBC h = ĥce, b = b̂ce -0.011 0.057 0.37 93.8 1.03 -0.021 0.060 0.32 91.6 0.92

RBC h = b = ĥ∗rmse,2 -0.005 0.061 0.44 94.6 1.10 -0.016 0.062 0.44 93.7 0.94

RBC h = b = ĥ∗rmse,6 0.000 0.075 0.27 94.5 1.35 0.000 0.076 0.27 94.5 1.15

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.083 0.23 94.3 1.49 0.000 0.092 0.17 94.2 1.40

Conventional ĥ∗pt,rot -0.027 0.047 0.70 89.4 0.85 -0.066 0.050 0.49 69.4 0.76

Conventional ĥce -0.017 0.052 0.37 93.0 0.93 -0.043 0.054 0.32 84.5 0.82

FLCI, M = 2 ĥ∗rmse,2 -0.022 0.049 0.44 95.5 1.00 -0.067 0.049 0.44 79.9 0.85

FLCI, M = 6 ĥ∗rmse,6 -0.011 0.057 0.27 97.2 1.18 -0.032 0.057 0.27 94.9 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

-0.008 0.062 0.23 97.1 1.30 -0.014 0.068 0.17 96.8 1.21

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of CIs (in %);

RL—relative (to optimal FLCI) length.

Bandwidth descriptions: ĥ∗pt—plugin estimate of pointwise MSE optimal bandwidth (bw); b̂∗pt—analog for estimate of

the bias; ĥce—plugin estimate of coverage error optimal bw; b̂ce—analog for estimate of the bias; The implementation of

Calonico et al. (2018) is used for all four bws. ĥ∗rmse,2, ĥ
∗
rmse,6—RMSE optimal bw, assumingM = 2, andM = 6, respectively.

ĥ∗pt,rot—Fan and Gijbels (1996) rule of thumb; ĥ∗
rmse,M̂rot

—RMSE optimal bw, using rule-of-thumb for M . 50,000 Monte

Carlo draws.
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Table S7: Monte Carlo simulation: log-normal errors

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 1

RBC h = ĥ∗pt, b = b̂∗pt 0.062 0.034 0.73 57.3 0.73 0.151 0.035 0.60 0.2 0.62

RBC h = b = ĥ∗pt 0.022 0.041 0.73 94.5 0.88 0.036 0.045 0.60 91.5 0.78

RBC h = ĥce, b = b̂ce 0.042 0.037 0.55 83.0 0.79 0.111 0.037 0.50 18.8 0.66

RBC h = b = ĥ∗rmse,2 0.001 0.058 0.35 91.1 1.24 0.003 0.057 0.35 91.5 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.070 0.23 89.7 1.52 0.000 0.070 0.23 89.6 1.23

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.072 0.22 89.3 1.56 0.000 0.087 0.14 87.6 1.54

Conventional ĥ∗pt,rot 0.032 0.034 0.55 78.7 0.74 0.048 0.044 0.31 82.2 0.77

Conventional ĥce 0.041 0.034 0.55 81.2 0.73 0.107 0.035 0.50 16.4 0.61

FLCI, M = 2 ĥ∗rmse,2 0.021 0.041 0.35 96.2 1.00 0.062 0.041 0.35 79.1 0.81

FLCI, M = 6 ĥ∗rmse,6 0.009 0.051 0.23 95.5 1.23 0.027 0.050 0.23 96.2 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.007 0.052 0.22 94.6 1.27 0.010 0.064 0.14 94.8 1.27

Design 2

RBC h = ĥ∗pt, b = b̂∗pt 0.042 0.033 0.76 80.5 0.72 0.127 0.033 0.76 2.5 0.59

RBC h = b = ĥ∗pt 0.024 0.040 0.76 93.3 0.86 0.073 0.040 0.76 52.2 0.70

RBC h = ĥce, b = b̂ce 0.033 0.036 0.56 89.8 0.79 0.097 0.037 0.55 19.0 0.64

RBC h = b = ĥ∗rmse,2 0.002 0.057 0.35 91.3 1.24 0.006 0.057 0.35 91.9 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.070 0.23 89.6 1.52 0.000 0.070 0.23 89.7 1.23

RBC h = b = ĥ∗
rmse,M̂rot

0.002 0.063 0.29 90.3 1.37 0.000 0.075 0.19 89.0 1.32

Conventional ĥ∗pt,rot 0.032 0.030 0.76 77.4 0.66 0.072 0.037 0.43 53.3 0.66

Conventional ĥce 0.034 0.033 0.56 87.8 0.72 0.099 0.034 0.55 11.4 0.59

FLCI, M = 2 ĥ∗rmse,2 0.019 0.041 0.35 96.4 1.00 0.059 0.041 0.35 83.5 0.81

FLCI, M = 6 ĥ∗rmse,6 0.009 0.051 0.23 95.6 1.23 0.027 0.051 0.23 96.5 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.013 0.046 0.29 94.7 1.11 0.019 0.055 0.19 94.9 1.08
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Monte Carlo simulation: log-normal errors (continued)

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 3

RBC h = ĥ∗pt, b = b̂∗pt -0.043 0.034 0.76 67.1 0.73 -0.121 0.034 0.72 12.3 0.60

RBC h = b = ĥ∗pt -0.024 0.040 0.76 83.9 0.86 -0.065 0.041 0.72 56.1 0.72

RBC h = ĥce, b = b̂ce -0.030 0.037 0.55 78.7 0.80 -0.077 0.039 0.51 45.8 0.69

RBC h = b = ĥ∗rmse,2 -0.002 0.057 0.36 90.7 1.23 -0.006 0.057 0.36 90.1 1.00

RBC h = b = ĥ∗rmse,6 0.000 0.069 0.23 89.7 1.50 0.000 0.069 0.23 89.7 1.22

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.068 0.25 89.6 1.48 0.000 0.083 0.16 88.1 1.46

Conventional ĥ∗pt,rot -0.031 0.033 0.71 69.3 0.72 -0.063 0.040 0.39 54.9 0.71

Conventional ĥce -0.033 0.034 0.55 74.2 0.73 -0.093 0.035 0.51 27.8 0.61

FLCI, M = 2 ĥ∗rmse,2 -0.020 0.041 0.36 89.9 1.00 -0.059 0.041 0.36 70.1 0.81

FLCI, M = 6 ĥ∗rmse,6 -0.009 0.050 0.23 93.0 1.23 -0.027 0.050 0.23 88.4 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

-0.010 0.050 0.25 91.8 1.22 -0.012 0.060 0.16 91.6 1.21

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of CIs (in %);

RL—relative (to optimal FLCI) length.

Bandwidth descriptions: ĥ∗pt—plugin estimate of pointwise MSE optimal bandwidth (bw); b̂∗pt—analog for estimate of

the bias; ĥce—plugin estimate of coverage error optimal bw; b̂ce—analog for estimate of the bias; The implementation of

Calonico et al. (2018) is used for all four bws. ĥ∗rmse,2, ĥ
∗
rmse,6—RMSE optimal bw, assumingM = 2, andM = 6, respectively.

ĥ∗pt,rot—Fan and Gijbels (1996) rule of thumb; ĥ∗
rmse,M̂rot

—RMSE optimal bw, using rule-of-thumb for M . 50,000 Monte

Carlo draws.
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Table S8: Monte Carlo simulation: log-normal errors and beta

distribution for xi

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 1

RBC h = ĥ∗pt, b = b̂∗pt 0.027 0.035 0.55 88.4 0.82 0.049 0.039 0.41 65.1 0.73

RBC h = b = ĥ∗pt 0.006 0.041 0.55 91.7 0.96 0.007 0.047 0.41 87.0 0.90

RBC h = ĥce, b = b̂ce 0.011 0.041 0.46 92.2 0.94 0.015 0.045 0.41 88.9 0.85

RBC h = b = ĥ∗rmse,2 0.001 0.052 0.36 91.7 1.19 0.004 0.051 0.36 91.9 0.98

RBC h = b = ĥ∗rmse,6 0.000 0.064 0.22 90.1 1.48 0.000 0.064 0.22 90.2 1.21

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.067 0.21 89.8 1.56 0.000 0.081 0.13 88.5 1.54

Conventional ĥ∗pt,rot 0.024 0.035 0.52 87.9 0.82 0.037 0.043 0.28 87.9 0.81

Conventional ĥce 0.026 0.036 0.46 91.3 0.82 0.064 0.037 0.41 51.5 0.70

FLCI, M = 2 ĥ∗rmse,2 0.019 0.039 0.36 96.2 1.00 0.055 0.039 0.36 81.0 0.82

FLCI, M = 6 ĥ∗rmse,6 0.008 0.047 0.22 95.7 1.22 0.024 0.047 0.22 96.1 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.006 0.049 0.21 95.0 1.28 0.009 0.059 0.13 94.9 1.27

Design 2

RBC h = ĥ∗pt, b = b̂∗pt 0.024 0.035 0.56 91.4 0.81 0.067 0.036 0.52 49.0 0.68

RBC h = b = ĥ∗pt 0.010 0.041 0.56 92.2 0.95 0.028 0.042 0.52 81.6 0.81

RBC h = ĥce, b = b̂ce 0.015 0.040 0.47 92.9 0.93 0.037 0.042 0.45 81.9 0.79

RBC h = b = ĥ∗rmse,2 0.002 0.052 0.36 91.8 1.19 0.007 0.051 0.36 92.4 0.98

RBC h = b = ĥ∗rmse,6 0.000 0.064 0.22 90.0 1.48 0.000 0.064 0.22 90.1 1.21

RBC h = b = ĥ∗
rmse,M̂rot

0.001 0.062 0.25 90.4 1.44 0.000 0.069 0.19 89.5 1.31

Conventional ĥ∗pt,rot 0.026 0.033 0.69 88.9 0.77 0.059 0.037 0.43 64.9 0.70

Conventional ĥce 0.023 0.036 0.47 92.5 0.82 0.068 0.036 0.45 48.7 0.68

FLCI, M = 2 ĥ∗rmse,2 0.018 0.039 0.36 96.4 1.00 0.053 0.039 0.36 84.5 0.82

FLCI, M = 6 ĥ∗rmse,6 0.008 0.047 0.22 95.8 1.22 0.024 0.047 0.22 96.4 1.00
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Monte Carlo simulation: log-normal errors and beta distribution

for xi (continued)

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.009 0.046 0.25 95.3 1.19 0.018 0.050 0.19 95.0 1.08

Design 3

RBC h = ĥ∗pt, b = b̂∗pt -0.032 0.035 0.55 77.2 0.82 -0.068 0.038 0.47 50.6 0.72

RBC h = b = ĥ∗pt -0.015 0.041 0.55 88.9 0.95 -0.025 0.045 0.47 85.4 0.85

RBC h = ĥce, b = b̂ce -0.014 0.041 0.44 87.8 0.96 -0.022 0.045 0.37 85.4 0.86

RBC h = b = ĥ∗rmse,2 -0.002 0.051 0.36 91.0 1.18 -0.006 0.051 0.36 90.5 0.97

RBC h = b = ĥ∗rmse,6 0.000 0.064 0.23 90.1 1.47 0.000 0.064 0.23 90.1 1.21

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.066 0.22 89.7 1.53 0.000 0.077 0.15 88.7 1.47

Conventional ĥ∗pt,rot -0.025 0.035 0.64 77.5 0.81 -0.050 0.040 0.36 63.6 0.76

Conventional ĥce -0.023 0.036 0.44 82.3 0.84 -0.055 0.038 0.37 62.4 0.73

FLCI, M = 2 ĥ∗rmse,2 -0.018 0.039 0.36 90.1 1.00 -0.053 0.039 0.36 71.1 0.82

FLCI, M = 6 ĥ∗rmse,6 -0.008 0.047 0.23 93.1 1.22 -0.024 0.047 0.23 88.6 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

-0.007 0.049 0.22 92.6 1.27 -0.011 0.056 0.15 91.9 1.22

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of CIs (in %);

RL—relative (to optimal FLCI) length.

Bandwidth descriptions: ĥ∗pt—plugin estimate of pointwise MSE optimal bandwidth (bw); b̂∗pt—analog for estimate of

the bias; ĥce—plugin estimate of coverage error optimal bw; b̂ce—analog for estimate of the bias; The implementation of

Calonico et al. (2018) is used for all four bws. ĥ∗rmse,2, ĥ
∗
rmse,6—RMSE optimal bw, assumingM = 2, andM = 6, respectively.

ĥ∗pt,rot—Fan and Gijbels (1996) rule of thumb; ĥ∗
rmse,M̂rot

—RMSE optimal bw, using rule-of-thumb for M . 50,000 Monte

Carlo draws.
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Table S9: Monte Carlo simulation: sd(ui) = 1/4

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 1

RBC h = ĥ∗pt, b = b̂∗pt 0.058 0.018 0.68 4.5 0.64 0.116 0.020 0.49 0.0 0.57

RBC h = b = ĥ∗pt 0.019 0.022 0.68 90.2 0.80 0.017 0.026 0.49 91.2 0.76

RBC h = ĥce, b = b̂ce 0.024 0.022 0.39 77.4 0.78 0.041 0.025 0.28 60.8 0.72

RBC h = b = ĥ∗rmse,2 0.000 0.035 0.27 94.3 1.26 0.000 0.035 0.28 94.3 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.043 0.18 93.8 1.57 0.000 0.043 0.18 93.8 1.26

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.045 0.16 93.7 1.64 0.000 0.056 0.11 93.0 1.62

Conventional ĥ∗pt,rot 0.022 0.021 0.38 76.3 0.77 0.028 0.026 0.24 78.9 0.77

Conventional ĥce 0.023 0.021 0.39 76.9 0.76 0.040 0.024 0.28 61.0 0.71

FLCI, M = 2 ĥ∗rmse,2 0.013 0.025 0.27 94.7 1.00 0.038 0.025 0.28 73.9 0.80

FLCI, M = 6 ĥ∗rmse,6 0.005 0.031 0.18 96.5 1.25 0.016 0.031 0.18 94.5 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.004 0.032 0.16 96.2 1.30 0.006 0.040 0.11 96.2 1.29

Design 2

RBC h = ĥ∗pt, b = b̂∗pt 0.043 0.017 0.77 28.8 0.63 0.128 0.017 0.76 0.0 0.51

RBC h = b = ĥ∗pt 0.026 0.021 0.77 76.5 0.75 0.075 0.021 0.76 5.5 0.61

RBC h = ĥce, b = b̂ce 0.026 0.020 0.47 70.2 0.73 0.061 0.022 0.37 24.8 0.64

RBC h = b = ĥ∗rmse,2 0.000 0.035 0.27 94.3 1.26 0.001 0.035 0.28 94.3 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.043 0.18 93.8 1.57 0.000 0.043 0.18 93.8 1.25

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.038 0.24 93.5 1.38 0.000 0.047 0.15 93.6 1.37

Conventional ĥ∗pt,rot 0.029 0.018 0.57 58.5 0.66 0.048 0.023 0.32 46.0 0.67

Conventional ĥce 0.027 0.019 0.47 66.1 0.69 0.062 0.021 0.37 21.8 0.62

FLCI, M = 2 ĥ∗rmse,2 0.012 0.025 0.27 94.8 1.00 0.039 0.024 0.28 73.6 0.80

FLCI, M = 6 ĥ∗rmse,6 0.005 0.031 0.18 96.5 1.25 0.016 0.030 0.18 94.6 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.009 0.027 0.24 92.9 1.09 0.011 0.033 0.15 95.4 1.10
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Monte Carlo simulation: sd(ui) = 1/4 (continued)

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 3

RBC h = ĥ∗pt, b = b̂∗pt -0.042 0.017 0.76 32.3 0.63 -0.107 0.018 0.63 1.7 0.54

RBC h = b = ĥ∗pt -0.023 0.021 0.76 77.5 0.76 -0.048 0.023 0.63 45.4 0.67

RBC h = ĥce, b = b̂ce -0.024 0.021 0.46 75.0 0.75 -0.046 0.023 0.35 49.5 0.68

RBC h = b = ĥ∗rmse,2 0.000 0.035 0.27 94.3 1.26 -0.001 0.035 0.28 94.4 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.043 0.18 93.8 1.57 0.000 0.043 0.18 93.8 1.25

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.042 0.19 93.8 1.54 0.000 0.053 0.12 93.3 1.53

Conventional ĥ∗pt,rot -0.026 0.019 0.49 65.2 0.69 -0.041 0.024 0.29 58.7 0.70

Conventional ĥce -0.026 0.019 0.46 66.5 0.69 -0.057 0.022 0.35 30.4 0.63

FLCI, M = 2 ĥ∗rmse,2 -0.012 0.025 0.27 94.7 1.00 -0.038 0.025 0.28 73.9 0.80

FLCI, M = 6 ĥ∗rmse,6 -0.005 0.031 0.18 96.4 1.25 -0.016 0.031 0.18 94.5 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

-0.006 0.030 0.19 95.8 1.22 -0.007 0.037 0.12 96.2 1.23

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of CIs (in %);

RL—relative (to optimal FLCI) length.

Bandwidth descriptions: ĥ∗pt—plugin estimate of pointwise MSE optimal bandwidth (bw); b̂∗pt—analog for estimate of

the bias; ĥce—plugin estimate of coverage error optimal bw; b̂ce—analog for estimate of the bias; The implementation of

Calonico et al. (2018) is used for all four bws. ĥ∗rmse,2, ĥ
∗
rmse,6—RMSE optimal bw, assumingM = 2, andM = 6, respectively.

ĥ∗pt,rot—Fan and Gijbels (1996) rule of thumb; ĥ∗
rmse,M̂rot

—RMSE optimal bw, using rule-of-thumb for M . 50,000 Monte

Carlo draws.

50



Table S10: Monte Carlo simulation: smooth DGP with λ = 40

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 1

RBC h = ĥ∗pt, b = b̂∗pt 0.062 0.035 0.74 57.7 0.73 0.151 0.036 0.61 0.2 0.61

RBC h = b = ĥ∗pt 0.024 0.042 0.74 93.3 0.88 0.039 0.047 0.61 90.1 0.78

RBC h = ĥce, b = b̂ce 0.029 0.041 0.46 86.1 0.85 0.059 0.045 0.34 72.6 0.76

RBC h = b = ĥ∗rmse,2 0.001 0.061 0.36 94.5 1.27 0.003 0.061 0.36 94.5 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.26

RBC h = b = ĥ∗
rmse,M̂rot

0.000 0.078 0.22 93.9 1.63 0.000 0.097 0.14 93.4 1.63

Conventional ĥ∗pt,rot 0.032 0.036 0.57 77.0 0.75 0.050 0.046 0.32 76.9 0.77

Conventional ĥce 0.028 0.039 0.46 85.7 0.80 0.057 0.044 0.34 72.8 0.74

FLCI, M = 2 ĥ∗rmse,2 0.021 0.043 0.36 95.0 1.00 0.063 0.043 0.36 76.2 0.80

FLCI, M = 6 ĥ∗rmse,6 0.009 0.054 0.23 96.6 1.25 0.027 0.053 0.23 94.7 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.008 0.055 0.22 95.6 1.29 0.010 0.069 0.14 96.3 1.29

Design 2

RBC h = ĥ∗pt, b = b̂∗pt 0.041 0.035 0.77 77.4 0.72 0.124 0.035 0.77 5.4 0.58

RBC h = b = ĥ∗pt 0.024 0.042 0.77 91.4 0.87 0.072 0.042 0.77 58.0 0.70

RBC h = ĥce, b = b̂ce 0.026 0.040 0.49 88.1 0.83 0.071 0.041 0.44 56.4 0.69

RBC h = b = ĥ∗rmse,2 0.002 0.061 0.36 94.5 1.27 0.007 0.061 0.36 94.4 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.26

RBC h = b = ĥ∗
rmse,M̂rot

0.002 0.068 0.30 94.0 1.43 0.000 0.083 0.20 93.8 1.38

Conventional ĥ∗pt,rot 0.030 0.032 0.78 76.0 0.67 0.071 0.040 0.44 54.7 0.66

Conventional ĥce 0.027 0.037 0.49 86.7 0.77 0.072 0.039 0.44 52.5 0.66

FLCI, M = 2 ĥ∗rmse,2 0.019 0.043 0.36 95.3 1.00 0.058 0.043 0.36 80.0 0.80

FLCI, M = 6 ĥ∗rmse,6 0.009 0.054 0.23 96.6 1.25 0.027 0.053 0.23 94.8 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

0.013 0.048 0.30 94.5 1.13 0.019 0.059 0.20 94.4 1.10
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Monte Carlo simulation: smooth DGP, with λ = 40 (continued)

M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 3

RBC h = ĥ∗pt, b = b̂∗pt -0.041 0.035 0.77 77.0 0.72 -0.119 0.035 0.74 11.0 0.59

RBC h = b = ĥ∗pt -0.023 0.042 0.77 91.3 0.87 -0.064 0.042 0.74 62.4 0.71

RBC h = ĥce, b = b̂ce -0.025 0.040 0.49 88.6 0.83 -0.061 0.043 0.43 66.1 0.71

RBC h = b = ĥ∗rmse,2 -0.002 0.061 0.36 94.5 1.27 -0.007 0.061 0.36 94.3 1.01

RBC h = b = ĥ∗rmse,6 0.000 0.076 0.23 94.2 1.58 -0.001 0.075 0.23 94.2 1.26

RBC h = b = ĥ∗
rmse,M̂rot

-0.001 0.074 0.25 94.2 1.54 0.000 0.092 0.16 93.6 1.54

Conventional ĥ∗pt,rot -0.030 0.033 0.72 75.9 0.69 -0.062 0.042 0.39 63.4 0.70

Conventional ĥce -0.027 0.037 0.49 86.4 0.78 -0.071 0.040 0.43 53.9 0.66

FLCI, M = 2 ĥ∗rmse,2 -0.019 0.043 0.36 95.1 1.00 -0.058 0.043 0.36 79.8 0.80

FLCI, M = 6 ĥ∗rmse,6 -0.009 0.054 0.23 96.5 1.25 -0.027 0.053 0.23 94.7 1.00

FLCI, M = M̂rot ĥ∗
rmse,M̂rot

-0.010 0.052 0.25 95.7 1.22 -0.013 0.065 0.16 96.1 1.22

Legend: SE—average standard error; E[h]—average (over Monte Carlo draws) bandwidth; Cov—coverage of CIs (in %);

RL—relative (to optimal FLCI) length.

Bandwidth descriptions: ĥ∗pt—plugin estimate of pointwise MSE optimal bandwidth (bw); b̂∗pt—analog for estimate of

the bias; ĥce—plugin estimate of coverage error optimal bw; b̂ce—analog for estimate of the bias; The implementation of

Calonico et al. (2018) is used for all four bws. ĥ∗rmse,2, ĥ
∗
rmse,6—RMSE optimal bw, assumingM = 2, andM = 6, respectively.

ĥ∗pt,rot—Fan and Gijbels (1996) rule of thumb; ĥ∗
rmse,M̂rot

—RMSE optimal bw, using rule-of-thumb for M . 50,000 Monte

Carlo draws.
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Figure S1: Optimal equivalent kernels for Taylor class FT,p(M) on the interior, and in the
boundary, rescaled to be supported on [0, 1] on the boundary and [−1, 1] in the interior.
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Figure S2: Optimal equivalent kernels for Hölder class FHöl,2(M) on the interior, and in the
boundary, rescaled to be supported on [0, 1] on the boundary and [−1, 1] in the interior.
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